1
|
Chug MK, Sapkota A, Garren M, Brisbois EJ. Wearable nitric oxide-releasing antibacterial insert for preventing device-associated infections. J Control Release 2024; 375:667-680. [PMID: 39288891 DOI: 10.1016/j.jconrel.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Medical device-associated infections are a pervasive global healthcare concern, often leading to severe complications. Bacterial biofilms that form on indwelling medical devices, such as catheters, are significant contributors to infections like bloodstream and urinary tract infections. This study addresses the challenge of biofilms on medical devices by introducing a portable antimicrobial catheter insert (PACI) designed to be efficient, biocompatible, and anti-infective. The PACI utilizes nitric oxide (NO), known for its potent antimicrobial properties, to deter bacterial adhesion and biofilm formation. To achieve this, a photoinitiated NO donor, S-nitroso-N-acetylpenicillamine (SNAP), is covalently linked to a polydimethylsiloxane (PDMS) polymer. This design allows for higher NO loading for long-term impact and prevents premature donor leaching, a common challenge with SNAP-blended polymers. The SNAP-PDMS material was applied to a side-glowing fiber optic and connected to a wearable light module emitting 450 nm light, creating a functional antimicrobial insert. Activation of the fiber optic, accomplished with a one-click mechanism, enables real-time NO release, maintaining controlled NO levels for a minimum of 24 hours. The therapeutic levels of NO released via photocatalysis from the PACI demonstrated remarkable efficacy, with >90 % reduction in bacterial viability against S. aureus, S. epidermidis, and P. mirabilis without any cytotoxic impact on mammalian cells. This study underscores the potential of the NO-releasing insert in clinical settings, providing a portable and adaptable solution for preventing catheter-associated infections.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Wang Y, Li X, Chen H, Yang X, Guo L, Ju R, Dai T, Li G. Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113023. [PMID: 39241393 PMCID: PMC11390306 DOI: 10.1016/j.jphotobiol.2024.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, MA General Hospital, Harvard Medical School, United States.
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China.
| |
Collapse
|
3
|
Pousty D, Ma B, Mathews C, Halanur M, Mamane H, Linden KG. Biofilm inactivation using LED systems emitting germicidal UV and antimicrobial blue light. WATER RESEARCH 2024; 267:122449. [PMID: 39316962 DOI: 10.1016/j.watres.2024.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Biofilms have been widely detected in water distribution and water storage systems posing potential risks to drinking water safety by harboring and shedding pathogens. Light-based disinfection methods, such as germicidal ultraviolet (UV) and antimicrobial blue light (aBL), could serve as non-chemical alternatives for biofilm control. This study investigated the inactivation of pure-culture Pseudomonas aeruginosa biofilms and mixed-culture biofilms using three distinct light-based disinfection methods: a low-pressure (LP) UV lamp emitting at 254 nm, a UV light emitting diode (LED) at 270 nm, and an aBL LED at 405 nm. The biofilms were developed on three commonly used materials including polycarbonate (PC), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC), to assess the impact of surface characteristics on light-based biofilm inactivation. Our findings show that all selected devices can effectively inactivate pure-culture and mixed-culture biofilms. While both UV devices (LP UV lamp and UV LED) provided significant inactivation at lower fluences (>1 log reduction at 20 mJ/cm2), aBL LED achieved significant inactivation at higher fluences for pure culture (maximum log reduction of 3.8 ± 0.5 at > 200,000 mJ/cm2). Inactivation performance also varied with surface materials, likely attributed to different surface properties including roughness, hydrophobicity, and surface charge. This study provides important information on using light-based technologies for biofilm control and highlights the effect of surface materials on their inactivation performance.
Collapse
Affiliation(s)
- Dana Pousty
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States; Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St. Reno, NV 89557, United States
| | - Christian Mathews
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States
| | - Manohara Halanur
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, United States.
| |
Collapse
|
4
|
Yang R, Xu Y, Xu J, Li Y, Wan X, Kong R, Ding C, Tao H, Wang HL. The transcriptional changes of LrgA discriminates the responsiveness of Staphylococcus aureus towards blue light from that of photodynamic inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112967. [PMID: 38996773 DOI: 10.1016/j.jphotobiol.2024.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Antimicrobial blue light (aBL) is utilized as a new approach to inhibit the growth of Staphylococcus aureus (S. aureus). Mediated by the endogenous chromophore, aBL possesses the similar photokilling property with aPDI (antimicrobial photodynamic inactivation), however, their mechanistic discrepancies in triggering the death of staphylococcal cells are not yet understood. Here, we describe the use of a 460-nm-LED to curb the viability of S. aureus. According to the results, the bacterial survival was sharply decreased when blue light was applied, reaching a maximum of 4.11 ± 0.04 log10 units. Moreover, the membrane integrity was damaged by aBL, causing the leakage of intracellular DNA. Transcriptomic analysis indicates the divergent gene expression upon either aBL or aPDI, with pathways such as transport, DNA repair, expression regulation and porphyrin massively affected by aBL. Among the commonly regulated genes, LrgA was underpinned on account of its involvement with biofilm formation and protein transport. By comparing the wildtype with the LrgA-overexpressing (LrgA+) strain, the survival rate, membrane penetration, surface structure and biofilm formation were, to a varying degree, improved for LrgA+, which may suggest that LrgA plays essential roles in modulating the responsiveness of S. aureus. Besides, LrgA may function through regulating the expression of autolysis-related systems. Finally, LrgA overexpression did not attenuate but aggravate the impairment induced by aPDI, showcasing a distinct responsive strategy from aBL. Taken together, this study unveils a unique molecular alteration for the aBL-mediated inactivation, providing the basis of utilizing blue light to reduce the harm brought by S. aureus.
Collapse
Affiliation(s)
- Ruili Yang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Xu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jinchun Xu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yali Li
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Wan
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Kong
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Ding
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Han Tao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Qi W, Min SN, Mao XD, Su JZ, Yu GY, Wu LL, Cong X, Wang YG. The Mechanism of 540 nm Green Light in Promoting Salivary Secretion. Photobiomodul Photomed Laser Surg 2024; 42:514-523. [PMID: 39150379 DOI: 10.1089/photob.2024.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Background: Although low-level laser therapy (LLLT) is a widely used noninvasive treatment because of photobiomodulation effects, its application for xerostomia remained uncertain. Tight junctions (TJs), mainly composed of claudins, occludin, and ZO family members, are crucial structures that determine material transport through paracellular pathway in salivary gland epithelial cells. This work aimed to investigate whether LLLT affected salivary secretion through epithelial TJs. Methods: Transepithelial electrical resistance (TER) measurement and paracellular permeability assay were applied to evaluate paracellular permeability in submandibular gland (SMG)-C6 cells after irradiation with 540 nm green light. Immunofluorescence and western blot were used to detect the expression of TJ proteins. Quantitative phosphoproteomics were performed to explore possible intracellular signals. Results: We found that irradiation with 540 nm green light significantly decreased TER values while increased paracellular transport in SMG-C6 cells. 540 nm green light-induced redistribution of claudin-1, -3, and -4, but not occludin or ZO-1. Moreover, above phenomena were abolished by preincubation with capsazepine, an antagonist of transient receptor potential vanilloid subtype 1. Notably, irradiation with 540 nm green light on the skin covering the whole submandibular gland regions promoted salivary secretion and attenuated lymphocytic infiltration in 21-week-old non-obese diabetic mice (n = 5 per group), a xerostomia animal model for Sjögren's syndrome. Through in-depth bioinformatics analysis and expression verification, ERK1/2 and EphA2 served as potential canonical and noncanonical signals underlying 540 nm green light. Conclusions: Our findings uncovered the novel therapeutic effects of 540 nm green light on xerostomia through regulation on the expression and distribution of TJs.
Collapse
Affiliation(s)
- Wei Qi
- Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, P. R. China
| | - Sai-Nan Min
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, P. R. China
| | - Xiang-Di Mao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - Jia-Zeng Su
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, P. R. China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, P. R. China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - Yu-Guang Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, P. R. China
| |
Collapse
|
6
|
Rosato R, Santarelli G, Augello A, Perini G, De Spirito M, Sanguinetti M, Papi M, De Maio F. Exploration of the Graphene Quantum Dots-Blue Light Combination: A Promising Treatment against Bacterial Infection. Int J Mol Sci 2024; 25:8033. [PMID: 39125603 PMCID: PMC11312127 DOI: 10.3390/ijms25158033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Graphene Quantum Dots (GQDs) have shown the potential for antimicrobial photodynamic treatment, due to their particular physicochemical properties. Here, we investigated the activity of three differently functionalized GQDs-Blue Luminescent GQDs (L-GQDs), Aminated GQDs (NH2-GQDs), and Carboxylated GQDs (COOH-GQDs)-against E. coli. GQDs were administrated to bacterial suspensions that were treated with blue light. Antibacterial activity was evaluated by measuring colony forming units (CFUs) and metabolic activities, as well as reactive oxygen species stimulation (ROS). GQD cytotoxicity was then assessed on human colorectal adenocarcinoma cells (Caco-2), before setting in an in vitro infection model. Each GQD exhibits antibacterial activity inducing ROS and impairing bacterial metabolism without significantly affecting cell morphology. GQD activity was dependent on time of exposure to blue light. Finally, GQDs were able to reduce E. coli burden in infected Caco-2 cells, acting not only in the extracellular milieu but perturbating the eukaryotic cell membrane, enhancing antibiotic internalization. Our findings demonstrate that GQDs combined with blue light stimulation, due to photodynamic properties, have a promising antibacterial activity against E. coli. Nevertheless, we explored their action mechanism and toxicity on epithelial cells, fixing and standardizing these infection models.
