1
|
Yuan J, Hou B, Guo K, Zhu J, Xiao H. Tumor-derived exosomal hyaluronidase 1 induced M2 macrophage polarization and promoted esophageal cancer progression. Exp Cell Res 2024; 439:113963. [PMID: 38382806 DOI: 10.1016/j.yexcr.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The communication between tumor-derived exosomes and macrophages plays an important role in facilitating the progression of tumors. However, the regulatory mechanisms by which exosomes regulate tumor progression in esophageal squamous cell carcinoma (ESCC) have not been fully elucidated. We constructed a coculture system containing an ESCC cell line and macrophages using a Transwell chamber. We isolated exosomes from the conditioned medium of cancer cells, and characterized them with transmission electron microscopy and western blotting and used then to treat macrophages. We used co-immunoprecipitation to evaluate the interaction between hyaluronidase 1 (HYAL1) and Aurora B kinase (AURKB). We evaluated HYAL1 and AURKB expression in tissues and cells with quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blotting. We used RT-qPCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry to detect macrophage polarization. We assessed cell viability, invasion and migration with the cell counting kit-8 (CCK-8), Transwell and wound healing assays. HYAL1 was highly expressed in ESCC tissues and cells and cancer cell-derived exosomes, and exosomes can be delivered to macrophages through the cancer cell-derived exosomes. The exosomes extracted from HYAL1-overexpressed ESCC cells suppressed M1 macrophage polarization and induced M2 macrophage polarization, thereby promoting ESCC cell viability, invasion and migration. HYAL1 silencing in ESCC cells produced the opposite effects on macrophage polarization and cancer cell functions. We found that HYAL1 interacted with AURKB and further activated the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway in macrophages. In conclusion, ESCC-derived exosomes containing HYAL1 facilitate M2 macrophage polarization by targeting AURKB to active the PI3K/AKT signaling pathway, which in turn promotes ESCC progression.
Collapse
Affiliation(s)
- Jinyan Yuan
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Bin Hou
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Haimin Xiao
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
2
|
Bae S, Bae S, Kim HS, Lim YJ, Kim G, Park IC, So KA, Kim TJ, Lee JH. Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway. Cancer Manag Res 2024; 16:507-525. [PMID: 38827785 PMCID: PMC11144006 DOI: 10.2147/cmar.s457221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ovarian cancer is one of women's malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance. Methods Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted. Results Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells. Conclusion Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
3
|
Sun K, Chen P, Zhang L, Lu Z, Jin Q. Deguelin inhibits the proliferation of human multiple myeloma cells by inducing apoptosis and G2/M cell cycle arrest: Involvement of Akt and p38 MAPK signalling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:101-115. [PMID: 38554386 DOI: 10.2478/acph-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 04/01/2024]
Abstract
Deguelin exhibits antiproliferative activity against various cancer cell types. Previous studies have reported that deguelin exhibits pro-apoptotic activity against human cancer cells. The current study aimed at further elaborating the anticancer effects of deguelin against multiple myeloma cells. Cell growth estimations were made through MTT assay. Phase contrast microscopy was used for the analysis of the viability of multiple myeloma cells. Colony formation from multiple myeloma cells was studied using a clonogenic assay. Antioxidative assays for determining levels of glutathione (GSH) and superoxide dismutase (SOD) were carried out after treating multiple myeloma cells with deguelin. The apoptosis of multiple myeloma cells was studied using AO/EB and Annexin V-FITC/PI staining methods. Multiple myeloma cell cycle analysis was performed through flow cytometry. mRNA expression levels were depicted using qRT-PCR. Migration and invasion of multiple myeloma cells were determined with the wound-healing and transwell assays, respectively. Deguelin specifically inhibited the multiple myeloma cell growth while the normal plasma cells were minimally affected. Multiple myeloma cells when treated with deguelin exhibited remarkably lower viability and colony-forming ability. Multiple myeloma cells treated with deguelin produced more SOD and had higher GSH levels. The multiple myeloma cell growth, migration, and invasion were significantly declined by in vitro administration of deguelin. In conclusion, deguelin treatment, when applied in vitro, induced apoptotic cell death and resulted in mitotic cessation at the G2/M phase through modulation of cell cycle regulatory mRNAs in multiple myeloma cells.
