1
|
El-Ahmad P, Mendes-Silva AP, Diniz BS. Liquid Biopsy in Neuropsychiatric Disorders: A Step Closer to Precision Medicine. Mol Neurobiol 2025; 62:3462-3479. [PMID: 39298102 DOI: 10.1007/s12035-024-04492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Psychiatric disorders are among the leading causes of disease burden worldwide. Despite their significant impact, their diagnosis remains challenging due to symptom heterogeneity, psychiatric comorbidity, and the lack of objective diagnostic tests and well-defined biomarkers. Leveraging genomic, epigenomic, and fragmentomic technologies, circulating cell-free DNA (ccfDNA)-based liquid biopsies have emerged as a potential non-invasive diagnosis and disease-monitoring tool. ccfDNA is a DNA species released into circulation from all types of cells through passive and active mechanisms and can serve as a biomarker for various diseases, namely, cancer. Despite their potential, the application of ccfDNA in neuropsychiatry remains underdeveloped. In this review, we provide an overview of liquid biopsies and their components, with a particular focus on ccfDNA. With a summary of pre-analytical practices and current ccfDNA technologies, we highlight the current state of research regarding the use of ccfDNA as a biomarker for neuropsychiatric disorders. Finally, we discuss future steps to unlock ccfDNA's potential in clinical practice.
Collapse
Affiliation(s)
- Perla El-Ahmad
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Gaitsch H, Assinck P, Dimas P, Zhao C, Morcom L, Rowitch DH, Reich DS, Franklin RJM. Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination. Brain Commun 2025; 7:fcae386. [PMID: 39830424 PMCID: PMC11739797 DOI: 10.1093/braincomms/fcae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.
Collapse
Affiliation(s)
- Hallie Gaitsch
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peggy Assinck
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| | - Penelope Dimas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| | - Chao Zhao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| | - Laura Morcom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - David H Rowitch
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| |
Collapse
|
3
|
Pellegrini C, Ravaioli F, De Fanti S, Pirazzini C, D’Silva C, Garagnani P, Franceschi C, Bonifazi F, Zinzani PL, Bonafè M, Guarino M, Lodi R, Cortelli P, Tonon C, Mitolo M, Sambati L, Morandi L, Bacalini MG. Detection of Brain-Derived Cell-Free DNA in Plasma. Diagnostics (Basel) 2024; 14:2541. [PMID: 39594207 PMCID: PMC11592591 DOI: 10.3390/diagnostics14222541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Neuronal loss is a major pathological feature of neurodegenerative diseases. The analysis of plasma cell-free DNA (cfDNA) is an emerging approach to track cell death events in a minimally invasive way and from inaccessible areas of the body, such as the brain. Previous studies showed that DNA methylation (DNAm) profiles can be used to map the tissue of origin of cfDNA and to identify molecules released from the brain upon cell death. The aim of the present study is to contribute to this research field, presenting the development and validation of an assay for the detection of brain-derived cfDNA (bcfDNA). Methods: To identify CpG sites with brain-specific DNAm, we compared brain and non-brain tissues for their chromatin state profiles and genome-wide DNAm data, available in public datasets. The selected target genomic regions were experimentally validated by bisulfite sequencing on DNA extracted from 44 different autoptic tissues, including multiple brain regions. Sequencing data were analysed to identify brain-specific epihaplotypes. The developed assay was tested in plasma cfDNA from patients with immune effector cell-associated neurotoxicity syndrome (ICANS) following chimeric antigen receptor T (CAR-T) therapy. Results: We validated five genomic regions with brain-specific DNAm (four hypomethylated and one hypermethylated in the brain). DNAm analysis of the selected genomic regions in plasma samples from CAR-T patients revealed higher levels of bcfDNA in participants with ongoing neurotoxicity syndrome. Conclusions: We developed an assay for the analysis of bcfDNA in plasma. The assay is a promising tool for the early detection of neuronal loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Camilla Pellegrini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Francesco Ravaioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Sara De Fanti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
| | - Chiara D’Silva
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, Lobachevsky State University, 603950 Nizhny Novgorod, Russia;
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Micaela Mitolo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Luca Morandi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| |
Collapse
|
4
|