Collapse
Affiliation(s)
- Roberto Rosato
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia Santarelli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Maurizio Sanguinetti
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Jusuf S, Mansour MK. Catalase Deactivation Increases Dermatophyte Sensitivity to ROS Sources. J Fungi (Basel) 2024; 10:476. [PMID: 39057361 PMCID: PMC11277954 DOI: 10.3390/jof10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
As the leading cause of fungal skin infections around the globe, dermatophytes are responsible for a multitude of skin ailments, ranging from athlete's foot to ringworm. Due to the combination of its growing prevalence and antifungal misuse, antifungal-resistant dermatophyte strains like Trichophyton indotineae have begun to emerge, posing a significant global health risk. The emergence of these resistant dermatophytes highlights a critical need to identify alternative methods of treating dermatophyte infections. In our study, we utilized a 405 nm LED to establish that blue light can effectively inactivate catalase within a variety of both susceptible and resistant dermatophytes. Through this catalase inactivation process, light-treated dermatophytes were found to exhibit increased sensitivity to reactive oxygen species (ROS)-producing agents, improving the performance of antimicrobial agents such as H2O2 and amphotericin B. Our findings further demonstrate that light-induced catalase inactivation can inhibit the formation and polarized growth of hyphae from dermatophytes, suppressing biomass formation. Thus, by increasing ROS sensitization and inhibiting hyphal development, catalase-deactivating blue light offers a potential non-invasive and non-drug-reliant method of managing dermatophyte infections, opening new avenues for the potential treatment of these common infections in conjunction with existing treatments.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
8
|
Gigante AM, Hadis MA, Secker B, Shaw SC, Cooper PR, Palin WM, Milward MR, Atterbury RJ. Exposure to blue light reduces antimicrobial resistant Pseudomonas aeruginosa isolated from dog ear infections. Front Microbiol 2024; 15:1414412. [PMID: 39027093 PMCID: PMC11255781 DOI: 10.3389/fmicb.2024.1414412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a leading cause of canine otitis externa. Enrofloxacin is often applied topically to treat this condition, although recalcitrant and recurring infections are common. There is evidence that exposure to blue light (400-470 nm) has a bactericidal effect on P. aeruginosa and other microorganisms. Methods In the present study, we tested the biocidal effect of blue light (375-450 nm), alone or in combination with enrofloxacin, against six isolates of P. aeruginosa from dogs with otitis externa (5 of which were resistant to enrofloxacin). Results Treatment of planktonic cell cultures with blue light resulted in significant (p < 0.5) reductions in Colony Forming Units (CFU) for all seven strains tested, in some cases below the limit of detection. The greatest bactericidal effect was observed following exposure to light at 405 nm wavelength (p < 0.05). Exposure to blue light for 20 min usually resulted in a greater reduction in Pseudomonas aeruginosa than enrofloxacin treatment, and combination treatment typically resulted in the largest reductions in CFU. Analysis of the genome sequences of these strains established that enrofloxacin resistance was likely the result of a S466F substitution in GyrB. However, there was no clear association between genotype and susceptibility to blue light treatment. Discussion These results suggest that blue light treatment, particularly at 405 nm wavelength, and especially in combination with enrofloxacin therapy, could be an effective treatment for otherwise recalcitrant canine otitis externa caused by Pseudomonas aeruginosa. It may also provide a way of extending the usefulness of enrofloxacin therapy which would otherwise be ineffective as a sole therapeutic agent.
Collapse
Affiliation(s)
- Adriano M. Gigante
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Mohammad A. Hadis
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Bailey Secker
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Stephen C. Shaw
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - William M. Palin
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Michael R. Milward
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|
9
|
Chen L, Zhao Y, Shi Q, Du Y, Zeng Q, Liu H, Zhang Z, Zheng H, Wang JJ. Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: Insights into protein quality. Food Chem 2024; 444:138685. [PMID: 38341917 DOI: 10.1016/j.foodchem.2024.138685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
The preservation effects of a photodynamic inactivation (PDI)-mediated polylactic acid/5-aminolevulinic acid (PLA/ALA) film on the storage quality of salmon fillets were investigated. Results showed that the PDI-mediated PLA/ALA film could continuously generate reactive oxygen species by consuming oxygen to inactivate native pathogens and spoilage bacteria on salmon fillets. Meanwhile, the film maintained the content of muscle proteins and their secondary and tertiary structures, as well as the integrity of myosin by keeping the activity of Ca2+-ATPase, all of which protected the muscle proteins from degradation. Furthermore, the film retained the activity of total superoxide dismutase (T-SOD), suppressed the accumulation of lipid peroxides (e.g., MDA), which greatly inhibited four main types of protein oxidations. As a result, the content of flavor amino acids and essential amino acids in salmon fillets was preserved. Therefore, the PDI-mediated antimicrobial packaging film greatly preserves the storage quality of aquatic products by preserving the protein quality.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Du
- Data Information Center, Polar Research Institute of China, Shanghai 200136, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Huaming Zheng
- School of Material Sciences & Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
10
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
El-Gendy AO, Ezzat S, Samad FA, Dabbous OA, Dahm J, Hamblin MR, Mohamed T. Studying the viability and growth kinetics of vancomycin-resistant Enterococcus faecalis V583 following femtosecond laser irradiation (420-465 nm). Lasers Med Sci 2024; 39:144. [PMID: 38809462 PMCID: PMC11136855 DOI: 10.1007/s10103-024-04080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sarah Ezzat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Fatma Abdel Samad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ola Ali Dabbous
- Department of Medical Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, 12611, Egypt
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
12
|
Zoric A, Bagheri M, von Kohout M, Fardoust T, Fuchs PC, Schiefer JL, Opländer C. High-Intensity Blue Light (450-460 nm) Phototherapy for Pseudomonas aeruginosa-Infected Wounds. Photobiomodul Photomed Laser Surg 2024; 42:356-365. [PMID: 38776546 DOI: 10.1089/photob.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Background: Nosocomial wound infection with Pseudomonas aeruginosa (PA) is a serious complication often responsible for the septic mortality of burn patients. Objective: High-intensity antimicrobial blue light (aBL) treatment may represent an alternative therapy for PA infections and will be investigated in this study. Methods: Antibacterial effects of a light-emitting diode array (450-460 nm; 300 mW/cm2; 15/30 min; 270/540 J/cm2) against PA were determined by suspension assay, biofilm assay, and a human skin wound model and compared with 15-min topically applied 3% citric acid (CA) and wound irrigation solution (Prontosan®; PRT). Results: aBL reduced the bacterial number [2.51-3.56 log10 colony-forming unit (CFU)/mL], whereas PRT or CA treatment achieved a 4.64 or 6.60 log10 CFU/mL reduction in suspension assays. aBL reduced biofilm formation by 60-66%. PRT or CA treatment showed reductions by 25% or 13%. Here, aBL reduced bacterial number in biofilms (1.30-1.64 log10 CFU), but to a lower extend than PRT (2.41 log10 CFU) or CA (2.48 log10 CFU). In the wound skin model, aBL (2.21-2.33 log10 CFU) showed a bacterial reduction of the same magnitude as PRT (2.26 log10 CFU) and CA (2.30 log10 CFU). Conclusions: aBL showed a significant antibacterial efficacy against PA and biofilm formation in a short time. However, a clinical application of aBL in wound therapy requires effective active skin cooling and eye protection, which in turn may limit clinical implementation.
Collapse
Affiliation(s)
- Andreas Zoric
- Department of Plastic, Reconstructive and Aesthetic Surgery, RKH Hospital Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Mahsa Bagheri
- Department of Plastic and Aesthetic Surgery, Hand Surgery, HELIOS Hospital Emil von Behring, Berlin, Berlin, Germany
| | - Maria von Kohout
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Tara Fardoust
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Jennifer L Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
13
|
Su Y, Zhang L. Responses of microorganisms to different wavelengths of light radiation during green waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171021. [PMID: 38369149 DOI: 10.1016/j.scitotenv.2024.171021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Light radiation can degrade recalcitrant materials like lignocelluloses in litter and serve as a physical condition to accelerate green waste (GW) decomposition, but few studies have considered the microbial effects of light wavelength on GW composting. This study innovatively investigated the effects of different wavelengths of light radiation, including full-spectrum, no blue light, no UV, no UV-A, no UV-B, and dark conditions, on accelerating the GW composting process. Especially, the study explored the dynamic changes in the degradation of lignocelluloses and evaluated the responses of microorganisms throughout the composting process under different light radiation wavelengths. No blue light (where radiation between 400 and 500 nm was blocked by the film) yielded the highest-quality compost within 40 days. In comparison to the dark (control), no blue light exhibited an elevated composting temperature (56.7 °C), an extended thermophilic phase (6 days), and increased degradation rates of lignin, cellulose, and hemicellulose by 13 %, 15 %, and 12 %, respectively. This study revealed that during the composting mesophilic phase, bacterial diversity performed best under no blue light, while fungal diversity excelled under full-spectrum. In the thermophilic phase, microbial diversity exhibited optimal performance under full-spectrum. During the cooling phase, bacterial diversity was highest under no blue light, and fungal diversity excelled under no UV-A. During the mesophilic and cooling phases, the bacterial ACE index for no blue light exceeded that of the other light radiation wavelengths, with values of 418 and 494, respectively. Under no blue light, the Shannon index of microorganisms remained within the range of 2.0-4.8, demonstrating superior performance. Meanwhile, the relative abundances of lignin-degrading microorganisms (Flavobacterium, Acaulium, and Acremoniu) under no blue light has increased, demonstrating improved microbial community structures. Therefore, no blue light radiation offered a novel approach to expedite GW composting.
Collapse
Affiliation(s)
- Yuze Su
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
14
|
Bleve G, Trivellin N, Chirizzi D, Tarantini A, Orlandi VT, Milano F. Sensitivity of Xylella fastidiosa subsp. pauca Salento-1 to light at 410 nm. Photochem Photobiol Sci 2024; 23:793-801. [PMID: 38578539 DOI: 10.1007/s43630-024-00556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
All over the world, from America to the Mediterranean Sea, the plant pathogen Xylella fastidiosa represents one of the most difficult challenges with many implications at ecological, agricultural, and economic levels. X. fastidiosa is a rod-shaped Gram-negative bacterium belonging to the family of Xanthomonadaceae. It grows at very low rates and infects a wide range of plants thanks to different vectors. Insects, through their stylets, suck a sap rich in nutrients and inject bacteria into xylem vessels. Since, until now, no antimicrobial treatment has been successfully applied to kill X. fastidiosa and/or prevent its diffusion, in this study, antimicrobial blue light (aBL) was explored as a potential anti-Xylella tool. Xylella fastidiosa subsp. pauca Salento-1, chosen as a model strain, showed a certain degree of sensitivity to light at 410 nm. The killing effect was light dose dependent and bacterial concentration dependent. These preliminary results support the potential of blue light in decontamination of agricultural equipment and/or plant surface; however, further investigations are needed for in vivo applications.