Collapse
Affiliation(s)
- Kening Sun
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Ningxia China
| | - Liang Zhang
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Zhidong Lu
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| |
Collapse
|
4
|
Luo Y, Feng X, Lang W, Xu W, Wang W, Mei C, Ye L, Zhu S, Wang L, Zhou X, Zeng H, Ma L, Ren Y, Jin J, Xu R, Huang G, Tong H. Ectopic expression of the transcription factor ONECUT3 drives a complex karyotype in myelodysplastic syndromes. J Clin Invest 2024; 134:e172468. [PMID: 38386414 PMCID: PMC11014670 DOI: 10.1172/jci172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Chromosomal instability is a prominent biological feature of myelodysplastic syndromes (MDS), with over 50% of patients with MDS harboring chromosomal abnormalities or a complex karyotype (CK). Despite this observation, the mechanisms underlying mitotic and chromosomal defects in MDS remain elusive. In this study, we identified ectopic expression of the transcription factor ONECUT3, which is associated with CKs and poorer survival outcomes in MDS. ONECUT3-overexpressing cell models exhibited enrichment of several notable pathways, including signatures of sister chromosome exchange separation and mitotic nuclear division with the upregulation of INCENP and CDCA8 genes. Notably, dysregulation of chromosome passenger complex (CPC) accumulation, besides the cell equator and midbody, during mitotic phases consequently caused cytokinesis failure and defective chromosome segregation. Mechanistically, the homeobox (HOX) domain of ONECUT3, serving as the DNA binding domain, occupied the unique genomic regions of INCENP and CDCA8 and transcriptionally activated these 2 genes. We identified a lead compound, C5484617, that functionally targeted the HOX domain of ONECUT3, inhibiting its transcriptional activity on downstream genes, and synergistically resensitized MDS cells to hypomethylating agents. This study revealed that ONECUT3 promoted chromosomal instability by transcriptional activation of INCENP and CDCA8, suggesting potential prognostic and therapeutic roles for targeting high-risk MDS patients with a CK.
Collapse
Affiliation(s)
- Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaomin Feng
- Department of Cell Systems and Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, Texas, USA
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihong Xu
- Stanford Genome Technology Center, Palo Alto, California, USA
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, China
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Zeng
- Department of Cell Systems and Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, Texas, USA
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rongzhen Xu
- Department of Hematology, The Second Affiliated Hospital, School of Medicine
| | - Gang Huang
- Department of Cell Systems and Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, Texas, USA
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, and
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Tang D, Wang G, Liu Z, Zheng YC, Sheng C, Wang B, Hou X, Zhang YC, Yao M, Zhou Z. Bioinformatics Analysis and Verification of Metabolic Abnormalities in Esophageal Squamous Carcinoma. Comb Chem High Throughput Screen 2024; 27:273-283. [PMID: 37005515 DOI: 10.2174/1386207326666230331083724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Although esophageal carcinoma (EC) is one of the most common cancers in the world, details of its pathogenesis remain unclear. Metabolic reprogramming is a main feature of EC. Mitochondrial dysfunction, especially the decrease in mitochondrial complex I (MTCI), plays an important role in the occurrence and development of EC. OBJECTIVE The objective of the study was to analyze and validate the metabolic abnormalities and the role of MTCI in esophageal squamous cell carcinoma. METHODS In this work, we collected transcriptomic data from 160 esophageal squamous carcinoma samples and 11 normal tissue samples from The Cancer Genome Atlas (TCGA). The OmicsBean and GEPIA2 were used to conduct an analysis of differential gene expression and survival in clinical samples. Rotenone was used to inhibit the MTCI activity. Subsequently, we detected lactate production, glucose uptake, and ATP production. RESULTS A total of 1710 genes were identified as being significantly differentially expressed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis suggested that these differentially expressed genes (DEGs) were significantly enriched in various pathways related to carcinoma tumorigenesis and progression. Moreover, we further identified abnormalities in metabolic pathways, in particular, the significantly low expression of multiple subunits of MTCI genes (ND1, ND2, ND3, ND4, ND4L, ND5, and ND6). Rotenone was used to inhibit the MTCI activity of EC109 cells, and it was found that the decrease in MTCI activity promoted HIF1A expression, glucose consumption, lactate production, ATP production, and cell migration. CONCLUSION Our results indicated the occurrence of abnormal metabolism involving decreased mitochondrial complex I activity and increased glycolysis in esophageal squamous cell carcinoma (ESCC), which might be related to its development and degree of malignancy.