Kiselev I, Kulakova O, Baturina O, Kabilov M, Boyko A, Favorova O. Different genome-wide DNA methylation patterns in CD4+ T lymphocytes and CD14+ monocytes characterize relapse and remission of multiple sclerosis: Focus on GNAS. Mult Scler Relat Disord 2024; 91:105910. [PMID: 39369632 DOI: 10.1016/j.msard.2024.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS) is a most common form of multiple sclerosis in which periods of neurological worsening are followed by periods of clinical remission. RRMS relapses are caused by an acute autoimmune inflammatory process, which can occur in any area of the central nervous system. Although development of exacerbation cannot yet be accurately predicted, various external factors are known to affect its risk. These factors may trigger the pathological process through epigenetic mechanisms of gene expression regulation, first of all, through changes in DNA methylation. METHODS In the present work, we for the first time analyzed genome-wide DNA methylation patterns in CD4+ T lymphocytes and CD14+ monocytes of the same RRMS patients in relapse and remission. The effects of the differential methylation on gene expression were studied using qPCR. RESULTS We found 743 differentially methylated CpG positions (DMPs) in CD4+ cells and only 113 DMPs in CD14+ cells. They were mostly hypermethylated in RRMS relapse in both cell populations. However, the proportion of hypermethylated DMPs (as well as DMPs located within or in close proximity to CpG islands) was significantly higher in CD4+ T lymphocytes. In CD4+ and CD14+ cells we identified 469 and 67 DMP-containing genes, respectively; 25 of them were common for two cell populations. When we conducted a search for differentially methylated genomic regions (DMRs), we found a CD4+ specific DMR hypermethylated in RRMS relapse (adj. p = 0.03) within the imprinted GNAS locus. Total level of the protein-coding GNAS transcripts in CD4+ T cells decreased significantly in the row from healthy control to RRMS remission and then to RRMS relapse (adj. p = 3.1 × 10-7 and 0.011, respectively). CONCLUSION Our findings suggest that the epigenetic mechanism of DNA methylation in immune cells contributes to the development of RRMS relapse. Further studies are now required to validate these results and shed light on the molecular mechanisms underlying the observed GNAS methylation and expression changes.
Collapse
Affiliation(s)
- Ivan Kiselev
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia.
| | - Olga Kulakova
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia
| | - Olga Baturina
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Lavrentiev ave. 8, Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Lavrentiev ave. 8, Russia
| | - Alexey Boyko
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia
| | - Olga Favorova
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia
| |
Collapse
|
5
|
Schindler CR, Hörauf JA, Weber B, Schaible I, Marzi I, Henrich D, Leppik L. Identification of novel blood-based extracellular vesicles biomarker candidates with potential specificity for traumatic brain injury in polytrauma patients. Front Immunol 2024; 15:1347767. [PMID: 38533491 PMCID: PMC10963595 DOI: 10.3389/fimmu.2024.1347767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Objective The goal of this study was to identify changes in extracellular vesicles (EV) surface proteins specific to traumatic brain injury (TBI), which could be used as a diagnostic and prognostic tool in polytrauma patients. Summary Background Data Known serum TBI-specific biomarkers (S100B, NSE, and GFAP), which can predict the severity and outcome of isolated TBI, lose their predictive value in the presence of additional extracranial injuries. Extracellular vesicles (EVs) are released from cells in response to various stimuli and carry specific cargo/surface molecules that could be used for tracking injury-responding cells. Methods EVs were isolated using size exclusion chromatography (SEC) from the plasma of two groups of patients (with isolated TBI, ISS≥16, AIShead≥4, n=10; and polytraumatized patients without TBI ISS≥16, AIShead=0, n=10) collected in the emergency room and 48 h after trauma. EVs' surface epitope expression was investigated using a neurospecific multiplex flow cytometry assay and compared with healthy controls (n=10). Three enrichments of EV epitopes found to be specific to TBI were validated by western blot. Results The expression of 10 EV epitopes differed significantly among the patient and control groups, and five of these epitopes (CD13, CD196, MOG, CD133, and MBP) were TBI-specific. The increased expression of CD196, CD13, and MOG-positive EVs was validated by western blot. Conclusion Our data showed that TBI is characterized by a significant increase of CD13, CD196, MOG, CD133, and MBP-positive EVs in patients' plasma. A high level of MOG-positive EVs negatively correlated with the Glasgow Coma Scale score at admission and could be an indicator of poor neurological status.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Si W, Ni Y, Jiang Q, Tan L, Sparagano O, Li R, Yang G. Nanopore sequencing identifies differentially methylated genes in the central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 2023; 381:578134. [PMID: 37364516 DOI: 10.1016/j.jneuroim.2023.578134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune-mediated demyelinating disease of the central nervous system (CNS) that might be triggered by aberrant epigenetic changes in the genome. DNA methylation is the most studied epigenetic mechanism that participates in MS pathogenesis. However, the overall methylation level in the CNS of MS patients remains elusive. We used direct long-read nanopore DNA sequencing and characterized the differentially methylated genes in the brain from mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We identified 163 hypomethylated promoters and 327 hypermethylated promoters. These genomic alterations were linked to various biological processes including metabolism, immune responses, neural activities, and mitochondrial dynamics, all of which are vital for EAE development. Our results indicate a great potential of nanopore sequencing in identifying genomic DNA methylation in EAE and provide important guidance for future studies investigating the MS/EAE pathology.
