1
|
Mariewskaya KA, Gvozdev DA, Chistov AA, Straková P, Huvarová I, Svoboda P, Kotouček J, Ivanov NM, Krasilnikov MS, Zhitlov MY, Pak AM, Mikhnovets IE, Nikitin TD, Korshun VA, Alferova VA, Mašek J, Růžek D, Eyer L, Ustinov AV. Membrane-Targeting Perylenylethynylphenols Inactivate Medically Important Coronaviruses via the Singlet Oxygen Photogeneration Mechanism. Molecules 2023; 28:6278. [PMID: 37687107 PMCID: PMC10488391 DOI: 10.3390/molecules28176278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell. Furthermore, these compounds demonstrate an ability to generate singlet oxygen when exposed to visible light. The rate of singlet oxygen production is positively correlated with antiviral activity, confirming that the inhibition of fusion is primarily due to singlet-oxygen-induced damage to the viral envelope. The unique combination of a shape that affords affinity to the lipid bilayer and the capacity to generate singlet oxygen makes perylenylethynylphenols highly effective scaffolds against enveloped viruses. The anticoronaviral activity of perylenylethynylphenols is strictly light-dependent and disappears in the absence of daylight (under red light). Moreover, these compounds exhibit negligible cytotoxicity, highlighting their significant potential for further exploration of the precise antiviral mechanism and the broader scope and limitations of this compound class.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Daniil A. Gvozdev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Petra Straková
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Ivana Huvarová
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
| | - Pavel Svoboda
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, CZ-612 42 Brno, Czech Republic
| | - Jan Kotouček
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (J.K.); (J.M.)
| | - Nikita M. Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexandra M. Pak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Igor E. Mikhnovets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Timofei D. Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| | - Josef Mašek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (J.K.); (J.M.)
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic; (P.S.); (I.H.); (P.S.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.A.C.); (N.M.I.); (M.S.K.); (M.Y.Z.); (A.M.P.); (I.E.M.); (T.D.N.); (V.A.A.); (A.V.U.)
| |
Collapse
|
2
|
Yu M, Wu X, Liu H, Yang Z, Qiu N, Yang D, Ma D, Tang BZ, Zhao Z. Improving Electroluminescence Efficiency by Linear Polar Host Capable of Promoting Horizontal Dipole Orientation for Dopant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206420. [PMID: 36567307 PMCID: PMC9951345 DOI: 10.1002/advs.202206420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In doped organic light-emitting diodes (OLEDs), the host materials play an important role in emitting layers. Most studies about host materials mainly focus on their energy levels and carrier transport behaviors, while less attention is paid to their influence on the dipole orientation of dopants, which closely associate with the light out-coupling efficiency (ηout ) of the device. Herein, a linear polar host material (l-CzTRZ) consisting of carbazole donor, triazine acceptor, and the conjugated para-terphenyl skeleton is developed and its crystal and electronic structures, thermal and electrochemical stabilities, optical property, and carrier transport ability are investigated. l-CzTRZ prefers ordered horizontal orientation and favors electron transport in neat film. More importantly, it can promote horizontal dipole orientation for the dopants via dipole-dipole interaction, furnishing an excellent horizontal dipole ratio of 91.5% and thus a high ηout of 43% for the phosphorescent dopant (PO-01-TB). Consequently, the OLED with l-CzTRZ host and PO-01-TB dopant attains state-of-the-art electroluminescence efficiencies of 135.5 cd A-1 , 135.7 lm W-1 and 41.3%, with a small roll-off of 9.7% at 5000 cd m-2 luminance. The presented significant impact of the host on the dipole orientation of the dopant shall enlighten the design of host materials to improve OLED performance.