Collapse
Affiliation(s)
- Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Guozhen Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yu Chen Zheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Biqi Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaonan Hou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yu Chen Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Mengfei Yao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
6
|
Zhou W, Guo S, Zhang J, Yan Y, Wu J, Liu X. An emerging biomarker for the diagnosis and treatment of esophageal squamous cell carcinoma - Aurora A. Comput Biol Med 2024; 168:107759. [PMID: 38043467 DOI: 10.1016/j.compbiomed.2023.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a prominent form of esophageal cancer. Aurora A (AURKA), an enzyme that phosphorylates serine and threonine, has a vital function in controlling the process of separating chromosomes during cell division. The contribution of this entity has been documented in the advancement of malignant proliferations, including tumors occurring in the breast, stomach, and ovaries. METHODS The potential molecular mechanism of AURKA is comprehensively examined through the analysis of bulk RNA-seq and single-cell RNA-seq data obtained from publicly available databases. This analysis encompasses various aspects such as expression levels, prognosis, and functional pathways, among others. RESULTS The upregulation of AURKA in ESCC has been found to be correlated with the overall survival of patients. The functional annotation and pathway enrichment analysis conducted in this study lead to the conclusion that AURKA participates in the regulation of a number of malignant processes connected to cell proliferation, such as cell cycle control, apoptosis, and the p53 signaling pathway. Additionally, AURKA has been found to be associated with drug sensitivity and has an impact on the infiltration of tumor-infiltrating immune cells in ESCC. CONCLUSIONS AURKA exhibits potential as a prognostic and therapeutic biomarker linked to the regulation of cell cycle and cell proliferation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Siyu Guo
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Yan
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiao Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
7
|
Li X, Xie L, Zhou L, Gan Y, Han S, Zhou Y, Qing X, Li W. Bergenin Inhibits Tumor Growth and Overcomes Radioresistance by Targeting Aerobic Glycolysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1905-1925. [PMID: 37646142 DOI: 10.1142/s0192415x23500842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Hexokinase 2 (HK2), the first glycolytic rate-limiting enzyme, is closely correlated with the occurrence and progression of tumors. Effective therapeutic agents targeting HK2 are urgently needed. Bergenin has exhibited various pharmacological activities, such as antitumor properties. However, the effects of bergenin on the abnormal glucose metabolism of cancer cells are yet unclear. In this study, HK2 was overexpressed in OSCC tissues, and the depletion of HK2 inhibited the growth of OSCC cells in vitro and in vivo. Moreover, these results showed that the natural compound, bergenin, exerted a robust antitumor effect on OSCC cells. Bergenin inhibited cancer cell proliferation, suppressed glycolysis, and induced intrinsic apoptosis in OSCC cells by downregulating HK2. Notably, bergenin restored the antitumor efficacy of irradiation in the radioresistant OSCC cells. A mechanistic study revealed that bergenin upregulated the protein level of phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) by enhancing the interaction between PTEN and ubiquitin-specific protease 13 (USP13) and stabilizing PTEN; this eventually inhibited AKT phosphorylation and HK2 expression. Bergenin was identified as a novel therapeutic agent against glycolysis to inhibit OSCC and overcome radioresistance. Targeting PTEN/AKT/HK2 signaling could be a promising option for clinical OSCC treatment.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Li Xie
- Department of Head and Neck Surgery, Hunan Cancer, Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P. R. China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P. R. China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Yuanfeng Zhou
- Department of Infectious Diseases, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Linhai, Taizhou 317000, P. R. China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| |
Collapse
|
8
|
Ji S, Tu W, Huang C, Chen Z, Ren X, He B, Ding X, Chen Y, Xie X. The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Mol Cells 2022; 45:923-934. [PMID: 36572561 PMCID: PMC9794550 DOI: 10.14348/molcells.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/28/2022] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Sijia Ji
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanzhi Tu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenwen Huang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziyang Chen
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Ren
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqing He
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Ding
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuelei Chen
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Udhaya Kumar S, Balasundaram A, Anu Preethi V, Chatterjee S, Kameshwari Gollakota GV, Kashyap MK, George Priya Doss C, Zayed H. Integrative ontology and pathway-based approach identifies distinct molecular signatures in transcriptomes of esophageal squamous cell carcinoma. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:177-206. [PMID: 35871890 DOI: 10.1016/bs.apcsb.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a serious concern globally due to many factors that including late diagnosis, lack of an ideal biomarker for diagnosis and prognosis, and high rate of mortality. In this study, we aimed to identify the essential dysregulated genes and molecular signatures associated with the progression and development of ESCC. The dataset with 15 ESCCs and the 15 adjacent normal tissue samples from the surrounding histopathologically tumor-free mucosa was selected. We applied bioinformatics pipelines including various topological parameters from MCODE, CytoNCA, and cytoHubba to prioritize the most significantly associated DEGs with ESCC. We performed functional enrichment annotation for the identified DEGs using DAVID and MetaCore™ GeneGo platforms. Furthermore, we validated the essential core genes in TCGA and GTEx datasets between the normal mucosa and ESCC for their expression levels. These DEGs were primarily enriched in positive regulation of transferase activity, negative regulation of organelle organization, cell cycle mitosis/S-phase transition, spindle organization/assembly, development, and regulation of angiogenesis. Subsequently, the DEGs were associated with the pathways such as oocyte meiosis, cell cycle, and DNA replication. Our study identified the eight-core genes (AURKA, AURKB, MCM2, CDC20, TPX2, PLK1, FOXM1, and MCM7) that are highly expressed among the ESCC, and TCGA dataset. The multigene comparison and principal component analysis resulted in elevated signals for the AURKA, MCM2, CDC20, TPX2, PLK1, and FOXM1. Overall, our study reported GO profiles and molecular signatures that might help researchers to grasp the pathological mechanisms underlying ESCC development and eventually provide novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - V Anu Preethi
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Sayoni Chatterjee
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - G V Kameshwari Gollakota
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Gurugram, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
10
|
He Y, Fu W, Du L, Yao H, Hua Z, Li J, Lin Z. Discovery of a novel Aurora B inhibitor GSK650394 with potent anticancer and anti- aspergillus fumigatus dual efficacies in vitro. J Enzyme Inhib Med Chem 2021; 37:109-117. [PMID: 34894976 PMCID: PMC8667888 DOI: 10.1080/14756366.2021.1975693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal infections including Candidiasis and Aspergillosis are associated with considerable morbidity and mortality in immunocompromised individuals, such as cancer patients. Aurora B is a key mitotic kinase required for the cell division of eukaryotes from fungus to man. Here, we identified a novel Aurora B inhibitor GSK650394 that can inhibit the recombinant Aurora B from human and Aspergillus fumigatus, with IC50 values of 5.68 and 1.29 µM, respectively. In HeLa and HepG2 cells, GSK650394 diminishes the endogenous Aurora B activity and causes cell cycle arrest in G2/M phase. Further cell-based assays demonstrate that GSK650394 efficiently suppresses the proliferation of both cancer cells and Aspergillus fumigatus. Finally, the molecular docking calculation and site-directed mutagenesis analyses reveal the molecular mechanism of Aurora B inhibition by GSK650394. Our work is expected to provide new insight into the combinational therapy of cancer and Aspergillus fumigatus infection.