Collapse
Affiliation(s)
- Wen Si
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Ying Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| |
Collapse
|
7
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Sharifian A, Varshosaz J, Aliomrani M, Kazemi M. Nose to brain delivery of ibudilast micelles for treatment of multiple sclerosis in an experimental autoimmune encephalomyelitis animal model. Int J Pharm 2023; 638:122936. [PMID: 37030640 DOI: 10.1016/j.ijpharm.2023.122936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system ultimate to neurodegeneration and demyelination. Ibudilast is a phosphodiesterase inhibitor, effective on the function of glial cells and lymphocytes, and inhibits the release of TNF-α by inflammatory cells. Dysregulation of glia is one of the most important pathological causes of MS. Therefore, ibudilast as a glial attenuator can be a useful treatment. The objective of the present study was to investigate the effect of nasal spray of polydopamine coated micelles of surfactin, a biosurfactant, loaded with ibudilast on its brain targeted delivery and effectiveness in remylination and neuroprotection in animal model of MS. In animal studies the micelles were administrated intranasally in different doses of 10, 25 and 50 mg/kg/day in C57/BL6 mice immunized by experimental autoimmune encephalomyelitis (EAE) model. The results of Luxol fast blue staining indicated increment in myelin fiber percent more significantly (p<0.05) in the groups treated with the polydopamine coated micelles (PDAM) compared to nasal spray of free drug or oral administration. These formulations also increased expression of Mbp, Olig2 and Mog genes in the corpus callosum. These results suggest a positive outcome of polydopamine coated micelles loaded with ibudilast in active MS as an anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Akram Sharifian
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kazemi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Kiselev IS, Kulakova OG, Baturina OA, Kabilov MR, Boyko AN, Favorova OO. [A comparison of DNA methylation profiles of blood mononuclear cells in patients with multiple sclerosis in remission and relapse]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:60-64. [PMID: 37560835 DOI: 10.17116/jnevro202312307260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To study the whole-genome DNA methylation profiles of peripheral blood mononuclear blood cells (PBMCs) of patients with relapsing-remitting multiple sclerosis (RRMS) in remission and relapse in order to assess the contribution of this epigenetic mechanism of gene expression regulation to the activity of the pathological process. MATERIAL AND METHODS Eight patients with RRMS in remission and 6 patients in relapse were included in the study. Methylation levels of DNA CpG sites in PBMCs were analyzed using Infinium HumanMethylation450 BeadChip DNA microarrays. RESULTS Seven differentially methylated positions (DMPs) were identified, of which 3 were hypermethylated (cg02981003, cg18486102, cg19533582) and 4 were hypomethylated (cg16814680, cg1964802, cg18584440, cg08291996) during RRMS relapse. Five DMPs are located in protein-coding genes (GPR123, FAIM2, BTNL2, ZNF8, ASAP2), one in microRNA gene (MIR548N), and one in an intergenic region. For all identified DMPs, we observed a change in DNA methylation levels of more than 20% (range 20.2-57.5%). Hierarchical clustering of DNA samples on the heatmap shows their clear aggregation into separate clusters corresponding to RRMS patients in the stages of relapse and remission. CONCLUSION For the first time it was shown that during relapse and remission of RRMS there are differences in the DNA methylation profile that allow discrimination between these clinical stages. These data indicate the involvement of the epigenetic mechanism of DNA methylation in the activation of the pathological process in RRMS.