Collapse
Affiliation(s)
- Gianluca Bleve
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), SP Lecce-Monteroni, 73100, Lecce, Italy
| | - Nicola Trivellin
- Department of Industrial Engineering, University of Padua, via Venezia, 1, 35131, Padova, Italy
| | - Daniela Chirizzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, via Manfredonia 20, 71100, Foggia, Italy
| | - Annamaria Tarantini
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), SP Lecce-Monteroni, 73100, Lecce, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (Di.S.S.P.A), Università di Bari, via G. Amendola, 165/A, Bari, 70126, Italy
| | - Viviana Teresa Orlandi
- Departemnt of Biotechnologies and Life Sciences, University of Insubria, via J. H. Dunant, 3, 21100, Varese, Italy.
| | - Francesco Milano
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), SP Lecce-Monteroni, 73100, Lecce, Italy
| |
Collapse
|
15
|
Lundberg AT, Hathcock T, Kennis RA, White AG. In vitro evaluation of bactericidal effects of fluorescent light energy on Staphylococcus pseudintermedius and S. aureus. Vet Dermatol 2024; 35:166-174. [PMID: 38177510 DOI: 10.1111/vde.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/02/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Staphylococcus pseudintermedius and S. aureus are bacterial species of importance in veterinary medicine. The increasing incidence of antibiotic resistance necessitates the implementation of novel treatment modalities. Fluorescent light energy (FLE) is used as an adjunctive and primary treatment for canine pyoderma. However, no in vitro studies exist investigating its bactericidal effects against S. pseudintermedius or S. aureus. OBJECTIVES To determine the bactericidal effects of FLE on S. pseudintermedius and S. aureus isolates. MATERIALS AND METHODS Two meticillin-susceptible S. pseudintermedius (MSSP) isolates, three meticillin-resistant S. pseudintermedius (MRSP) isolates and one meticillin-resistant S. aureus (MRSA) isolate were studied. A commercially available blue light-emitting diode (bLED) lamp and photoconverting hydrogel FLE system was used. All bacteria were exposed to five conditions following inoculation: (i) no treatment (control); (ii) blue light (bLED) once; (iii) bLED twice consecutively; (iv) FLE (bLED and photoconverting hydrogel) once; and (v) FLE (bLED and photoconverting hydrogel) twice consecutively. Each individual exposure was 2 min long. RESULTS No statistically significant differences (p < 0.05) were found for any treatment group when each bacterial isolate was evaluated individually, MSSP isolates were grouped, MRSP isolates were grouped, when all S. pseudintermedius isolates were combined, or when all isolates of both Staphylococcus species were combined. CONCLUSIONS AND CLINICAL RELEVANCE While clinical success is reported when using FLE to treat Staphylococcus infections in animals, no in vitro antibacterial efficacy was identified for S. pseudintermedius or S. aureus under experimental conditions. The clinical success observed with FLE may be the result of a more complex in vivo response.
Collapse
Affiliation(s)
- Annette T Lundberg
- College of Veterinary Medicine, Department of Clinical Sciences, Auburn University, Auburn, Alabama, USA
| | - Terri Hathcock
- College of Veterinary Medicine, Department of Pathobiology, Auburn University, Auburn, Alabama, USA
| | - Robert A Kennis
- College of Veterinary Medicine, Department of Clinical Sciences, Auburn University, Auburn, Alabama, USA
| | - Amelia G White
- College of Veterinary Medicine, Department of Clinical Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
16
|
Imtiaz S, Akhter TS, Bushra HT, Khan JZ, Niazi A, Saleem M, Umar M. Effective Treatment of Solitary Rectal Ulcer Syndrome by Using Photobiomodulation Therapy: A Case Report. Photobiomodul Photomed Laser Surg 2024; 42:182-185. [PMID: 38301213 DOI: 10.1089/photob.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Objective: To investigate the efficacy of Photobiomodulation therapy (PBMT) for the treatment of solitary rectal ulcer syndrome (SRUS). Background: SRUS is a benign disease, diagnosed by symptoms, clinical, and histological findings. PBMT has been reported for the treatment of various inflammation-based diseases including aphthous ulcer, but still no such study on the treatment of SRUS is published. Materials and methods: A 29-year Asian women, diagnosed for SRUS of 0.57 cm diameter, was treated by a laser at 635 nm through seven sessions. Laser fluence of 85 J/cm2 was delivered to ulcer lesion during each session for 10 min. Clinical results were valued by physician with sigmoid probe throughout PBMT sessions and no medicines were prescribed to the patient. Results: After seven sessions, the lesion was completely healed with 100% clinical response. In follow-up, patient did not respond to any additional/recurring abnormality, and no side effects were observed. Conclusions: In conclusion, PBMT by using laser at 635 nm is an effective treatment for SRUS without any side effects and patient remained comfortable throughout treatment sessions. Patient registration No. H-744/23.
Collapse
Affiliation(s)
- Sana Imtiaz
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| | | | - Hamama Tul Bushra
- Holy Family Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Javeria Zahid Khan
- Holy Family Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Aasiya Niazi
- Holy Family Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Muhammad Saleem
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| | - Muhammad Umar
- Holy Family Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| |
Collapse
|
17
|
Minor M, Sabillón L. Effectiveness of Ultra-High Irradiance Blue-Light-Emitting Diodes to Control Salmonella Contamination Adhered to Dry Stainless Steel Surfaces. Microorganisms 2024; 12:103. [PMID: 38257930 PMCID: PMC10819507 DOI: 10.3390/microorganisms12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Controlling Salmonella contamination in dry food processing environments represents a significant challenge due to their tolerance to desiccation stress and enhanced thermal resistance. Blue light is emerging as a safer alternative to UV irradiation for surface decontamination. In the present study, the antimicrobial efficacy of ultra-high irradiance (UHI) blue light, generated by light-emitting diodes (LEDs) at wavelengths of 405 nm (841.6 mW/cm2) and 460 nm (614.9 mW/cm2), was evaluated against a five-serovar cocktail of Salmonella enterica dry cells on clean and soiled stainless steel (SS) surfaces. Inoculated coupons were subjected to blue light irradiation treatments at equivalent energy doses ranging from 221 to 1106 J/cm2. Wheat flour was used as a model food soil system. To determine the bactericidal mechanisms of blue light, the intracellular concentration of reactive oxygen species (ROS) in Salmonella cells and the temperature changes on SS surfaces were also measured. The treatment energy dose had a significant effect on Salmonella inactivation levels. On clean SS surfaces, the reduction in Salmonella counts ranged from 0.8 to 7.4 log CFU/cm2, while, on soiled coupons, the inactivation levels varied from 1.2 to 4.2 log CFU/cm2. Blue LED treatments triggered a significant generation of ROS within Salmonella cells, as well as a substantial temperature increase in SS surfaces. However, in the presence of organic matter, the oxidative stress in Salmonella cells declined significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold the antimicrobial effectiveness observed on clean SS. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. These results indicate that LEDs emitting UHI blue light could represent a novel cost- and time-effective alternative for controlling microbial contamination in dry food processing environments.
Collapse
Affiliation(s)
- Martha Minor
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Luis Sabillón
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
18
|
Salviatto LTC, Prates RA, Pavani C, Bussadori SK, Deana AM. The influence of growth medium on the photodynamic susceptibility of Aggregatibacter actinomycetemcomitans to antimicrobial blue light. Lasers Med Sci 2023; 38:274. [PMID: 37993626 DOI: 10.1007/s10103-023-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The aim of this study was to investigate whether antimicrobial blue light (aBL) can cause the death of Aggregatibacter actinomycetemcomitans (A.a) and to determine the influence of different culture media, specifically brain heart infusion and blood agar, on bacterial survival fraction. An LED emitting at 403 ± 15 nm, with a radiant power of 1W, irradiance of 588.2 mW/cm2, and an irradiation time of 0 min, 1 min, 5 min, 10 min, 30 min, and 60 min, was used. The plates were incubated in microaerophilic conditions at 37 °C for 48 h, and the colony-forming units were counted. The photosensitizers were investigated using spectroscopy and fluorescence microscopy. There was no significant difference between the culture media (p > 0.05). However, a statistical reduction in both media was observed at 30 min (1058 J/cm2) (p < 0.05). The findings of this study suggest that aBL has the potential to kill bacteria regardless of the culture media used. Light therapy could be a promising and cost-effective strategy for preventing periodontal disease when used in combination with mechanical plaque control.
Collapse
Affiliation(s)
| | - Renato Araujo Prates
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Christiane Pavani
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Alessandro Melo Deana
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| |
Collapse
|
19
|
Karatas E, Hadis M, Palin WM, Milward MR, Kuehne SA, Camilleri J. Minimally invasive management of vital teeth requiring root canal therapy. Sci Rep 2023; 13:20389. [PMID: 37990070 PMCID: PMC10663499 DOI: 10.1038/s41598-023-47682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
The present study aimed to investigate the possible use of a non-instrumentation technique including blue light irradiation for root canal cleaning. Extracted human single rooted teeth were selected. Nine different groups included distilled water, NaOCl, intra-canal heated NaOCl, and NaOCl + EDTA irrigation after either instrumentation or non-instrumentation, and a laser application group following non-instrumentation technique. The chemical assessment of the root canal dentine was evaluated using energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. Surface microstructural analyses were performed by using scanning electron microscopy (SEM). The antimicrobial efficacy of different preparation techniques was evaluated using microbial tests. Light application didn't change the calcium/phosphorus, carbonate/phosphate and amide I/phosphate ratios of the root canal dentin. The root canal dentin preserved its original chemistry and microstructure after light application. The instrumentation decreased the carbonate/phosphate and amide I/phosphate ratios of the root canal dentin regardless of the irrigation solution or technique (p < 0.05). The application of light could not provide antibacterial efficacy to match the NaOCl irrigation. The NaOCl irrigation both in the non-instrumentation and instrumentation groups significantly reduced the number of bacteria (p < 0.05). The use of minimally invasive root canal preparation techniques where the root canal is not instrumented and is disinfected by light followed by obturation with a hydraulic cement sealer reduced the microbial load and preserved the dentin thus may be an attractive treatment option for management of vital teeth needing root canal therapy.