Collapse
Affiliation(s)
- Yuhua He
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Liyang Du
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huiqiao Yao
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhengkang Hua
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
11
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
12
|
Sankhe K, Prabhu A, Khan T. Design strategies, SAR, and mechanistic insight of Aurora kinase inhibitors in cancer. Chem Biol Drug Des 2021; 98:73-93. [PMID: 33934503 DOI: 10.1111/cbdd.13850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Aurora kinases (AURKs) are serine/threonine protein kinases that play a critical role during cell proliferation. Three isoforms of AURKs reported in mammals include AURKA, AURKB, AURKC, and all share a similar C-terminal catalytic domain with differences in their subcellular location, substrate specificity, and function. Recent research reports indicate an elevated expression of these kinases in several cancer types highlighting their role as oncogenes in tumorigenesis. Inhibition of AURKs is an attractive strategy to design potent inhibitors modulating this target. The last few years have witnessed immense research in the development of AURK inhibitors with few FDA approvals. The current clinical therapeutic regime in cancer is associated with severe side-effects and emerging resistance to existing drugs. This has been the key driver of research initiatives toward designing more potent drugs that can potentially circumvent the emerging resistance. This review is a comprehensive summary of recent research on AURK inhibitors and presents the development of scaffolds, their synthetic schemes, structure-activity relationships, biological activity, and enzyme inhibition potential. We hope to provide the reader with an array of scaffolds that can be selected for further research work and mechanistic studies in the development of new AURK inhibitors.
Collapse
Affiliation(s)
- Kaksha Sankhe
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry and Quality Assurance, Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
13
|
Lan T, Xue X, Dunmall LC, Miao J, Wang Y. Patient-derived xenograft: a developing tool for screening biomarkers and potential therapeutic targets for human esophageal cancers. Aging (Albany NY) 2021; 13:12273-12293. [PMID: 33903283 PMCID: PMC8109069 DOI: 10.18632/aging.202934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 04/15/2023]
Abstract
Esophageal cancer (EC) represents a human malignancy, diagnosed often at the advanced stage of cancer and resulting in high morbidity and mortality. The development of precision medicine allows for the identification of more personalized therapeutic strategies to improve cancer treatment. By implanting primary cancer tissues into immunodeficient mice for expansion, patient-derived xenograft (PDX) models largely maintain similar histological and genetic representations naturally found in patients' tumor cells. PDX models of EC (EC-PDX) provide fine platforms to investigate the tumor microenvironment, tumor genomic heterogeneity, and tumor response to chemoradiotherapy, which are necessary for new drug discovery to combat EC in addition to optimization of current therapeutic strategies for EC. In this review, we summarize the methods used for establishing EC-PDX models and investigate the utilities of EC-PDX in screening predictive biomarkers and potential therapeutic targets. The challenge of this promising research tool is also discussed.