Collapse
Affiliation(s)
- I S Kiselev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O G Kulakova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O A Baturina
- Institute of Chemical Biology and Fundamental Medicine - Genomics Core Facility, Novosibirsk, Russia
| | - M R Kabilov
- Institute of Chemical Biology and Fundamental Medicine - Genomics Core Facility, Novosibirsk, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - O O Favorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
Martins-Ferreira R, Leal BG, Costa PP. The Potential of Circulating Cell-Free DNA Methylation as an Epilepsy Biomarker. Front Cell Neurosci 2022; 16:852151. [PMID: 35401115 PMCID: PMC8987989 DOI: 10.3389/fncel.2022.852151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) are highly degraded DNA fragments shed into the bloodstream. Apoptosis is likely to be the main source of cfDNA due to the matching sizes of cfDNA and apoptotic DNA cleavage fragments. The study of cfDNA in liquid biopsies has served clinical research greatly. Genetic analysis of these circulating fragments has been used in non-invasive prenatal testing, detection of graft rejection in organ transplants, and cancer detection and monitoring. cfDNA sequencing is, however, of limited value in settings in which genetic association is not well-established, such as most neurodegenerative diseases.Recent studies have taken advantage of the cell-type specificity of DNA methylation to determine the tissue of origin, thus detecting ongoing cell death taking place in specific body compartments. Such an approach is yet to be developed in the context of epilepsy research. In this article, we review the different approaches that have been used to monitor cell-type specific death through DNA methylation analysis, and recent data detecting neuronal death in neuropathological settings. We focus on the potential relevance of these tools in focal epilepsies, like Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS), characterized by severe neuronal loss. We speculate on the potential relevance of cfDNA methylation screening for the detection of neuronal cell death in individuals with high risk of epileptogenesis that would benefit from early diagnosis and consequent early treatment.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Bárbara Guerra Leal
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- *Correspondence: Bárbara Guerra Leal
| | - Paulo Pinho Costa
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Department of Human Genetics, Porto, Portugal
| |
Collapse
|
11
|
Ershova ES, Shmarina GV, Porokhovnik LN, Zakharova NV, Kostyuk GP, Umriukhin PE, Kutsev SI, Sergeeva VA, Veiko NN, Kostyuk SV. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls. Genes (Basel) 2022; 13:genes13030551. [PMID: 35328103 PMCID: PMC8955124 DOI: 10.3390/genes13030551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is associated with low-grade systemic inflammation. Circulating cell-free DNA (c-cfDNA) belongs to the DAMP class. The major research question was: can the c-cfDNA of schizophrenic patients (sz-cfDNA) stimulate the DNA sensor genes, which control the innate immunity? We investigated the in vitro response of ten human skin fibroblast (HSF) lines to five DNA probes containing different amounts of a GC-rich marker (the ribosomal repeat) and a DNA oxidation marker (8-oxodG) including sz-cfDNA and healthy control c-cfDNA (hc-cfDNA) probes. After 1 h, 3 h, and 24 h of incubation, the expression of 6 protein genes responsible for cfDNA transport into the cell (EEA1 and HMGB1) and the recognition of cytosolic DNA (TLR9, AIM2, STING and RIG-I) was analyzed at the transcriptional (RT-qPCR) and protein level (flow cytometry and fluorescence microscopy). Additionally, we analyzed changes in the RNA amount of 32 genes (RT-qPCR), which had been previously associated with different cellular responses to cell-free DNA with different characteristics. Adding sz-cfDNA and hc-cfDNA to the HSF medium in equal amounts (50 ng/mL) blocked endocytosis and stimulated TLR9 and STING gene expression while blocking RIG-I and AIM2 expression. Sz-cfDNA and hc-cfDNA, compared to gDNA, demonstrated much stronger stimulated transcription of genes that control cell proliferation, cytokine synthesis, apoptosis, autophagy, and mitochondrial biogenesis. No significant difference was observed in the response of the cells to sz-cfDNA and hc-cfDNA. Sz-cfDNA and hc-cfDNA showed similarly high biological activity towards HSFs, stimulating the gene activity of TLR9 and STING DNA sensor proteins and blocking the activity of the AIM2 protein gene. Since the sz-cfDNA content in the patients’ blood is several times higher than the hc-cfDNA content, sz-cfDNA may upregulate pro-inflammatory cytokines in schizophrenia.