Collapse
Affiliation(s)
- E Karatas
- Ataturk University, Erzurum, Turkey
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way Edgbaston, Birmingham, B5 7EG, UK
| | - M Hadis
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way Edgbaston, Birmingham, B5 7EG, UK
| | - W M Palin
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way Edgbaston, Birmingham, B5 7EG, UK
| | - M R Milward
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way Edgbaston, Birmingham, B5 7EG, UK
| | - S A Kuehne
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way Edgbaston, Birmingham, B5 7EG, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - J Camilleri
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way Edgbaston, Birmingham, B5 7EG, UK.
| |
Collapse
|
20
|
Jusuf S, Dong PT. Chromophore-Targeting Precision Antimicrobial Phototherapy. Cells 2023; 12:2664. [PMID: 37998399 PMCID: PMC10670386 DOI: 10.3390/cells12222664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Phototherapy, encompassing the utilization of both natural and artificial light, has emerged as a dependable and non-invasive strategy for addressing a diverse range of illnesses, diseases, and infections. This therapeutic approach, primarily known for its efficacy in treating skin infections, such as herpes and acne lesions, involves the synergistic use of specific light wavelengths and photosensitizers, like methylene blue. Photodynamic therapy, as it is termed, relies on the generation of antimicrobial reactive oxygen species (ROS) through the interaction between light and externally applied photosensitizers. Recent research, however, has highlighted the intrinsic antimicrobial properties of light itself, marking a paradigm shift in focus from exogenous agents to the inherent photosensitivity of molecules found naturally within pathogens. Chemical analyses have identified specific organic molecular structures and systems, including protoporphyrins and conjugated C=C bonds, as pivotal components in molecular photosensitivity. Given the prevalence of these systems in organic life forms, there is an urgent need to investigate the potential impact of phototherapy on individual molecules expressed within pathogens and discern their contributions to the antimicrobial effects of light. This review delves into the recently unveiled key molecular targets of phototherapy, offering insights into their potential downstream implications and therapeutic applications. By shedding light on these fundamental molecular mechanisms, we aim to advance our understanding of phototherapy's broader therapeutic potential and contribute to the development of innovative treatments for a wide array of microbial infections and diseases.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Pu-Ting Dong
- Department of Microbiology, The Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
21
|
Amodeo D, Manzi P, De Palma I, Puccio A, Nante N, Barcaccia M, Marini D, Pietrella D. Efficacy of Violet-Blue (405 nm) LED Lamps for Disinfection of High-Environmental-Contact Surfaces in Healthcare Facilities: Leading to the Inactivation of Microorganisms and Reduction of MRSA Contamination. Pathogens 2023; 12:1338. [PMID: 38003802 PMCID: PMC10674356 DOI: 10.3390/pathogens12111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Effective disinfection procedures in healthcare facilities are essential to prevent transmission. Chemical disinfectants, hydrogen peroxide vapour (HPV) systems and ultraviolet (UV) light are commonly used methods. An emerging method, violet-blue light at 405 nm, has shown promise for surface disinfection. Its antimicrobial properties are based on producing reactive oxygen species (ROS) that lead to the inactivation of pathogens. Studies have shown significant efficacy in reducing bacterial levels on surfaces and in the air, reducing nosocomial infections. The aim of this study was to evaluate the antimicrobial effectiveness of violet-blue (405 nm) LED lamps on high-contact surfaces in a hospital infection-control laboratory. High-contact surfaces were sampled before and after 7 days of exposure to violet-blue light. In addition, the effect of violet-blue light on MRSA-contaminated surfaces was investigated. Exposure to violet-blue light significantly reduced the number of bacteria, yeasts and moulds on the sampled surfaces. The incubator handle showed a low microbial load and no growth after irradiation. The worktable and sink showed an inconsistent reduction due to shaded areas. In the second experiment, violet-blue light significantly reduced the microbial load of MRSA on surfaces, with a greater reduction on steel surfaces than on plastic surfaces. Violet-blue light at 405 nm has proven to be an effective tool for pathogen inactivation in healthcare settings Violet-blue light shows promise as an additional and integrated tool to reduce microbial contamination in hospital environments but must be used in combination with standard cleaning practices and infection control protocols. Further research is needed to optimise the violet-blue, 405 nm disinfection method.
Collapse
Affiliation(s)
- Davide Amodeo
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Pietro Manzi
- Hospital of Santa Maria di Terni, 05100 Terni, Italy;
| | - Isa De Palma
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Alessandro Puccio
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.P.); (N.N.)
| | - Nicola Nante
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.P.); (N.N.)
| | | | - Daniele Marini
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06100 Perugia, Italy; (D.M.); (D.P.)
| | - Donatella Pietrella
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06100 Perugia, Italy; (D.M.); (D.P.)
| |
Collapse
|
22
|
Ribeiro RS, Mencalha AL, de Souza da Fonseca A. Could violet-blue lights increase the bacteria resistance against ultraviolet radiation mediated by photolyases? Lasers Med Sci 2023; 38:253. [PMID: 37930459 DOI: 10.1007/s10103-023-03924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Studies have demonstrated bacterial inactivation by radiations at wavelengths between 400 and 500 nm emitted by low-power light sources. The phototoxic activity of these radiations could occur by oxidative damage in DNA and membrane proteins/lipids. However, some cellular mechanisms can reverse these damages in DNA, allowing the maintenance of genetic stability. Photoreactivation is among such mechanisms able to repair DNA damages induced by ultraviolet radiation, ranging from ultraviolet A to blue radiations. In this review, studies on the effects of violet and blue lights emitted by low-power LEDs on bacteria were accessed by PubMed, and discussed the repair of ultraviolet-induced DNA damage by photoreactivation mechanisms. Data from such studies suggested bacterial inactivation after exposure to violet (405 nm) and blue (425-460 nm) radiations emitted from LEDs. However, other studies showed bacterial photoreactivation induced by radiations at 348-440 nm. This process occurs by photolyase enzymes, which absorb photons at wavelengths and repair DNA damage. Although authors have reported bacterial inactivation after exposure to violet and blue radiations emitted from LEDs, pre-exposure to such radiations at low fluences could activate the photolyases, increasing resistance to DNA damage induced by ultraviolet radiation.
Collapse
Affiliation(s)
- Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, Teresópolis, Rio de Janeiro, 11125964004, Brazil.
| |
Collapse
|
23
|
Huang S, Qin H, Liu M. Photoinactivation of Escherichia coli by 405 nm and 450 nm light-emitting diodes: Comparison of continuous wave and pulsed light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112799. [PMID: 37832394 DOI: 10.1016/j.jphotobiol.2023.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Antimicrobial blue light (ABL) therapy is one of the novel non-antibiotic approaches and recent studies showed the potential of pulsed ABL. PURPOSE Comparing photoinactivation effect of continuous wave (CW) and pulsed blue light and investigating the impact of varying light parameters. METHODS E. coli cells in planktonic were treated with CW and pulsed light (405 nm and 450 nm) at 60 mW/cm2, and the samples were taken to assess survival, reactive oxygen species (ROS) level, damage of cell membrane and metabolic activity. Further, a ROS scavenger was used to find the role of ROS played in ABL therapy. RESULTS E. coli was more sensitive to 405 nm light and the photoinactivation was dose-dependent. Pulsed 405 nm light showed the better antimicrobial effect on E. coli and caused increasing damage of cell membrane. It might be attributed to the ROS production in bacteria. CONCLUSION Pulsed light has a potential of improving the efficacy of ABL therapy and is worth to be explored deeply further.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Rd, Zhongshan City 528403, China.
| |
Collapse
|
24
|
Munir Z, Molinar C, Banche G, Argenziano M, Magnano G, Cavallo L, Mandras N, Cavalli R, Guiot C. Encapsulation in Oxygen-Loaded Nanobubbles Enhances the Antimicrobial Effectiveness of Photoactivated Curcumin. Int J Mol Sci 2023; 24:15595. [PMID: 37958582 PMCID: PMC10650092 DOI: 10.3390/ijms242115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In both healthcare and agriculture, antibiotic resistance is an alarming issue. Biocompatible and biodegradable ingredients (e.g., curcumin) are given priority in "green" criteria supported by the Next Generation EU platform. The solubility and stability of curcumin would be significantly improved if it were enclosed in nanobubbles (NB), and photoactivation with the correct wavelength of light can increase its antibacterial efficacy. A continuous release of curcumin over a prolonged period was provided by using innovative chitosan-shelled carriers, i.e., curcumin-containing nanobubbles (Curc-CS-NBs) and oxygen-loaded curcumin-containing nanobubbles (Curc-Oxy-CS-NBs). The results demonstrated that after photoactivation, both types of NBs exhibited increased effectiveness. For Staphylococcus aureus, the minimum inhibitory concentration (MIC) for Curc-CS-NBs remained at 46 µg/mL following photodynamic activation, whereas it drastically dropped to 12 µg/mL for Curc-Oxy-CS-NBs. Enterococcus faecalis shows a decreased MIC for Curc-CS-NB and Curc-Oxy-CS-NB (23 and 46 µg/mL, respectively). All bacterial strains were more effectively killed by NBs that had both oxygen and LED irradiation. A combination of Curc-Oxy-CS-NB and photodynamic stimulation led to a killing of microorganisms due to ROS-induced bacterial membrane leakage. This approach was particularly effective against Escherichia coli. In conclusion, this work shows that Curc-CS-NBs and Curc-Oxy-CS-exhibit extremely powerful antibacterial properties and represent a potential strategy to prevent antibiotic resistance and encourage the use of eco-friendly substitutes in agriculture and healthcare.
Collapse
Affiliation(s)
- Zunaira Munir
- Department of Neurosciences, University of Turin, 10125 Torino, Italy; (Z.M.); (C.G.)
| | - Chiara Molinar
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy; (G.B.); (L.C.)
| | - Monica Argenziano
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Greta Magnano
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy; (G.B.); (L.C.)
| | - Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy; (G.B.); (L.C.)
| | - Roberta Cavalli
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10125 Torino, Italy; (Z.M.); (C.G.)
| |
Collapse
|
25
|
Cong X, Krolla P, Khan UZ, Savin M, Schwartz T. Antibiotic resistances from slaughterhouse effluents and enhanced antimicrobial blue light technology for wastewater decontamionation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109315-109330. [PMID: 37924165 PMCID: PMC10622382 DOI: 10.1007/s11356-023-29972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
The frequencies of 6 different facultative pathogenic bacteria of the ESKAPE group (priority list WHO) and a total of 14 antibiotic resistance genes (ARGs) with different priorities for human medicine were quantified in wastewaters of poultry and pig slaughterhouses using molecular biological approaches. Raw sewage from poultry and pig slaughterhouses was found to be contaminated not only with facultative pathogenic bacteria but also with various categories of clinically relevant ARGs, including ARGs against the reserve antibiotics group. The concentration of the different gene targets decreased after on-site conventional biological or advanced oxidative wastewater treatments, but was not eliminated. Hence, the antimicrobial BlueLight (aBL) in combination with a porphyrin photo-sensitizer was studied with ESKAPE bacteria and real slaughterhouse wastewaters. The applied broad LED-based blue light (420-480 nm) resulted in groups of sensitive, intermediate, and non-sensitive ESKAPE bacteria. The killing effect of aBL was increased in the non-sensitive bacteria Klebsiella pneumoniae and Enterococcus faecium due to the addition of porphyrins in concentrations of 10-6 M. Diluted slaughterhouse raw wastewater was treated with broad spectrum aBL and in combination with porphyrin. Here, the presence of the photo-sensitizer enhanced the aBL biocidal impact.