Collapse
Affiliation(s)
- Maoxing Yu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Xing Wu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Zuguo Yang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Nuoling Qiu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
3
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
4
|
Wang G, Yang L, Jiang L, Chen J, Jing Q, Mai Y, Deng L, Lin Y, Chen L, Chen Z, Xu P, Jiang L, Yuan C, Huang M. A new class of quaternary ammonium compounds as potent and environmental friendly disinfectants. JOURNAL OF CLEANER PRODUCTION 2022; 379:134632. [PMID: 36246409 PMCID: PMC9552062 DOI: 10.1016/j.jclepro.2022.134632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 05/21/2023]
Abstract
Quaternary ammonium compounds (QACs) are inexpensive and readily available disinfectants, and have been widely used, especially since the COVID-19 outbreak. The toxicity of QACs to humans has raised increasing concerns in recent years. Here, a new type of QACs was synthesized by replacing the alkyl chain with zinc phthalocyanine (ZnPc), which consists of a large aromatic ring and is hydrophobic in nature, similar to the alkyl chain of QACs. Three ZnPc-containing disinfectants were synthesized and fully characterized. These compounds showed 15-16 fold higher antimicrobial effect against Gram-negative bacteria than the well-known QACs with half-maximal inhibitory (IC50) values of 1.43 μM, 2.70 μM, and 1.31 μM, respectively. With the assistance of 680 nm light, compounds 4 and 6 had much higher bactericidal toxicities at nanomolar concentrations. Compound 6 had a bactericidal efficacy of close to 6 logs (99.9999% kill rate) at 1 μM to Gram-positive bacteria, including MRSA, under light illumination. Besides, these compounds were safe for mammalian cells. In a mouse model, compound 6 was effective in healing wound infection. Importantly, compound 6 was easily degraded at working concentrations under sunlight illumination, and is environmentally friendly. Thus, compound 6 is a novel and promising disinfectant.
Collapse
Affiliation(s)
- Guodong Wang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Ling Yang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Libin Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Jingyi Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yuhan Mai
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Lina Deng
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yuxin Lin
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| |
Collapse
|
5
|
Lu L, Peng Y, Yao H, Wang Y, Li J, Yang Y, Lin Z. Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro. Antiviral Res 2022; 206:105389. [PMID: 35985407 PMCID: PMC9381947 DOI: 10.1016/j.antiviral.2022.105389] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) helicase NSP13 plays a conserved role in the replication of coronaviruses and has been identified as an ideal target for the development of antiviral drugs against SARS-CoV-2. Here, we identify a novel NSP13 helicase inhibitor punicalagin (PUG) through high-throughput screening. Surface plasmon resonance (SPR)-based analysis and molecular docking calculation reveal that PUG directly binds NSP13 on the interface of domains 1A and 2A, with a KD value of 21.6 nM. Further biochemical and structural analyses suggest that PUG inhibits NSP13 on ATP hydrolysis and prevents it binding to DNA substrates. Finally, the antiviral studies show that PUG effectively suppresses the SARS-CoV-2 replication in A549-ACE2 and Vero cells, with EC50 values of 347 nM and 196 nM, respectively. Our work demonstrates the potential application of PUG in the treatment of coronavirus disease 2019 (COVID-19) and identifies an allosteric inhibition mechanism for future drug design targeting the viral helicases.