Collapse
Affiliation(s)
- Elizaveta S. Ershova
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Galina V. Shmarina
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Lev N. Porokhovnik
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Correspondence:
| | - Natalia V. Zakharova
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - George P. Kostyuk
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - Pavel E. Umriukhin
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Department of Physiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey I. Kutsev
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Vasilina A. Sergeeva
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Natalia N. Veiko
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Svetlana V. Kostyuk
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| |
Collapse
|
12
|
Jin Y, Allen EG, Jin P. Cell-free DNA methylation as a potential biomarker in brain disorders. Epigenomics 2022; 14:369-374. [PMID: 35034473 PMCID: PMC9066291 DOI: 10.2217/epi-2021-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Kiselev IS, Kulakova OG, Boyko AN, Favorova OO. DNA Methylation As an Epigenetic Mechanism in the Development of Multiple Sclerosis. Acta Naturae 2021; 13:45-57. [PMID: 34377555 PMCID: PMC8327151 DOI: 10.32607/actanaturae.11043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The epigenetic mechanisms of gene expression regulation are a group of the key cellular and molecular pathways that lead to inherited alterations in genes' activity without changing their coding sequence. DNA methylation at the C5 position of cytosine in CpG dinucleotides is amongst the central epigenetic mechanisms. Currently, the number of studies that are devoted to the identification of methylation patterns specific to multiple sclerosis (MS), a severe chronic autoimmune disease of the central nervous system, is on a rapid rise. However, the issue of the contribution of DNA methylation to the development of the different clinical phenotypes of this highly heterogeneous disease has only begun to attract the attention of researchers. This review summarizes the data on the molecular mechanisms underlying DNA methylation and the MS risk factors that can affect the DNA methylation profile and, thereby, modulate the expression of the genes involved in the disease's pathogenesis. The focus of our attention is centered on the analysis of the published data on the differential methylation of DNA from various biological samples of MS patients obtained using both the candidate gene approach and high-throughput methods.
Collapse
Affiliation(s)
- I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. G. Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. N. Boyko
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. O. Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
14
|
Robichaud PP, Arseneault M, O'Connell C, Ouellette RJ, Morin PJ. Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci Lett 2021; 750:135813. [PMID: 33705931 DOI: 10.1016/j.neulet.2021.135813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
DNA methylation has garnered much attention in recent years for its diagnostic potential in multiple conditions including cancer and neurodegenerative diseases. Conversely, advances regarding the potential diagnostic relevance of DNA methylation status have been sparse in the field of amyotrophic lateral sclerosis (ALS) even though patients diagnosed with this condition would significantly benefit from improved molecular assays aimed at furthering the current diagnostic and therapeutic options available. This review will provide an overview of the current diagnostic approaches available for ALS diagnosis and discuss the potential clinical usefulness of DNA methylation. We will also present examples of DNA methylation as a diagnostic tool in various types of cancer and neurodegenerative conditions and expand on how circulating cfDNA methylation may be leveraged for the early detection of ALS. In general, this article will reinforce the importance of cfDNA methylation as diagnostic tools and will further highlight its clinical relevance for persons diagnosed with ALS.
Collapse
Affiliation(s)
- Philippe-Pierre Robichaud
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Genetic Services, 330 Université Ave, Moncton, New Brunswick, E1C 2Z3, Canada; Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Michael Arseneault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Colleen O'Connell
- Stan Cassidy Centre for Rehabilitation, 800 Priestman Street, Fredericton, New Brunswick, E3B 0C7, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada.
| |
Collapse
|
15
|
Qasemi M, Mahdian R, Amidi F. Cell-free DNA discoveries in human reproductive medicine: providing a new tool for biomarker and genetic assays in ART. J Assist Reprod Genet 2021; 38:277-288. [PMID: 33421023 PMCID: PMC7884523 DOI: 10.1007/s10815-020-02038-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 02/02/2023] Open
Abstract
Cell-free DNAs (cfDNAs) are fragmented forms of DNA that are released into extracellular environments. Analyzing them, regarding either concentration or genetic/epigenetic status can provide helpful information about disorders, response to treatments, estimation of success rates, etc. Moreover, since they are presented in body fluids, evaluation of the aforementioned items would be achieved by less/non-invasive methods. In human reproduction field, it is required to have biomarkers for prediction of assisted reproduction techniques (ART) outcome, as well as some non-invasive procedures for genetic/epigenetic assessments. cfDNA is an appropriate candidate for providing the both approaches in ART. Recently, scientists attempted to investigate its application in distinct fields of reproductive medicine that resulted in discovering its applicability for biomarker and genetic/epigenetic analyses. However, due to some limitations, it has not reached to clinical administration yet. In this article, we have reviewed the current reported data with respect to advantages and limitations of cfDNA utilization in three fields of ART, reproduction of male and female, as well as in vitro developed embryos.