Collapse
Affiliation(s)
- Xiaoyu Cong
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Krolla
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Umer Zeb Khan
- Bioengineering Department, Faculty Life Sciences, Rhein-Waal University of Applied Sciences, Marie Curie Straße 1, 47533, Kleve, Germany
| | - Mykhailo Savin
- Institute for Hygiene and Public Health (IHPH), Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Schwartz
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
26
|
Cela EM, Urquiza D, Gómez MI, Gonzalez CD. New Weapons to Fight against Staphylococcus aureus Skin Infections. Antibiotics (Basel) 2023; 12:1477. [PMID: 37887178 PMCID: PMC10603739 DOI: 10.3390/antibiotics12101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The treatment of Staphylococcus aureus skin and soft tissue infections faces several challenges, such as the increased incidence of antibiotic-resistant strains and the fact that the antibiotics available to treat methicillin-resistant S. aureus present low bioavailability, are not easily metabolized, and cause severe secondary effects. Moreover, besides the susceptibility pattern of the S. aureus isolates detected in vitro, during patient treatment, the antibiotics may never encounter the bacteria because S. aureus hides within biofilms or inside eukaryotic cells. In addition, vascular compromise as well as other comorbidities of the patient may impede proper arrival to the skin when the antibiotic is given parenterally. In this manuscript, we revise some of the more promising strategies to improve antibiotic sensitivity, bioavailability, and delivery, including the combination of antibiotics with bactericidal nanomaterials, chemical inhibitors, antisense oligonucleotides, and lytic enzymes, among others. In addition, alternative non-antibiotic-based experimental therapies, including the delivery of antimicrobial peptides, bioactive glass nanoparticles or nanocrystalline cellulose, phototherapies, and hyperthermia, are also reviewed.
Collapse
Affiliation(s)
- Eliana M. Cela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Dolores Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
| | - Marisa I. Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Cintia D. Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
27
|
Chen H, Cheng Y, Moraru CI. Blue 405 nm LED light effectively inactivates bacterial pathogens on substrates and packaging materials used in food processing. Sci Rep 2023; 13:15472. [PMID: 37726297 PMCID: PMC10509141 DOI: 10.1038/s41598-023-42347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
This study investigates the antimicrobial effectiveness of 405 nm light emitting diodes (LEDs) against pathogenic Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus, in thin liquid films (TLF) and on solid surfaces. Stainless steel (SS), high density polyethylene (HDPE), low density polyethylene (LDPE), and borosilicate glass were used as materials typically encountered in food processing, food service, and clinical environments. Anodic aluminum oxide (AAO) coupons with nanoscale topography were used, to evaluate the effect of topography on inactivation. The impact of surface roughness, hydrophobicity, and reflectivity on inactivation was assessed. A 48 h exposure to 405 nm led to reductions ranging from 1.3 (E. coli) to 5.7 (S. aureus) log CFU in TLF and 3.1 to 6.3 log CFU on different solid contact surfaces and packaging materials. All inactivation curves were nonlinear and followed Weibull kinetics, with better inactivation predictions on surfaces (0.89 ≤ R2 ≤ 1.0) compared to TLF (0.76 ≤ R2 ≤ 0.99). The fastest inactivation rate was observed on small nanopore AAO coupons inoculated with L. monocytogenes and S. aureus, indicating inactivation enhancing potential of these surfaces. These results demonstrate significant promise of 405 nm LEDs for antimicrobial applications in food processing and handling and the healthcare industry.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yifan Cheng
- Department of Food Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
28
|
Harris DM, Sulewski JG. Photoinactivation and Photoablation of Porphyromonas gingivalis. Pathogens 2023; 12:1160. [PMID: 37764967 PMCID: PMC10535405 DOI: 10.3390/pathogens12091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Several types of phototherapy target human pathogens and Porphyromonas gingivitis (Pg) in particular. The various approaches can be organized into five different treatment modes sorted by different power densities, interaction times, effective wavelengths and mechanisms of action. Mode 1: antimicrobial ultraviolet (aUV); mode 2: antimicrobial blue light (aBL); mode 3: antimicrobial selective photothermolysis (aSP); mode 4: antimicrobial vaporization; mode 5: antimicrobial photodynamic therapy (aPDT). This report reviews the literature to identify for each mode (a) the putative molecular mechanism of action; (b) the effective wavelength range and penetration depth; (c) selectivity; (d) in vitro outcomes; and (e) clinical trial/study outcomes as these elements apply to Porphyromonas gingivalis (Pg). The characteristics of each mode influence how each is translated into the clinic.
Collapse
Affiliation(s)
- David M. Harris
- Bio-Medical Consultants, Inc., Canandaigua, NY 14424, USA
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - John G. Sulewski
- Institute for Advanced Dental Technologies, Huntington Woods, MI 48070, USA
- Millennium Dental Technologies, Inc., Cerritos, CA 90703, USA
| |
Collapse
|
29
|
Ong J, Nazarian A, Tam J, Farinelli W, Korupolu S, Drake L, Isaacson B, Pasquina P, Williams D. An antimicrobial blue light device to manage infection at the skin-implant interface of percutaneous osseointegrated implants. PLoS One 2023; 18:e0290347. [PMID: 37624860 PMCID: PMC10456172 DOI: 10.1371/journal.pone.0290347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial blue light (aBL) is an attractive option for managing biofilm burden at the skin-implant interface of percutaneous osseointegrated (OI) implants. However, marketed aBL devices have both structural and optical limitations that prevent them from being used in an OI implant environment. They must be handheld, preventing even irradiation of the entire skin-implant interface, and the devices do not offer sufficient optical power outputs required to kill biofilms. We present the developmental process of a unique aBL device that overcomes these limitations. Four prototypes are detailed, each being a progressive improvement from the previous iteration as we move from proof-of-concept to in vivo application. Design features focused on a cooling system, LED orientation, modularity, and "sheep-proofing". The final prototype was tested in an in vivo OI implant sheep model, demonstrating that it was structurally and optically adequate to address biofilm burdens at the skin-implant of percutaneous OI implants. The device made it possible to test aBL in the unique OI implant environment and compare its efficacy to clinical antibiotics-data which had not before been achievable. It has provided insight into whether or not continued pursual of light therapy research for OI implants, and other percutaneous devices, is worthwhile. However, the device has drawbacks concerning the cooling system, complexity, and size if it is to be translated to human clinical trials. Overall, we successfully developed a device to test aBL therapy for patients with OI implants and helped progress understanding in the field of infection management strategies.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Dermatology, Harvard Medical School, Boston, MA, United States of America
| | - William Farinelli
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Sandeep Korupolu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Lynn Drake
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Dermatology, Harvard Medical School, Boston, MA, United States of America
| | - Brad Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
- The Geneva Foundation, Tacoma, WA, United States of America
- Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness (MIRROR), Uniformed Services University, Bethesda, MD, United States of America
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States of America
| | - Paul Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States of America
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States of America
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
30
|
Minor M, Sabillón L. Effectiveness of Ultra-High Irradiance Blue Light-Emitting Diodes in Inactivating Escherichia coli O157:H7 on Dry Stainless Steel and Cast-Iron Surfaces. Foods 2023; 12:3072. [PMID: 37628070 PMCID: PMC10453762 DOI: 10.3390/foods12163072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The use of blue light-emitting diodes (LEDs) is emerging as a promising dry decontamination method. In the present study, LEDs emitting ultra-high irradiance (UHI) density at 405 nm (842 mW/cm2) and 460 nm (615 mW/cm2) were used to deliver high-intensity photoinactivation treatments ranging from 221 to 1107 J/cm2. The efficacy of these treatments to inactivate E. coli O157:H7 dry cells was evaluated on clean and soiled stainless steel and cast-iron surfaces. On clean metal surfaces, the 405 and 460 nm LED treatment with a 221 J/cm2 dose resulted in E. coli reductions ranging from 2.0 to 4.1 log CFU/cm2. Increasing the treatment energy dose to 665 J/cm2 caused further significant reductions (>8 log CFU/cm2) in the E. coli population. LED treatments triggered a significant production of intracellular reactive oxygen species (ROS) in E. coli cells, as well as a significant temperature increase on metal surfaces. In the presence of organic matter, intracellular ROS generation in E. coli cells dropped significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold antimicrobial effectiveness. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. This study showed that LEDs emitting monochromatic blue light at UHI levels may serve as a viable and time-effective method for surface decontamination in dry food processing environments.
Collapse
Affiliation(s)
- Martha Minor
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Luis Sabillón
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
31
|
Mušković M, Planinić M, Crepulja A, Lušić M, Glad M, Lončarić M, Malatesti N, Gobin I. Photodynamic inactivation of multidrug-resistant strains of Klebsiella pneumoniae and Pseudomonas aeruginosa in municipal wastewater by tetracationic porphyrin and violet-blue light: The impact of wastewater constituents. PLoS One 2023; 18:e0290080. [PMID: 37582092 PMCID: PMC10427015 DOI: 10.1371/journal.pone.0290080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
There is an increasing need to discover effective methods for treating municipal wastewater and addressing the threat of multidrug-resistant (MDR) strains of bacteria spreading into the environment and drinking water. Photodynamic inactivation (PDI) that combines a photosensitiser and light in the presence of oxygen to generate singlet oxygen and other reactive species, which in turn react with a range of biomolecules, including the oxidation of bacterial genetic material, may be a way to stop the spread of antibiotic-resistant genes. The effect of 5,10,15,20-(pyridinium-3-yl)porphyrin tetrachloride (TMPyP3) without light, and after activation with violet-blue light (VBL) (394 nm; 20 mW/cm2), on MDR strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and K. pneumoniae OXA-48 in tap water and municipal wastewater was investigated. High toxicity (~2 μM) of TMPyP3 was shown in the dark on both strains of K. pneumoniae in tap water, while on P. aeruginosa toxicity in the dark was low (50 μM) and the PDI effect was significant (1.562 μM). However, in wastewater, the toxicity of TMPyP3 without photoactivation was much lower (12.5-100 μM), and the PDI effect was significant for all three bacterial strains, already after 10 min of irradiation with VBL (1.562-6.25 μM). In the same concentrations, or even lower, an anti-adhesion effect was shown, suggesting the possibility of application in biofilm control. By studying the kinetics of photoinactivation, it was found that with 1,562 μM of TMPyP3 it is possible to achieve the complete destruction of all three bacteria after 60 min of irradiation with VBL. This study confirmed the importance of studying the impact of water constituents on the properties and PDI effect of the applied photosensitiser, as well as checking the sensitivity of targeted bacteria to light of a certain wavelength, in conditions as close as possible to those in the intended application, to adjust all parameters and perfect the method.