Collapse
Affiliation(s)
- Tianfeng Lan
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Xue
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- The Academy of Medical Science, Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, P.R. China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, P.R. China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|
15
|
Kong D, Long D, Liu B, Pei D, Cao N, Zhang G, Xia Z, Luo M. Downregulation of long non-coding RNA LOC101928477 correlates with tumor progression by regulating the epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Thorac Cancer 2021; 12:1303-1311. [PMID: 33713583 PMCID: PMC8088935 DOI: 10.1111/1759-7714.13858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies. There is a growing body of evidence showing that long non‐coding RNAs (lncRNAs) play critical roles in ESCC oncogenesis. The present study aimed to explore the role of LOC101928477, a newly discovered lncRNA, in the development and metastasis of ESCC. Methods In this study, real‐time PCR, western blotting, cell counting kit‐8 (CCK‐8), flow cytometry, colony formation, wound healing, transwell migration/invasion assay, immunofluorescence, and immunohistochemistry were used. We also applied an in situ xenograft mouse model and a lung metastasis mouse model to verify our findings. Results We determined that LOC101928477 expression was inhibited in ESCC tissue and ESCC cell lines when compared with controls. Moreover, forced expression of LOC101928477 effectively inhibited ESCC cell proliferation, colony formation, migration, and invasion via suppression of epithelial‐mesenchymal transition (EMT). Furthermore, LOC101928477 overexpression inhibited in situ tumor growth and lung metastasis in a mouse model. Conclusions Together, our results suggested that LOC101928477 could be a novel suppressor gene involved in ESCC progression.
Collapse
Affiliation(s)
- Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dali Long
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dengke Pei
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Na Cao
- Department of Logistics, Guizhou Provincial People's Hospital, Guizhou, Guiyang, China
| | - Guihua Zhang
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Meng Luo
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
16
|
Tuli HS, Mittal S, Loka M, Aggarwal V, Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, Sethi G, Bishayee A. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol Res 2021; 166:105487. [PMID: 33581287 DOI: 10.1016/j.phrs.2021.105487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Cancer is an anomalous growth and differentiation of cells known to be governed by oncogenic factors. Plant-based natural metabolites have been well recognized to possess chemopreventive properties. Deguelin, a natural rotenoid, is among the class of bioactive phytoconstituents from a diverse range of plants with potential antineoplastic effects in different cancer subtypes. However, the precise mechanisms of how deguelin inhibits tumor progression remains elusive. Deguelin has shown promising results in targeting the hallmarks of tumor progression via inducing tumor apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Based on initial scientific excerpts, deguelin has been reported to inhibit tumor growth via different signaling pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, serine/threonine protein kinase B (also known as Akt), mammalian target of rapamycin, nuclear factor-κB, matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3, caspase-8, and caspase-9. This review summarizes the mechanistic insights of antineoplastic action of deguelin to gain a clear understanding of its therapeutic effects in cancer. The anticancer potential of deguelin with respect to its efficacy in targeting tumorigenesis via nanotechnological approaches is also investigated. The initial scientific findings have presented deguelin as a promising antitumorigenic agent which can be used for monotherapy as well as synergistically to augment efficacy of chemotherapeutic treatment regimes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mariam Loka
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Akshara Masurkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Sadopur 134007, Haryana, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
17
|
Li M, Liu H, Zhao Q, Han S, Zhou L, Liu W, Li W, Gao F. Targeting Aurora B kinase with Tanshinone IIA suppresses tumor growth and overcomes radioresistance. Cell Death Dis 2021; 12:152. [PMID: 33542222 PMCID: PMC7862432 DOI: 10.1038/s41419-021-03434-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Aurora B kinase is aberrantly overexpressed in various tumors and shown to be a promising target for anti-cancer therapy. In human oral squamous cell carcinoma (OSCC), the high protein level of Aurora B is required for maintaining of malignant phenotypes, including in vitro cell growth, colony formation, and in vivo tumor development. By molecular modeling screening of 74 commercially available natural products, we identified that Tanshinone IIA (Tan IIA), as a potential Aurora B kinase inhibitor. The in silico docking study indicates that Tan IIA docks into the ATP-binding pocket of Aurora B, which is further confirmed by in vitro kinase assay, ex vivo pull-down, and ATP competitive binding assay. Tan IIA exhibited a significant anti-tumor effect on OSCC cells both in vitro and in vivo, including reduction of Aurora B and histone H3 phosphorylation, induction of G2/M cell cycle arrest, increase the population of polyploid cells, and promotion of apoptosis. The in vivo mouse model revealed that Tan IIA delayed tumor growth of OSCC cells. Tan IIA alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Taken together, our data indicate that Tan IIA is an Aurora B kinase inhibitor with therapeutic potentials for cancer treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
- Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, Hunan, People's Republic of China
| | - Haidan Liu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qin Zhao
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Shuangze Han
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
18
|
An Electrophilic Deguelin Analogue Inhibits STAT3 Signaling in H- Ras-Transformed Human Mammary Epithelial Cells: The Cysteine 259 Residue as a Potential Target. Biomedicines 2020; 8:biomedicines8100407. [PMID: 33053804 PMCID: PMC7600869 DOI: 10.3390/biomedicines8100407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signals that are often constitutively activated in many cancerous or transformed cells and some stromal cells in the tumor microenvironment. Persistent STAT3 activation in malignant cells stimulates proliferation, survival, angiogenesis, invasion, and tumor-promoting inflammation. STAT3 undergoes activation through phosphorylation on tyrosine 705, which facilitates its dimerization. Dimeric STAT3 translocates to the nucleus, where it regulates the transcription of genes involved in cell proliferation, survival, etc. In the present study, a synthetic deguelin analogue SH48, discovered by virtual screening, inhibited the phosphorylation, nuclear translocation, and transcriptional activity of STAT3 in H-ras transformed human mammary epithelial MCF-10A cells (MCF10A-ras). We speculated that SH48 bearing an α,β-unsaturated carbonyl group could interact with a thiol residue of STAT3, thereby inactivating this transcription factor. Non-electrophilic analogues of SH48 failed to inhibit STAT3 activation, lending support to the above supposition. By utilizing a biotinylated SH48, we were able to demonstrate the complex formation between SH48 and STAT3. SH48 treatment to MCF10A-ras cells induced autophagy, which was verified by staining with a fluorescent acidotropic probe, LysoTracker Red, as well as upregulating the expression of LC3II and p62. In conclusion, the electrophilic analogue of deguelin interacts with STAT3 and inhibits its activation in MCF10A-ras cells, which may account for its induction of autophagic death.