Collapse
Affiliation(s)
- Maryam Qasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Bruno DCF, Donatti A, Martin M, Almeida VS, Geraldis JC, Oliveira FS, Dogini DB, Lopes-Cendes I. Circulating nucleic acids in the plasma and serum as potential biomarkers in neurological disorders. ACTA ACUST UNITED AC 2020; 53:e9881. [PMID: 32813850 PMCID: PMC7446710 DOI: 10.1590/1414-431x20209881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Neurological diseases are responsible for approximately 6.8 million deaths every year. They affect up to 1 billion people worldwide and cause significant disability and reduced quality of life. In most neurological disorders, the diagnosis can be challenging; it frequently requires long-term investigation. Thus, the discovery of better diagnostic methods to help in the accurate and fast diagnosis of neurological disorders is crucial. Circulating nucleic acids (CNAs) are defined as any type of DNA or RNA that is present in body biofluids. They can be found within extracellular vesicles or as cell-free DNA and RNA. Currently, CNAs are being explored as potential biomarkers for diseases because they can be obtained using non-invasive methods and may reflect unique characteristics of the biological processes involved in several diseases. CNAs can be especially useful as biomarkers for conditions that involve organs or structures that are difficult to assess, such as the central nervous system. This review presents a critical assessment of the most current literature about the use of plasma and serum CNAs as biomarkers for several aspects of neurological disorders: defining a diagnosis, establishing a prognosis, and monitoring the disease progression and response to therapy. We explored the biological origin, types, and general mechanisms involved in the generation of CNAs in physiological and pathological processes, with specific attention to neurological disorders. In addition, we present some of the future applications of CNAs as non-invasive biomarkers for these diseases.
Collapse
Affiliation(s)
- D C F Bruno
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A Donatti
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M Martin
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - V S Almeida
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J C Geraldis
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - F S Oliveira
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - D B Dogini
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - I Lopes-Cendes
- Departamento de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
17
|
Abstract
Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.
Collapse
Affiliation(s)
- Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
18
|
Wan Z, Peng X, Ma L, Tian Q, Wu S, Li J, Ling J, Lv W, Ding B, Tan J, Zhang Z. Targeted Sequencing of Genomic Repeat Regions Detects Circulating Cell-free Echinococcus DNA. PLoS Negl Trop Dis 2020; 14:e0008147. [PMID: 32155159 PMCID: PMC7083330 DOI: 10.1371/journal.pntd.0008147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/20/2020] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
Background Echinococcosis is a chronic zoonosis caused by tapeworms of the genus Echinococcus. Treatment of the disease is often expensive and complicated, sometimes requiring extensive surgery. Ultrasonographic imaging is currently the main technique for diagnosis, while immunological analysis provides additional information. Confirmation still needs pathological analysis. However, these diagnostic techniques generally detect infection in late stages of the disease. An accurate, early and non-invasive molecular diagnostic method is still unavailable. Methodology/Principal findings We sequenced the cell-free DNA (cfDNA) from plasma of echinococcosis patients and confirmed the presence of Echinococcus DNA. To improve detection sensitivity, we developed a method based on targeted next-generation sequencing of repeat regions. Simulation experiments demonstrate that the targeted sequencing is sensitive enough to detect as little as 0.1% of an Echinococcus genome in 1 mL of plasma. Results obtained using patient plasma shows that the Area Under the Curve (AUC) of the method is 0.862, with a detection sensitivity of 62.50% and specificity of 100%, corresponding to a Youden-index of 0.625. Conclusions/Significance This study provides evidence that hydatid cysts release cfDNA fragments into patient plasma. Using the repeat region targeted sequencing method, highly specific detection of Echinococcus infection was achieved. This study paves a new avenue for potential non-invasive screening and diagnosis of echinococcosis. Echinococcosis is a severe chronic parasitic disease caused by tapeworms of the genus Echinococcus. According to the World Health Organization, there are more than 1 million people living with echinococcosis worldwide. For decades, little progress has been made to develop a molecular diagnosis and specific treatment for the disease. Although imaging and immunological detection are used for diagnosis, these technologies are either only effective for late stages of the disease or hardly conclusive. The detection of cell-free DNA has been a powerful tool for precise diagnosis. In this study, we showed the presence of Echinococcus-derived cell-free DNA in plasma of echinococcosis patients. We further established an assay to detect parasite DNA in blood samples based on amplification of Echinococcus specific repeat regions followed by targeted next-generation sequencing. This technique provides a new method for potential extensive screening and precision diagnosis of echinococcosis with high specificity.