Collapse
Affiliation(s)
- Martina Mušković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Matej Planinić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonela Crepulja
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marko Lušić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Marin Glad
- Department for Environmental Protection and Health Ecology, Teaching Institute of Public Health, Rijeka, Croatia
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
32
|
Gardner A, Soni A, Cookson A, Brightwell G. Light tolerance of extended spectrum β-lactamase producing Escherichia coli strains after repetitive exposure to far-UVC and blue LED light. J Appl Microbiol 2023; 134:lxad124. [PMID: 37463831 DOI: 10.1093/jambio/lxad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
AIMS The aim of this study was to investigate dual far-UVC (Ultraviolet-C) (222 nm) and blue LED (Light Emitting Diode) (405 nm) light on the inactivation of extended spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) and to determine if repetitive exposure to long pulses of light resulted in changes to light tolerance, and antibiotic susceptibility. METHODS AND RESULTS Antimicrobial efficiency of dual and individual light wavelengths and development of light tolerance in E. coli was evaluated through a spread plate method after exposure to light at 25 cm. Dual light exposure for 30 min resulted in a 5-6 log10 CFU mL-1 reduction in two ESBL-Ec and two antibiotic-sensitive control E. coli strains. The overall inhibition achieved by dual light treatment was always greater than the combined reductions (log10 CFU) observed from exposure to individual light wavelengths (combined 222-405 nm), indicating a synergistic relationship between blue LED and far-UVC light when used together. Repetitive long pulses of dual and individual far-UVC light exposure resulted in light tolerance in two ESBL-Ec strains but not the antibiotic-sensitive E. coli strains. Subsequent passages of repetitive light-treated ESBL-Ec strains continued to exhibit light tolerance. Antibiotic susceptibility was determined through a standard disk diffusion method. No changes were observed in the antibiotic susceptibility profiles for any of the four strains after exposure to either dual or individual wavelengths. CONCLUSIONS Dual light exposure was effective in the disinfection of ESBL-Ec in solution; however, antibiotic-resistant E. coli were able to develop light tolerance after repetitive exposure to light.
Collapse
Affiliation(s)
- Amanda Gardner
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
| | - Aswathi Soni
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
| | - Adrian Cookson
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
- School of Veterinary Medicine, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| | - Gale Brightwell
- Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
33
|
Lähteenmäki H, Pätilä T, Pärnänen CP, Räisänen I, Tervahartiala T, Gupta S, Sorsa T. aMMP-8 point-of-care - diagnostic methods and treatment modalities in periodontitis and peri-implantitis. Expert Opin Ther Targets 2023; 27:627-637. [PMID: 37522314 DOI: 10.1080/14728222.2023.2240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION When collected in a standardized fashion, oral fluid analysis can refine the diagnosis of periodontal and peri-implant disease. In practice, dental professionals can perform active matrix metalloproteinase (aMMP-8) analysis chairside. AREAS COVERED Periodontal tissues are mainly made up of type I collagen, and collagen breakdown is one of the main events in periodontal and peri-implantitis destructive lesions. In addition to traditional measurements, their diagnosis can be refined with tests utilizing oral fluids. The active matrix metalloproteinase-8 (aMMP-8) is possible to be determined from the gingival crevicular fluid (GCF), peri-implant sulcus fluid (PISF), and other oral fluids such as mouth rinse and saliva. We also investigated the applicability of aMMP-8 chair-side test kits in the evaluation of oral health benefits of different adjunctive host-modulating periodontal therapies including fermented lingonberry mouthwash (FLJ) and antibacterial photodynamic therapy (aPDT). EXPERT OPINION The aMMP-8 levels can more reliably detect early activation of periodontal and peri-implant disease as compared to traditional diagnostic methods that assess the experienced health status or past disease, rather than the present or future pathology. Novel therapies like, fermented lingonberry juice as a mouthrinse or aPDT, are potential host-modulating adjunctive treatments to reduce the signs of oral inflammation and infection.
Collapse
Affiliation(s)
- Hanna Lähteenmäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Tommi Pätilä
- Department of Pediatric Heart Surgery and Organ Transplantation, New Children's Hospital, Helsinki University, Helsinki, Finland
| | - C Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Ismo Räisänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Shipra Gupta
- Unit of Periodontology, Oral Health Sciences Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
34
|
Ong J, Godfrey R, Nazarian A, Tam J, Isaacson BM, Pasquina PF, Williams DL. Comparison of Staphylococcus aureus tolerance between antimicrobial blue light, levofloxacin, and rifampin. Front Microbiol 2023; 14:1158558. [PMID: 37303789 PMCID: PMC10248220 DOI: 10.3389/fmicb.2023.1158558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Background Bacterial biofilms readily develop on all medical implants, including percutaneous osseointegrated (OI) implants. With the growing rate of antibiotic resistance, exploring alternative options for managing biofilm-related infections is necessary. Antimicrobial blue light (aBL) is a unique therapy that can potentially manage biofilm-related infections at the skin-implant interface of OI implants. Antibiotics are known to have antimicrobial efficacy disparities between the planktonic and biofilm bacterial phenotypes, but it is unknown if this characteristic also pertains to aBL. In response, we developed experiments to explore this aspect of aBL therapy. Methods We determined minimum bactericidal concentrations (MBCs) and antibiofilm efficacies for aBL, levofloxacin, and rifampin against Staphylococcus aureus ATCC 6538 planktonic and biofilm bacteria. Using student t-tests (p < 0.05), we compared the efficacy profiles between the planktonic and biofilm states for the three independent treatments and a levofloxacin + rifampin combination. Additionally, we compared antimicrobial efficacy patterns for levofloxacin and aBL against biofilms as dosages increased. Results aBL had the most significant efficacy disparity between the planktonic and biofilm phenotypes (a 2.5 log10 unit difference). However, further testing against biofilms revealed that aBL had a positive correlation between increasing efficacy and exposure time, while levofloxacin encountered a plateau. While aBL efficacy was affected the most by the biofilm phenotype, its antimicrobial efficacy did not reach a maximum. Discussion/conclusion We determined that phenotype is an important characteristic to consider when determining aBL parameters for treating OI implant infections. Future research would benefit from expanding these findings against clinical S. aureus isolates and other bacterial strains, as well as the safety of long aBL exposures on human cells.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Rose Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Brad M. Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
- The Geneva Foundation, Tacoma, WA, United States
- Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness, Uniformed Services University, Bethesda, MD, United States
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States
| | - Paul F. Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Dustin L. Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
35
|
Negri LB, Mannaa Y, Korupolu S, Farinelli WA, Anderson RR, Gelfand JA. Vitamin K3 (Menadione) is a multifunctional microbicide acting as a photosensitizer and synergizing with blue light to kill drug-resistant bacteria in biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112720. [PMID: 37186990 DOI: 10.1016/j.jphotobiol.2023.112720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.
Collapse
Affiliation(s)
- Laisa Bonafim Negri
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yara Mannaa
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sandeep Korupolu
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - William A Farinelli
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Gelfand
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
36
|
Yan H, Forward S, Kim KH, Wu Y, Hui J, Kashiparekh A, Yun SH. All-natural-molecule, bioluminescent photodynamic therapy results in complete tumor regression and prevents metastasis. Biomaterials 2023; 296:122079. [PMID: 36889146 PMCID: PMC10085841 DOI: 10.1016/j.biomaterials.2023.122079] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Self-luminescent photodynamic therapy (PDT) has gained attention owing to its potential to enable effective phototherapy without the bottleneck of shallow light penetration into tissues. However, the biosafety concerns and low cytotoxic effect of self-luminescent reagents in vivo have been problems. Here, we demonstrate efficacious bioluminescence (BL)-PDT by using bioluminescence resonance energy transfer (BRET) conjugates of a clinically approved photosensitizer, Chlorin e6, and a luciferase, Renilla reniformis; both derived from biocompatible, natural molecules. With over 80% biophoton utilization efficiency and membrane-fusion liposome-assisted intracellular delivery, these conjugates produce effective, targeted cancer cell killing. Specifically, in an orthotopic mouse model of 4T1 triple-negative breast cancer, BL-PDT showed strong therapeutic effects on large primary tumors and a neoadjuvant outcome in invasive tumors. Furthermore, BL-PDT resulted in complete tumor remission and prevention of metastasis for early-stage tumors. Our results demonstrate the promise of molecularly-activated, clinically viable, depth-unlimited phototherapy.
Collapse
Affiliation(s)
- Hao Yan
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Sarah Forward
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Kwon-Hyeon Kim
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Yue Wu
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Jie Hui
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Anokhi Kashiparekh
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA.
| |
Collapse
|
37
|
Zhang L, Li Y, Yuan L, Zhang Q, Yan Y, Dong F, Tang J, Wang Y. Advanced and Readily-Available Wireless-Powered Blue-Light-Implant for Non-Invasive Peri-Implant Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203472. [PMID: 36935373 DOI: 10.1002/advs.202203472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/12/2023] [Indexed: 05/18/2023]
Abstract
Non-invasive light-based antibacterial therapy has a good prospect in non-surgical treatment of peri-implant infections. However, its applications are severely limited by poor penetration of light into human tissues, leading to unsatisfying outcomes. Moreover, as an essential prerequisite for traditional light therapy, lasers can no longer meet the patients' needs for convenient treatment at any time. To break through the spatial and temporal limitations of traditional light therapy, a wireless-powered blue-light zirconia implant for readily available treatment of peri-implant infection is proposed. In space, complete irradiation to complex peri-implant structure is realized by the built-in wireless-powered light source, thus improving the efficacy. In time, wireless-powering allows timely and controllable anti-infection treatment. Blue micro-light emitting diodes are used as therapeutic light sources, which effectively kill peri-implant infection-related bacteria without exogenous photosensitive agents. Porphyromonas gingivalis biofilm on implant surface can be completely killed after 20 min irradiation in vitro. The bactericidal rate of peri-implant methicillin-resistant Staphylococcus aureus infection reaches 99.96 ± 0.03% under 30 min per day blue light exposure in vivo. Within the scope of this study, the treatment of peri-implant infection with blue-light implant has preliminary feasibility, giving a new approach to non-invasive treatment of deep oral infections, including peri-implant infections.