Collapse
Affiliation(s)
- Lian Lu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Huiqiao Yao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun (Camb) 2022; 58:7466-7482. [PMID: 35730442 DOI: 10.1039/d2cc01772e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed over six million lives globally to date. Despite the availability of vaccines, the pandemic still cannot be fully controlled owing to rapid mutation of the virus that renders enhanced transmissibility and antibody evasion. This is thus an unmet need to develop safe and effective therapeutic options for COVID-19, in particular, remedies that can be used at home. Considering the great success of multi-targeted cocktail therapy for the treatment of viral infections, metal-based drugs might represent a unique and new source of antivirals that resemble a cocktail therapy in terms of their mode of actions. In this review, we first summarize the role that metal ions played in SARS-CoV-2 viral replication and pathogenesis, then highlight the chemistry of metal-based strategies in the fight against SARS-CoV-2 infection, including both metal displacement and chelation based approaches. Finally, we outline a perspective and direction on how to design and develop metal-based antivirals for the fight against the current or future coronavirus pandemic.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
7
|
Photodynamic Inactivation of SARS-CoV-2 Infectivity and Antiviral Treatment Effects In Vitro. Viruses 2022; 14:v14061301. [PMID: 35746772 PMCID: PMC9229166 DOI: 10.3390/v14061301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite available vaccines, antibodies and antiviral agents, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic still continues to cause severe disease and death. Current treatment options are limited, and emerging new mutations are a challenge. Thus, novel treatments and measures for prevention of viral infections are urgently required. Photodynamic inactivation (PDI) is a potential treatment for infections by a broad variety of critical pathogens, including viruses. We explored the infectiousness of clinical SARS-CoV-2 isolates in Vero cell cultures after PDI-treatment, using the photosensitizer Tetrahydroporphyrin-tetratosylate (THPTS) and near-infrared light. Replication of viral RNA (qPCR), viral cytopathic effects (microscopy) and mitochondrial activity were assessed. PDI of virus suspension with 1 µM THPTS before infection resulted in a reduction of detectable viral RNA by 3 log levels at day 3 and 6 after infection to similar levels as in previously heat-inactivated virions (<99.9%; p < 0.05). Mitochondrial activity, which was significantly reduced by viral infection, was markedly increased by PDI to levels similar to uninfected cell cultures. When applying THPTS-based PDI after infection, a single treatment had a virus load-reducing effect only at a higher concentration (3 µM) and reduced cell viability in terms of PDI-induced toxicity. Repeated PDI with 0.3 µM THPTS every 4 h for 3 d after infection reduced the viral load by more than 99.9% (p < 0.05), while cell viability was maintained. Our data demonstrate that THPTS-based antiviral PDI might constitute a promising approach for inactivation of SARS-CoV-2. Further testing will demonstrate if THPTS is also suitable to reduce the viral load in vivo.
Collapse
|
8
|
Chen D, Liu P, Liu Y, Wang Z, Zhou Y, Jiang L, Yuan C, Li Y, Lin W, Huang M. A Clot-Homing Near-Infrared Probe for In Vivo Imaging of Murine Thromboembolic Models. Adv Healthc Mater 2022; 11:e2102213. [PMID: 34994110 DOI: 10.1002/adhm.202102213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Direct thrombus imaging contributes to early detection of thrombosis, and animal models with clinical relevance are vital in the development of new thrombolytics. Here, a facile clot-homing strategy is developed based on the finding that blood clot is negatively charged. Positively charged pentalysine moiety is coupled with phthalocyanine-based fluorophore , and its applications in murine thromboembolic models are described. The probe efficiently stains the cryosection of intracranial thrombi retrieved from patients with cardioembolic stroke. In vitro, the fibrin-rich clot is labeled by the probe at sub-nanomolar concentration. The probe-labeled clot is formed into microparticles (1-5 µm) and intravenously injected into mice for pulmonary embolism modeling. In vivo imaging demonstrates fast accumulation and retention of fluorescent clot microparticles in pulmonary vessels. Recombinant tissue-type plasminogen activator (rtPA) administration greatly reduces near-infrared signal in the lungs in a time-dependent manner. This probe is also tested in a stroke model. Middle cerebral artery is occluded by autologous thrombi formed under electric stimulation. In vivo imaging shows that the probe efficiently homes to thrombus at early stage. Hence, this probe has great potential in real-time imaging of thromboembolism in clinically relevant models, promoting bench-to-bedside translation. This clot-homing principle can be used in other applications.
Collapse
Affiliation(s)
- Dan Chen
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Peiwen Liu
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yurong Liu
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Zhiyou Wang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yang Zhou
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Longguang Jiang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Cai Yuan
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yongkun Li
- Department of Neurology Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University No. 134 Dong Street Fuzhou Fujian 350001 P. R. China
| | - Wei Lin
- Fujian Institute of integrated traditional Chinese and Western Medicine Fujian University of Traditionial Chinese Medicine No. 1 Qiuyang Road, Minhou District Fuzhou 350122 P. R. China
| | - Mingdong Huang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| |
Collapse
|
9
|
Photodynamic Inactivation of Human Coronaviruses. Viruses 2022; 14:v14010110. [PMID: 35062314 PMCID: PMC8779093 DOI: 10.3390/v14010110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.
Collapse
|