Collapse
Affiliation(s)
- Zhengqing Wan
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xiaoqing Peng
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Qingshan Tian
- Center for Prevention and Treatment of Echinococcosis, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Shizheng Wu
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Junqi Li
- Sunrain Biotechnology Corporation, Changsha, Hunan, China
| | - Jie Ling
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
| | - Weigang Lv
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Binrong Ding
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- * E-mail:
| |
Collapse
|
19
|
Pappalardo F, Russo G, Pennisi M, Parasiliti Palumbo GA, Sgroi G, Motta S, Maimone D. The Potential of Computational Modeling to Predict Disease Course and Treatment Response in Patients with Relapsing Multiple Sclerosis. Cells 2020; 9:E586. [PMID: 32121606 PMCID: PMC7140535 DOI: 10.3390/cells9030586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
As of today, 20 disease-modifying drugs (DMDs) have been approved for the treatment of relapsing multiple sclerosis (MS) and, based on their efficacy, they can be grouped into moderate-efficacy DMDs and high-efficacy DMDs. The choice of the drug mostly relies on the judgment and experience of neurologists and the evaluation of the therapeutic response can only be obtained by monitoring the clinical and magnetic resonance imaging (MRI) status during follow up. In an era where therapies are focused on personalization, this study aims to develop a modeling infrastructure to predict the evolution of relapsing MS and the response to treatments. We built a computational modeling infrastructure named Universal Immune System Simulator (UISS), which can simulate the main features and dynamics of the immune system activities. We extended UISS to simulate all the underlying MS pathogenesis and its interaction with the host immune system. This simulator is a multi-scale, multi-organ, agent-based simulator with an attached module capable of simulating the dynamics of specific biological pathways at the molecular level. We simulated six MS patients with different relapsing-remitting courses. These patients were characterized based on their age, sex, presence of oligoclonal bands, therapy, and MRI lesion load at the onset. The simulator framework is made freely available and can be used following the links provided in the availability section. Even though the model can be further personalized employing immunological parameters and genetic information, we generated a few simulation scenarios for each patient based on the available data. Among these simulations, it was possible to find the scenarios that realistically matched the real clinical and MRI history. Moreover, for two patients, the simulator anticipated the timing of subsequent relapses, which occurred, suggesting that UISS may have the potential to assist MS specialists in predicting the course of the disease and the response to treatment.
Collapse
Affiliation(s)
| | - Giulia Russo
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy;
| | - Marzio Pennisi
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy; (M.P.); (G.A.P.P.); (G.S.)
| | | | - Giuseppe Sgroi
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy; (M.P.); (G.A.P.P.); (G.S.)
| | - Santo Motta
- National Research Council of Italy, 00185 Rome, Italy;
| | - Davide Maimone
- Multiple Sclerosis Center, Neurology Unit, Garibaldi Hospital, 95124 Catania, Italy;
| |
Collapse
|
20
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
21
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
22
|
Walker AL, Imam SZ, Roberts RA. Drug discovery and development: Biomarkers of neurotoxicity and neurodegeneration. Exp Biol Med (Maywood) 2018; 243:1037-1045. [PMID: 30253665 PMCID: PMC6434454 DOI: 10.1177/1535370218801309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IMPACT STATEMENT Attrition in drug discovery and development remains a major challenge. Safety/toxicity is the most prevalent reason for failure with cardiovascular and CNS toxicities predominating. Non-invasive biomarkers of neurotoxicity would provide significant advantage by allowing earlier prediction of likely neurotoxicity in preclinical studies as well as facilitating clinical trials of new therapies for neurodegenerative conditions such as Parkinson's disease (PD) and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Abigail L Walker
- Brain Science Masters Programme, Department of Neuroscience and Psychology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Syed Z Imam
- Division of Neurotoxicology, US FDA NCTR, Jefferson, AR 72079, USA
| | - Ruth A Roberts
- Apconix, Alderley Park, SK10 4TG, UK
- University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
23
|
Diagnosing multiple sclerosis: art and science. Lancet Neurol 2017; 17:109-111. [PMID: 29275980 DOI: 10.1016/s1474-4422(17)30461-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
|
24
|
Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2218-2227. [PMID: 29277326 DOI: 10.1016/j.bbadis.2017.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Cancers are regarded as malignant proliferations of tumor cells present in many tissues and organs, which can severely curtail the quality of human life. The potential of using plasma DNA for cancer detection has been widely recognized, leading to the need of mapping the tissue-of-origin through the identification of somatic mutations. With cutting-edge technologies, such as next-generation sequencing, numerous somatic mutations have been identified, and the mutation signatures have been uncovered across different cancer types. However, somatic mutations are not independent events in carcinogenesis but exert functional effects. In this study, we applied a pan-cancer analysis to five types of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma (COADREAD), (III) head and neck squamous cell carcinoma (HNSC), (IV) kidney renal clear cell carcinoma (KIRC), and (V) ovarian cancer (OV). Based on the mutated genes of patients suffering from one of the aforementioned cancer types, patients they were encoded into a large number of numerical values based upon the enrichment theory of gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We analyzed these features with the Monte-Carlo Feature Selection (MCFS) method, followed by the incremental feature selection (IFS) method to identify functional alteration features that could be used to build the support vector machine (SVM)-based classifier for distinguishing the five types of cancers. Our results showed that the optimal classifier with the selected 344 features had the highest Matthews correlation coefficient value of 0.523. Sixteen decision rules produced by the MCFS method can yield an overall accuracy of 0.498 for the classification of the five cancer types. Further analysis indicated that some of these features and rules were supported by previous experiments. This study not only presents a new approach to mapping the tissue-of-origin for cancer detection but also unveils the specific functional alterations of each cancer type, providing insight into cancer-specific functional aberrations as potential therapeutic targets. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
|
25
|
Zheleznyakova GY, Piket E, Marabita F, Pahlevan Kakhki M, Ewing E, Ruhrmann S, Needhamsen M, Jagodic M, Kular L. Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiol Genomics 2017; 49:447-461. [PMID: 28754822 DOI: 10.1152/physiolgenomics.00060.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. MS likely results from a complex interplay between predisposing causal gene variants (the strongest influence coming from HLA class II locus) and environmental risk factors such as smoking, infectious mononucleosis, and lack of sun exposure/vitamin D. However, little is known about the mechanisms underlying MS development and progression. Moreover, the clinical heterogeneity and variable response to treatment represent additional challenges to a comprehensive understanding and efficient treatment of disease. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, integrate influences from the genes and the environment to regulate gene expression accordingly. Studying epigenetic modifications, which are stable and reversible, may provide an alternative approach to better understand and manage disease. We here aim to review findings from epigenetic studies in MS and further discuss the challenges and clinical opportunities arising from epigenetic research, many of which apply to other diseases with similar complex etiology. A growing body of evidence supports a role of epigenetic processes in the mechanisms underlying immune pathogenesis and nervous system dysfunction in MS. However, disparities between studies shed light on the need to consider possible confounders and methodological limitations for a better interpretation of the data. Nevertheless, translational use of epigenetics might offer new opportunities in epigenetic-based diagnostics and therapeutic tools for a personalized care of MS patients.
Collapse
Affiliation(s)
- Galina Y Zheleznyakova
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Marabita
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017; 17:223-238. [PMID: 28233803 DOI: 10.1038/nrc.2017.7] [Citation(s) in RCA: 1646] [Impact Index Per Article: 205.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a 'liquid biopsy' for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.
Collapse
Affiliation(s)
- Jonathan C M Wan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Charles Massie
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Javier Garcia-Corbacho
- Clinical Trials Unit, Clinic Institute of Haematological and Oncological Diseases, Hospital Clinic de Barcelona, IDIBAPs, Carrer de Villarroel, 170 Barcelona 08036, Spain
| | - Florent Mouliere
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - James D Brenton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Simon Pacey
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Richard Baird
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| |
Collapse
|
27
|
Ershova ES, Jestkova EM, Chestkov IV, Porokhovnik LN, Izevskaya VL, Kutsev SI, Veiko NN, Shmarina G, Dolgikh O, Kostyuk SV. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients. J Psychiatr Res 2017; 87:15-22. [PMID: 27987480 DOI: 10.1016/j.jpsychires.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p < 0.0000001). For the patients with other psychotic disorders and healthy controls, cfDNA/FL1-8-oxodG values were within the range of the values in SZ-2. Thus, apoptosis is impaired in approximately one-third of SZ patients. This leads to an increase in the number of cells with damaged DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder.
Collapse
Affiliation(s)
- E S Ershova
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - E M Jestkova
- Psychiatric Hospital № 14 of Moscow City Health Department, Moscow, 115447, Russia
| | - I V Chestkov
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - L N Porokhovnik
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia.
| | - V L Izevskaya
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S I Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - N N Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - G Shmarina
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - O Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow, 115478, Russia; V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031, Russia
| |
Collapse
|