Collapse
Affiliation(s)
- Ludan Zhang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yamin Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lintian Yuan
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Qianyi Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuqing Yan
- Beijing Taia Technology Co. LTD, Beijing, 100089, P. R. China
| | - Fan Dong
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Jun Tang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
38
|
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023; 11:biomedicines11041197. [PMID: 37189815 DOI: 10.3390/biomedicines11041197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| |
Collapse
|
39
|
Yuan L, Wang Y, Zong Y, Dong F, Zhang L, Wang G, Dong H, Wang Y. Response of genes related to iron and porphyrin transport in Porphyromonas gingivalis to blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112670. [PMID: 36841175 DOI: 10.1016/j.jphotobiol.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.
Collapse
Affiliation(s)
- Lintian Yuan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Zong
- Harvard medical school, Boston, MA02115, USA
| | - Fan Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Ludan Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Guiyan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Huihua Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yuguang Wang
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| |
Collapse
|
40
|
Pierański MK, Kosiński JG, Szymczak K, Sadowski P, Grinholc M. Antimicrobial Photodynamic Inactivation: An Alternative for Group B Streptococcus Vaginal Colonization in a Murine Experimental Model. Antioxidants (Basel) 2023; 12:847. [PMID: 37107222 PMCID: PMC10135335 DOI: 10.3390/antiox12040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Streptococcus agalactiae, referred to as Group B Streptococcus (GBS), is a prominent bacterium causing life-threatening neonatal infections. Although antibiotics are efficient against GBS, growing antibiotic resistance forces the search for alternative treatments and/or prevention approaches. Antimicrobial photodynamic inactivation (aPDI) appears to be a potent alternative non-antibiotic strategy against GBS. METHODS The effect of rose bengal aPDI on various GBS serotypes, Lactobacillus species, human eukaryotic cell lines and microbial vaginal flora composition was evaluated. RESULTS RB-mediated aPDI was evidenced to exert high bactericidal efficacy towards S. agalactiae in vitro (>4 log10 units of viability reduction for planktonic and >2 log10 units for multispecies biofilm culture) and in vivo (ca. 2 log10 units of viability reduction in mice vaginal GBS colonization model) in microbiological and metagenomic analyses. At the same time, RB-mediated aPDI was evidenced to be not mutagenic and safe for human vaginal cells, as well as capable of maintaining the balance and viability of vaginal microbial flora. CONCLUSIONS aPDI can efficiently kill GBS and serve as an alternative approach against GBS vaginal colonization and/or infections.
Collapse
Affiliation(s)
- Michał K. Pierański
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Jan G. Kosiński
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - Klaudia Szymczak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Piotr Sadowski
- Department of Pathomorphology, University Hospital in Kraków, 31-501 Kraków, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland
| |
Collapse
|
41
|
Ong J, Godfrey R, Nazarian A, Tam J, Drake L, Isaacson B, Pasquina P, Williams D. Antimicrobial blue light as a biofilm management therapy at the skin-implant interface in an ex vivo percutaneous osseointegrated implant model. J Orthop Res 2023. [PMID: 36815575 DOI: 10.1002/jor.25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Biofilm contamination is often present at the skin-implant interface of transfemoral osseointegrated implants leading to frequent infection, irritation, and discomfort. New biofilm management regimens are needed as the current standard of washing the site with soap and water is inadequate to manage infection rates. We investigated the potential of antimicrobial blue light, which has reduced risk of resistance development and broad antimicrobial mechanisms. Our lab developed an antimicrobial blue light (aBL) device uniquely designed for an ex vivo system based on an established ovine osseointegrated (OI) implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Samples were irradiated with aBL or washed for three consecutive days after which they were quantified. Colony-forming unit (CFU) counts were compared with a control group (bacterial inocula without treatment). After 1 day, aBL administered as a single 6 h dose or two 1 h doses spaced 6 h apart both reduced the CFU count by 1.63 log10 ± 0.02 CFU. Over 3 days of treatment, a positive aBL trend was observed with a maximum reduction of ~2.7 log10 CFU following 6 h of treatment, indicating a relation between multiple days of irradiation and greater CFU reductions. aBL was more effective at reducing the biofilm burden at the skin-implant interface compared with the wash group, demonstrating the potential of aBL as a biofilm management option.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Rose Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Drake
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brad Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Geneva Foundation, Tacoma, Washington, USA.,Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness (MIRROR), Uniformed Services University, Bethesda, Maryland, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA
| | - Paul Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
42
|
dos Anjos C, Leanse LG, Ribeiro MS, Sellera FP, Dropa M, Arana-Chavez VE, Lincopan N, Baptista MS, Pogliani FC, Dai T, Sabino CP. New Insights into the Bacterial Targets of Antimicrobial Blue Light. Microbiol Spectr 2023; 11:e0283322. [PMID: 36809152 PMCID: PMC10101057 DOI: 10.1128/spectrum.02833-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial blue light (aBL) offers efficacy and safety in treating infections. However, the bacterial targets for aBL are still poorly understood and may be dependent on bacterial species. Here, we investigated the biological targets of bacterial killing by aBL (λ = 410 nm) on three pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Initially, we evaluated the killing kinetics of bacteria exposed to aBL and used this information to calculate the lethal doses (LD) responsible for killing 90 and 99.9% of bacteria. We also quantified endogenous porphyrins and assessed their spatial distribution. We then quantified and suppressed reactive oxygen species (ROS) production in bacteria to investigate their role in bacterial killing by aBL. We also assessed aBL-induced DNA damage, protein carbonylation, lipid peroxidation, and membrane permeability in bacteria. Our data showed that P. aeruginosa was more susceptible to aBL (LD99.9 = 54.7 J/cm2) relative to S. aureus (LD99.9 = 158.9 J/cm2) and E. coli (LD99.9 = 195 J/cm2). P. aeruginosa exhibited the highest concentration of endogenous porphyrins and level of ROS production relative to the other species. However, unlike other species, DNA degradation was not observed in P. aeruginosa. Sublethal doses of blue light (LD99.9). We conclude that the primary targets of aBL depend on the species, which are probably driven by variable antioxidant and DNA-repair mechanisms. IMPORTANCE Antimicrobial-drug development is facing increased scrutiny following the worldwide antibiotic crisis. Scientists across the world have recognized the urgent need for new antimicrobial therapies. In this sense, antimicrobial blue light (aBL) is a promising option due to its antimicrobial properties. Although aBL can damage different cell structures, the targets responsible for bacterial inactivation have still not been completely established and require further exploration. In our study, we conducted a thorough investigation to identify the possible aBL targets and gain insights into the bactericidal effects of aBL on three relevant pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This research not only adds new content to blue light studies but opens new perspectives to antimicrobial applications.
Collapse
Affiliation(s)
- Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leon G. Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Gibraltar, Europa Point Campus, Gibraltar
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil
| | - Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Milena Dropa
- MicroRes Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício S. Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Pogliani
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caetano P. Sabino
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Biolambda, Scientific and Commercial Ltd., São Paulo, Brazil
| |
Collapse
|
43
|
Yang F, Zhao F. Mechanism of visible light enhances microbial degradation of Bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130214. [PMID: 36327837 DOI: 10.1016/j.jhazmat.2022.130214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a toxic endocrine disruptor detected in various environments. Microbial metabolic/enzymatic degradation has been thought to be the main pathway for BPA attenuation in natural environments. In this study, we found that under visible light conditions, superoxide produced by bacteria was the main reason for the rapid removal of BPA, accounting for 57 % of the total removal rate. With visible light, the bacteria degraded BPA at a rate of 0.22 mg/L/d, and the total removal within 8 days reached 85 %, which is 4.7 times compared with that of dark culture. The intermediate product 4-iso-propenylphenol, which was considered as an end-product of microbial degradation of BPA in previous reports, was detected in large quantities at 24 h in culture but gradually decreased in our experiment. Community analysis suggested bacteria with aromatic hydrocarbon degradation ability were more enriched under light incubation. Moreover, the bacteria showed well degradation ability to various pharmaceutically active but nonbiodegradable compounds including diclofenac and fluoxetine, with a removal rate of 88 % and 20 %, respectively. Our study revealed the organic pollutant transformation pathway under the combined action of light and microorganisms, providing new insights into the microbial treatment of aromatic hydrocarbon pollutants.
Collapse
Affiliation(s)
- Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
44
|
Jusuf S, Cheng JX. Blue Light Improves Antimicrobial Efficiency of Silver Sulfadiazine Via Catalase Inactivation. Photobiomodul Photomed Laser Surg 2023; 41:80-87. [PMID: 36780574 PMCID: PMC9963486 DOI: 10.1089/photob.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Background: Blue light exhibits the ability to deactivate catalase present in pathogens, significantly improving the antimicrobial performance of compounds such as hydrogen peroxide (H2O2). However, H2O2 is not used within clinical settings due to its short half-life, limiting its potential applications. In this study, we explore the usage of Food and Drug Administration-approved and clinically used silver sulfadiazine (SSD) as a potential alternative to H2O2, acting as a reactive oxygen species (ROS)-producing agent capable of synergizing with blue light exposure. Materials and methods: For in vitro studies, bacterial strains were exposed to a continuous wave 405 nm light-emitting diode (LED) followed by treatment with SSD for varying incubation times. For in vivo studies, bacteria-infected murine abrasion wounds were treated with daily treatments of 405 nm LED light and 1% SSD cream for up to 4 days. The surviving bacterial population was quantified through agar plating and colony-forming unit quantification. Results: Through a checkerboard assay, blue light and SSD demonstrated synergistic interactions. Against both gram-negative and gram-positive pathogens, blue light significantly improved the antimicrobial response of SSD within both phosphate-buffered saline and nutrient-rich conditions. Examination into the mechanisms reveals that the neutralization of catalase significantly improves the ROS-producing capabilities of SSD at the exterior of the bacterial cell, producing greater amounts of toxic ROS capable of exerting antimicrobial activity against the pathogen. Additional experiments reveal that the incorporation of light improves the antimicrobial performance of SSD within methicillin-resistant Staphylococcus aureus (MRSA)- and Pseudomonas aeruginosa strain 1 (PAO-1)-infected murine abrasion wounds. Conclusions: As an established, clinically used antibiotic, SSD can act as a suitable alternative to H2O2 in synergizing with catalase-deactivating blue light, allowing for better translation of this technology to more clinical settings and further implementation of this treatment to more complex animal models.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Photonics Center, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
45
|
A Novel Biocidal Nanocomposite: Spherical Silica with Silver Ions Anchored at the Surface. Int J Mol Sci 2022; 24:ijms24010545. [PMID: 36613985 PMCID: PMC9820474 DOI: 10.3390/ijms24010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
This article is devoted to a novel class of antimicrobial agents: nanocomposites composed of spherical silica and silver ions located at the silica's surface with the assumed distribution. Such materials are in high demand due to the increasing threat from bacterial strains that are becoming resistant to currently known antibiotics. In particular, we focus on materials that make it possible to limit the growth of bacterial colonies on a variety of tactile surfaces. In this paper, we present a method for preparing a silica-based nanocomposite containing silver ions and the analysis of their antimicrobial properties. Our research revealed that the presence of tested nanocomposite induces very high oxidative stress in the bacteria cell, damaging and modifying bacterial DNA, creating oxidized guanines, cytosines, or adenines, which causes its very rapid destruction, leading to cell death.