Collapse
|
19
|
Zhou X, Ma X, Sun H, Li X, Cao H, Jiang Y, Wang P, Xie S, Li Y, Sun Y. Let-7b regulates the adriamycin resistance of chronic myelogenous leukemia by targeting AURKB in K562/ADM cells. Leuk Lymphoma 2020; 61:3451-3459. [PMID: 32856506 DOI: 10.1080/10428194.2020.1811269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukemia (CML) is a malignant hematological disease, and drug resistance is often related to poor prognosis. MicroRNAs (miRNA) play a pivotal role in transcriptional regulation, cell development, and chemotherapy resistance. Here, we describe the effect of let-7b on resistant leukemia cells and examine the relevance of let-7b as a biomarker for adriamycin resistance. Results showed that let-7b was downregulated in K562/ADM (KA) cells, and the downregulation of let-7b in K562 and KA cells increased ADM resistance. The inhibition of let-7b subsequently induced the upregulation of AURKB. Finally, results proved that the Pi3k/Akt/Erk pathway was related to AURKB-activated resistance. Our research indicated that the underexpression of let-7b and overexpression of AURKB contributed to the resistance of CML, and its function is partly regulated by the Pi3k/Akt/Erk pathway. Thus, our further understand of its inhibitory effect may promise a new therapeutic strategy to overcome chemotherapeutic resistance in CML.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiancheng Ma
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Hang Sun
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Xue Li
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youzhang Jiang
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Gao F, Li M, Zhou L, Liu W, Zuo H, Li W. Xanthohumol targets the ERK1/2‑Fra1 signaling axis to reduce cyclin D1 expression and inhibit non‑small cell lung cancer. Oncol Rep 2020; 44:1365-1374. [PMID: 32945473 PMCID: PMC7448415 DOI: 10.3892/or.2020.7697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
High expression of cyclin D1 has a crucial role in the maintenance of unlimited cell growth in human cancer cells. The present study indicated that cyclin D1 was overexpressed in human non-small cell lung cancer (NSCLC) tumor tissues and cell lines. Knockout of cyclin D1 suppressed NSCLC cell growth, colony formation and in vivo tumor growth. Of note, the natural product xanthohumol (Xanth) inhibited NSCLC cells via the downregulation of cyclin D1. A further mechanistic study revealed that Xanth suppressed ERK1/2 signaling and reduced the protein levels of FOS-related antigen 1 (Fra1), which eventually inhibited the transcriptional activity of activator protein-1 and decreased the mRNA level of cyclin D1. Furthermore, suppression of ERK1/2 impaired Fra1 phosphorylation and enhanced Xanth-induced Fra1 ubiquitination and degradation. In addition, the S265D mutation compromised Xanth-induced Fra1 degradation. Finally, the in vivo anti-tumor effect of Xanth was validated in a xenograft mouse model. In summary, the present results indicated that targeting ERK1/2-Fra1-cyclin D1 signaling is a promising anti-tumor strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Feng Gao
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Huilan Zuo
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
21
|
Gao F, Zhou L, Li M, Liu W, Yang S, Li W. Inhibition of ERKs/Akt-Mediated c-Fos Expression Is Required for Piperlongumine-Induced Cyclin D1 Downregulation and Tumor Suppression in Colorectal Cancer Cells. Onco Targets Ther 2020; 13:5591-5603. [PMID: 32606774 PMCID: PMC7304781 DOI: 10.2147/ott.s251295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Deregulation of Cyclin D1 and cell cycle progression plays a critical role in tumorigenesis. The natural compound piperlongumine (PL) exhibits potential anticancer effects in various cancer models, but the underlying mechanism needs further elucidation. Methods The inhibitory effect of PL on colorectal cancer (CRC) cells was determined by anchorage-dependent and -independent assays. The protein level of Cyclin D1 was examined by immunoblot (IB) and immunohistochemical staining (IHC). The mRNA level was determined by qRT-PCR. Phosphorylation of histone H3 was analyzed by immunofluorescence (IF). The cell cycle was examined by flow cytometry. The in vivo antitumor effect was validated by the xenograft mouse model. Results Cyclin D1 was overexpressed in CRC tissues and cells, and was required for maintaining cell growth, colony formation, and in vivo tumorigenesis. PL decreased the protein level of c-Fos, which eventually reduced the transcriptional activity of AP-1 and the mRNA level of Cyclin D1. Mechanism study showed that PL impaired EGF-induced activation of ERK1/2 and Akt signalings, which resulted in a reduction of c-Fos transcription. Furthermore, PL reduced the half-life of c-Fos and caused the ubiquitination-dependent degradation of c-Fos. Finally, the in vivo antitumor effect of PL on CRC cells was examined using a xenograft mouse model. Conclusion Our data indicate that PL is a promising antitumor agent that deserves further study for CRC treatment.
