1
|
Zou JX, Chua W, Ser Z, Wang SM, Chiang GSH, Sanmugam K, Tan BY, Sobota RM, Li H. Detection of Bacterial Neutral Ceramidase in Diabetic Foot Ulcers with an Optimized Substrate and Chemoenzymatic Probes. Angew Chem Int Ed Engl 2023; 62:e202307553. [PMID: 37340712 DOI: 10.1002/anie.202307553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Ceramidases (CDases) are important in controlling skin barrier integrity by regulating ceramide composition and affording downstream signal molecules. While the functions of epidermal CDases are known, roles of neutral CDases secreted by skin-residing microbes are undefined. Here, we developed a one-step fluorogenic substrate, S-B, for specific detection of bacterial CDase activity and inhibitor screening. We identified a non-hydrolyzable substrate mimic, C6, as the best hit. Based on C6, we designed a photoaffinity probe, JX-1, which efficiently detects bacterial CDases. Using JX-1, we identified endogenous low-abundance PaCDase in a P. aeruginosa monoculture and in a mixed skin bacteria culture. Harnessing both S-B and JX-1, we found that CDase activity positively correlates with the relative abundance of P. aeruginosa and is negatively associated with wound area reduction in clinical diabetic foot ulcer patient samples. Overall, our study demonstrates that bacterial CDases are important regulators of skin ceramides and potentially play a role in wound healing.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wisely Chua
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Shi Mei Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | | | | | | | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Hao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
2
|
Rohrhofer J, Zwirzitz B, Selberherr E, Untersmayr E. The Impact of Dietary Sphingolipids on Intestinal Microbiota and Gastrointestinal Immune Homeostasis. Front Immunol 2021; 12:635704. [PMID: 34054805 PMCID: PMC8160510 DOI: 10.3389/fimmu.2021.635704] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of selective nutritional uptake and defense against the external environment. To maintain a functional balance, a vast number of immune cells is located within the mucosa. A strictly regulated immune response is required to impede constant inflammation and to maintain barrier function. An increasing prevalence of GI diseases has been reported in Western societies over the past decades. This surge in GI disorders has been linked to dietary changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade inflammation of the gut epithelium. To counteract the increasing health care costs associated with diseases, it is paramount to understand the mechanisms driving immuno-nutrition, the associations between nutritional compounds, the commensal gut microbiota, and the host immune response. Dietary compounds such as lipids, play a central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM), sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only integral components of cell membranes, they additionally modulate cell trafficking and are precursors for mediators and second messenger molecules. By regulating intracellular calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been described to influence GI immune homeostasis positively and detrimentally. Furthermore, dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range from competing with the commensal bacteria for intestinal cell attachment to prevention from pathogen invasion by regulating innate and immediate defense mechanisms. SL metabolites can also be produced by gut microorganisms, directly impacting host metabolic pathways. This review aims to summarize recent findings on SL signaling and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and SL impact on GI barrier function, which is directly linked to changes of the intestinal microbiota. Knowledge gaps in current literature will be discussed to address questions relevant for understanding the pivotal role of dietary SLs on chronic, low grade inflammation and to define a balanced and healthy diet for disease prevention and treatment.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eva Untersmayr
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Kilic A, Masur C, Reich H, Knie U, Dähnhardt D, Dähnhardt-Pfeiffer S, Abels C. Skin acidification with a water-in-oil emulsion (pH 4) restores disrupted epidermal barrier and improves structure of lipid lamellae in the elderly. J Dermatol 2019; 46:457-465. [PMID: 31106905 PMCID: PMC6593431 DOI: 10.1111/1346-8138.14891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
The pH of the skin surface increases with age and thus reduces epidermal barrier function. Aged skin needs appropriate skin care to counterbalance age‐related pH increase and improve barrier function. This confirmatory randomized study investigated the efficacy of water‐in‐oil (w/o) emulsions with either pH 4 or pH 5.8 in 20 elderly subjects after 4 weeks of treatment. After the treatment, the skin was challenged with a sodium dodecyl sulphate (SDS) solution in order to analyze barrier protection properties of both formulations. The pH 4 w/o emulsion resulted in a significantly lower skin pH compared with the pH 5.8 w/o emulsion and an improved skin hydration after 4‐week treatment. Further, the pH 4 emulsion led to more pronounced improvements in length of intercellular lipid lamellae, lamellar organization as well as lipid levels than the pH 5.8 emulsion. Following SDS‐induced barrier damage to the skin, the pH of all test areas increased, but the area treated with the pH 4 emulsion showed the lowest increase compared with baseline. In addition, even after the SDS challenge the skin area treated with the pH 4 emulsion still maintained a significantly increased length of intercellular lipid lamellae compared with the beginning of the study. This study provides evidence that topical application of a w/o emulsion with pH 4 reacidifies the skin in elderly and has beneficial effects on skin moisturization, regeneration of lipid lamellae and lipid content. Application of a pH 4 emulsion can improve the epidermal barrier as well as the stratum corneum organization in aged skin.
Collapse
Affiliation(s)
- Ana Kilic
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Clarissa Masur
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Hubert Reich
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Ulrich Knie
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | | | | | - Christoph Abels
- Dr August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| |
Collapse
|
4
|
Vollmer DL, West VA, Lephart ED. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int J Mol Sci 2018; 19:E3059. [PMID: 30301271 PMCID: PMC6213755 DOI: 10.3390/ijms19103059] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The history of cosmetics goes back to early Egyptian times for hygiene and health benefits while the history of topical applications that provide a medicinal treatment to combat dermal aging is relatively new. For example, the term cosmeceutical was first coined by Albert Kligman in 1984 to describe topical products that afford both cosmetic and therapeutic benefits. However, beauty comes from the inside. Therefore, for some time scientists have considered how nutrition reflects healthy skin and the aging process. The more recent link between nutrition and skin aging began in earnest around the year 2000 with the demonstrated increase in peer-reviewed scientific journal reports on this topic that included biochemical and molecular mechanisms of action. Thus, the application of: (a) topical administration from outside into the skin and (b) inside by oral consumption of nutritionals to the outer skin layers is now common place and many journal reports exhibit significant improvement for both on a variety of dermal parameters. Therefore, this review covers, where applicable, the history, chemical structure, and sources such as biological and biomedical properties in the skin along with animal and clinical data on the oral applications of: (a) collagen, (b) ceramide, (c) β-carotene, (d) astaxanthin, (e) coenzyme Q10, (f) colostrum, (g) zinc, and (h) selenium in their mode of action or function in improving dermal health by various quantified endpoints. Lastly, the importance of the human skin microbiome is briefly discussed in reference to the genomics, measurement, and factors influencing its expression and how it may alter the immune system, various dermal disorders, and potentially be involved in chemoprevention.
Collapse
Affiliation(s)
- David L Vollmer
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Virginia A West
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Edwin D Lephart
- Department of Physiology, Developmental Biology and The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
5
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|