Collapse
|
46
|
Park JI, Kim SJ, Kim YJ, Lee SJ. Protective role of Caesalpinia sappan extract and its main component brazilin against blue light-induced damage in human fibroblasts. J Cosmet Dermatol 2022; 21:7025-7034. [PMID: 36057446 DOI: 10.1111/jocd.15354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ultraviolet (UV) radiation is a well-known factor that causes skin aging. Recently, with the development of technology, the skin has been exposed to not only the UV radiation but also the blue light from electronic devices. Blue light is a high-energy visible light that penetrates deep into the dermal layer, producing reactive oxygen species (ROS) and resulting in skin aging. In this study, we searched for candidate materials that can inhibit blue light-induced skin aging and found Caesalpinia sappan extract (CSE) to be effective. METHODS Human dermal fibroblasts (HDFs) were treated with various concentrations of CSE and brazilin and exposed to blue light. We measured that antioxidant activity, MMP-1 levels using MMP-1 ELISA, changes in collagen type 1, collagen type 3, MMP-1, and MMP-3 mRNA expressions, and ROS generation. RESULTS We confirmed that CSE has high absorption of blue light and antioxidant activity. Blue light irradiation at 30 J/cm2 decreased the expression of collagen types 1 and 3, increased the expression of matrix metalloproteinase (MMP)-1 and 3, and decreased the production of ROS in human dermal fibroblasts as compared to those of the nonirradiated group. However, pretreatment with CSE protected against the damage caused by the blue light. Brazilin, a major constituent of C. sappan, had high absorbance in the blue light region and antioxidant activities. Pretreatment with brazilin also inhibited the damage caused by the blue light in the cells. CONCLUSION CSE and brazilin are potential agents for inhibiting skin aging caused by blue light-induced damage.
Collapse
Affiliation(s)
- Jong Il Park
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| | - Sung Jae Kim
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| | - Yong Jae Kim
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| | - Seung Ji Lee
- Creation & Innovation Research Center, IN2BIO, Hwaseong-si, Korea
| |
Collapse
|
47
|
Leder MCD, Bagheri M, Plattfaut I, Fuchs PC, Brüning AKE, Schiefer JL, Opländer C. Phototherapy of Pseudomonas aeruginosa-Infected Wounds: Preclinical Evaluation of Antimicrobial Blue Light (450-460 nm) Using In Vitro Assays and a Human Wound Skin Model. Photobiomodul Photomed Laser Surg 2022; 40:800-809. [PMID: 36306523 DOI: 10.1089/photob.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: To determine effective treatment strategies against bacterial infections of burn wounds with Pseudomonas aeruginosa, we tested different treatment regimens with antibacterial blue light (BL). Background: Infections of burn wounds are serious complications and require effective and pathogen-specific therapy. Hereby, infections caused by P. aeruginosa pose a particular challenge in clinical practice due to its resistance to many antibiotics and topical antiseptics. Methods: LED-based light sources (450-460 nm) with different intensities and treatment times were used. Antibacterial effects against P. aeruginosa were determined by colony-forming unit (CFU) assays, human skin wound models, and fluorescence imaging. Results: In suspension assays, BL (2 h, 40 mW/cm2, 288 J/cm2) reduced bacterial number (>5 log10 CFU/mL). Applying 144 J/cm2, using 40 mW/cm2 for 1 h was more effective (>4 log10 CFU) than using 20 mW/cm2 for 2 h (>1.5 log10 CFU). BL with low irradiance (24 h, 3.5 mW/cm2, 300 J/cm2) only revealed bacterial reduction in thin bacteria-containing medium layers. In infected in vitro skin wounds only BL irradiation (2 h, 40 mW/cm2, 288 J/cm2) exerted a significant antimicrobial efficacy (2.94 log10 CFU/mL). Conclusions: BL treatment may be an effective therapy for P. aeruginosa-infected wounds to avoid radical surgical debridement. However, a significant antibacterial efficacy can only be achieved with higher irradiances and longer treatment times (min. 40 mW/cm2; >1 h), which cannot be easily integrated into regular clinical treatment protocols, for example, during a dressing change. Further studies are necessary to establish BL therapy for infected burns among tissue compatibility and interactions with previous therapeutic agents.
Collapse
Affiliation(s)
- Marie-Charlotte D Leder
- Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mahsa Bagheri
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Isabell Plattfaut
- Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Paul C Fuchs
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Anne K E Brüning
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Jennifer L Schiefer
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
48
|
Lee Y, Heo SY, Lee HS, Oh SJ, Kim H, Lim S, Shin H, Jung WK, Kang HW. Combinatorial prophylactic effect of phlorotannins with photobiomodulation against tracheal stenosis. iScience 2022; 25:105405. [PMID: 36388989 PMCID: PMC9664362 DOI: 10.1016/j.isci.2022.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Several conventional treatments are used to manage tracheal stenosis after intubation and surgical procedures; however, patients are at risk of restenosis because of the absence of effective preventative therapy. In this study, we evaluate the biomodulatory effect of PT-combined blue light (BL) PBM in tracheostomal stenosis-induced animal models. The PT-combined BL group showed a significant decrease in the fibrotic protein synthesis by downregulating the release of stenosis-triggering fibrotic signals, without cytotoxicity or thermal damage. Moreover, the combined treatment ameliorated excessive granulation and collagen formation, and consequently preserved the opening of the tracheostoma ten days after fenestration. The current study demonstrated the biomodulatory effect of PT-combined BL on human tracheal fibroblasts and tracheal fenestration rodent models. Hence, PT-combined BL has the potential to be an effective preventative treatment for tracheal stenosis but also as an alternative option for fibrotic disorders.
Collapse
Affiliation(s)
- Yeachan Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan 49267, Korea
| | - Sun-ju Oh
- Department of Pathology, Kosin University College of Medicine, Busan 49267, Korea
| | - Hyeonsoo Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Seonghee Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
49
|
Ingestible light source for intragastric antibacterial phototherapy: a device safety study on a minipig model. Photochem Photobiol Sci 2022; 22:535-547. [PMID: 36378410 DOI: 10.1007/s43630-022-00333-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
AbstractHelicobacter pylori gastric infections are among the most diffused worldwide, suffering from a rising rate of antibiotic resistance. In this context, some of the authors have previously designed an ingestible device in the form of a luminous capsule to perform antibacterial photodynamic inactivation in the stomach. In this study, the light-emitting capsules were tested to verify the safety of use prior to perform clinical efficacy studies. First, laboratory tests measured the capsule temperature while in function and verified its chemical resistance in conditions mimicking the gastric and gut environments. Second, safety tests in a healthy minipig model were designed and completed, to verify both the capsule integrity and the absence of side effects, associated with its illumination and transit throughout the gastrointestinal tract. To this aim, a capsule administration protocol was defined considering a total of 6 animals with n = 2 treated with 8 capsules, n = 2 treated with 16 capsules and n = 2 controls with no capsule administration. Endoscopies were performed in sedated conditions before–after every capsule administration. Biopsies were taken from the corpus and antrum regions, while the gastric cavity temperature was monitored during illumination. The bench tests confirmed a very good chemical resistance and a moderate (about 3 °C) heating of the capsules. The animal trials showed no significant effects on the gastric wall tissues, both visually and histologically, accompanied with overall good animal tolerance to the treatment. The integrity of the administered capsules was verified as well. These encouraging results pose the basis for the definition of successive trials at the clinical level.
Graphical abstract
Collapse
|
50
|
Pakarinen S, Saarela RKT, Välimaa H, Heikkinen AM, Kankuri E, Noponen M, Alapulli H, Tervahartiala T, Räisänen IT, Sorsa T, Pätilä T. Home-Applied Dual-Light Photodynamic Therapy in the Treatment of Stable Chronic Periodontitis (HOPE-CP)-Three-Month Interim Results. Dent J (Basel) 2022; 10:206. [PMID: 36354651 PMCID: PMC9689653 DOI: 10.3390/dj10110206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
A single-site, randomized clinical trial was designed to determine the efficacy of regular home use of Lumoral® dual-light antibacterial aPDT in periodontitis patients. For the study, 200 patients were randomized to receive non-surgical periodontal treatment (NSPT), including standardized hygiene instructions and electric toothbrush, scaling and root planing, or NSPT with adjunctive Lumoral® treatment. A complete clinical intraoral examination was conducted in the beginning, at three months, and at six months. This report presents the three-month results of the first 59 consecutive randomized subjects. At three months, bleeding on probing (BOP) was lower in the NSPT + Lumoral®-group than in the NSPT group (p = 0.045), and more patients in the NSPT + Lumoral®-group had their BOP below 10% (54% vs. 22%, respectively, p = 0.008). In addition, patients in the NSPT + Lumoral®-group improved their oral hygiene by visible-plaque-index (p = 0.0003), while the NSPT group showed no statistical improvement compared to the baseline. Both groups significantly reduced the number of deep periodontal pockets, but more patients with a reduction in their deep pocket number were found in the NSPT + Lumoral® group (92% vs. 63%, p = 0.02). Patients whose number of deep pockets was reduced by 50% or more were also more frequent in the NSPT + Lumoral®-group (71% vs. 33%, p = 0.01). Patients with initially less than ten deep pockets had fewer deep pockets at the three-month follow-up in the Lumoral® group (p = 0.01). In conclusion, adjunctive use of Lumoral® in NSPT results in improved treatment outcomes at three months post-therapy.
Collapse
Affiliation(s)
- Saila Pakarinen
- Degree Program of Oral Hygiene, Metropolia University of Applied Sciences, 00920 Helsinki, Finland
| | | | - Hannamari Välimaa
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Anna Maria Heikkinen
- Faculty of Medicine and Health Technology, University of Tampere, 33520 Tampere, Finland
| | - Esko Kankuri
- Department of Pharmacology, Helsinki University, 00100 Helsinki, Finland
| | - Marja Noponen
- Department of Oral Health, Health and Social Services, 00530 Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Heikki Alapulli
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Pediatric Dentistry, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Tommi Pätilä
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|