Collapse
Affiliation(s)
- Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Changsha Stomatological Hospital, Changsha, Hunan 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Shuting Yang
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
22
|
Li M, Gao F, Zhao Q, Zuo H, Liu W, Li W. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis. Cell Death Dis 2020; 11:381. [PMID: 32424132 PMCID: PMC7235009 DOI: 10.1038/s41419-020-2579-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Aerobic glycolysis is one of the hallmarks of human cancer cells. Overexpression of hexokinase 2 (HK2) plays a crucial role in the maintaining of unlimited tumor cell growth. In the present study, we found that the oral squamous cell carcinoma (OSCC) cells exhibited an aerobic glycolysis phenotype. Moreover, HK2 is highly expressed in OSCC patient derived-tissues and cell lines. Depletion of HK2 inhibited OSCC cell growth in vitro and in vivo. With a natural product screening, we identified Tanshinone IIA (Tan IIA) as a potential anti-tumor compound for OSCC through suppressing HK2-mediated glycolysis. Tan IIA decreased glucose consumption, lactate production, and promoted intrinsic apoptosis in OSCC cells. The mechanism study revealed that Tan IIA inhibited the Akt-c-Myc signaling and promoted E3 ligase FBW7-mediated c-Myc ubiquitination and degradation, which eventually reduced HK2 expression at the transcriptional level. In summary, these results indicate that targeting HK2-mediated aerobic glycolysis is a promising anti-tumor strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, 410000, Changsha, Hunan, P.R. China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Qing Zhao
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Huilan Zuo
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| |
Collapse
|
23
|
Epigenetic Alterations in Oesophageal Cancer: Expression and Role of the Involved Enzymes. Int J Mol Sci 2020; 21:ijms21103522. [PMID: 32429269 PMCID: PMC7278932 DOI: 10.3390/ijms21103522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.
Collapse
|
24
|
Li M, Gao F, Yu X, Zhao Q, Zhou L, Liu W, Li W. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:88. [PMID: 32410646 PMCID: PMC7227341 DOI: 10.1186/s13046-020-01593-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Background Overexpression of survivin plays a crucial role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, survivin has been proposed as an attractive target for new anti-tumor interventions. Methods A natural product library was used for natural compound screening through MTS assay. The expression of survivin in oral squamous cell carcinoma (OSCC) and the inhibitory effect of xanthohumol (XN) on OSCC were examined by anchorage-dependent and -independent growth assays, immunoblot, immunofluorescence, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. Results Survivin is highly expressed in OSCC patient-derived tissues and cell lines. Knockout of survivin reduced the tumorigenic properties of OSCC cells in vitro and in vivo. With a natural compound screening, we identified that xanthohumol inhibited OSCC cells by reducing survivin protein level and activating mitochondrial apoptotic signaling. Xanthohumol inhibited the Akt-Wee1-CDK1 signaling, which in turn decreased survivin phosphorylation on Thr34, and facilitated E3 ligase Fbxl7-mediated survivin ubiquitination and degradation. Xanthohumol alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Conclusion Our findings indicate that targeting survivin for degradation might a promising strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410000, People's Republic of China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xinfang Yu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qing Zhao
- Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
25
|
Gao F, Yu X, Li M, Zhou L, Liu W, Li W, Liu H. Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1 destabilization. Cell Death Dis 2020; 11:143. [PMID: 32081857 PMCID: PMC7035355 DOI: 10.1038/s41419-020-2344-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Activating mutations of epidermal growth factor receptor (EGFR) play crucial roles in the oncogenesis of human non-small cell lung cancer (NSCLC). By screening 79 commercially available natural products, we found that the natural compound deguelin exhibited a profound anti-tumor effect on NSCLC via directly down-regulating of EGFR-signaling pathway. Deguelin potently inhibited in vitro EGFR kinase activity of wild type (WT), exon 19 deletion, and L858R/T790M-mutated EGFR. The in silico docking study indicated that deguelin was docked into the ATP-binding pocket of EGFRs. By suppression of EGFR signaling, deguelin inhibited anchorage-dependent, and independent growth of NSCLC cell lines, and significantly delayed tumorigenesis in vivo. Further study showed that deguelin inhibited EGFR and downstream kinase Akt, which resulted in the activation of GSK3β and eventually enhanced Mcl-1 phosphorylation at S159. Moreover, deguelin promoted the interaction between Mcl-1 and E3 ligase SCFFBW7, which enhanced FBW7-mediated Mcl-1 ubiquitination and degradation. Additionally, phosphorylation of Mcl-1 by GSK3β is a prerequisite for FBW7-mediated Mcl-1 destruction. Depletion or pharmacological inactivation of GSK3β compromised deguelin-induced Mcl-1 ubiquitination and reduction. Taken together, our data indicate that enhancement of ubiquitination-dependent Mcl-1 turnover might be a promising approach for cancer treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ming Li
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.
| |
Collapse
|
26
|
Persia FA, Troncoso ME, Rinaldini E, Simirgiotis M, Tapia A, Bórquez J, Mackern-Oberti JP, Hapon MB, Gamarra-Luques C. UHPLC-Q/Orbitrap/MS/MS fingerprinting and antitumoral effects of Prosopis strombulifera (LAM.) BENTH. queous extract on allograft colorectal and melanoma cancer models. Heliyon 2020; 6:e03353. [PMID: 32055742 PMCID: PMC7005552 DOI: 10.1016/j.heliyon.2020.e03353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/22/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
The aqueous extract of the Argentinean native plant, Prosopis strombulifera (PsAE), presents cytotoxicity against human cancer cell lines by inducing cytostasis, necrosis and apoptosis; with diminution of clonogenic survival; without genotoxic effects nor oral animal toxicity. Until now, the chemical extract composition and its in vivo antitumoral properties remain unknown; these studies are the aim of the current work. The PsAE was characterized by chemical fingerprinting and the metabolome was identified by tandem UHPLC-PDA-HESI-Q-orbitrap® mass spectrometry. Colorectal tumors were induced by DMH administration and melanomas resulted from B16-F0 S.C. cells injection; then, animals were treated orally with PsEA. To correlate in vivo results with in vitro cytotoxicity, B16-F0 cell were cultured to determine: cell proliferation and viability by dye exclusion assays, MTT and CFSE dilution; cell cycle distribution by flow cytometry; and immunoblotting of p21cip1, PCNA, cleaved caspase 3, cleaved PARP and TUBA1A. Based on UHPLC-OT-MS and PDA analysis, twenty-six compounds were identified, including: 5 simple organic acids, 4 phenolic acids, 4 procyanidins, 11 flavonoids, and 2 oxylipins. On C57BL6 mice, PsAE significantly increases the median survival on colorectal cancer and reduces the final volume and weight of melanomas. Over cultured cells, the treatment induce over-expression of p21, cytostasis by G2/M cell cycle arrest and apoptosis; while, on in vivo melanomas, treatment up-regulates p21 and slightly decreases PCNA. In conclusion, PsAE is composed by phenolic compounds which demonstrate cytotoxic and antitumoral properties when is orally administrated. Presented results support future research of PsAE as a potential phytomedicine for cancer treatment.
Collapse
Affiliation(s)
- Fabio Andrés Persia
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Facultad de Ciencias Médicas, Universidad de Mendoza, Boulogne Sur Mer 683, CP 5500, Mendoza, Argentina
| | - Mariana Elizabeth Troncoso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Cátedra de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad Nacional de Cuyo, Padre Contreras 1300, CP 5500, Mendoza, Argentina
| | - Estefanía Rinaldini
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400, San Juan, Argentina
| | - Jorge Bórquez
- Laboratorio de Productos Naturales Depto. de Química, Facultad de Ciencias, Universidad de Antofagasta. Av. Coloso S-N, Antofagasta 1240000, Chile
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP5500, Mendoza, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Cátedra de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad Nacional de Cuyo, Padre Contreras 1300, CP 5500, Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP5500, Mendoza, Argentina
| |
Collapse
|
27
|
Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. EBioMedicine 2019; 51:102570. [PMID: 31806563 PMCID: PMC7000337 DOI: 10.1016/j.ebiom.2019.11.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The F-box protein S-phase kinase-associated protein 2 (Skp2) is overexpressed and correlated with poor prognosis in human malignancies, including colorectal cancer (CRC). METHODS A natural product library was used for natural compound screening through glycolysis analysis. The expression of Skp2 in CRCs and the inhibitory effect of dioscin on glycolysis were examined through methods of immunoblot, immunofluorescence, immunohistochemical staining, anchorage-dependent and -independent growth assays, EdU incorporation assay, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. FINDINGS We demonstrated that Skp2 was highly expressed in CRC tissues and cell lines. Knockout of Skp2 inhibited HK2 and glycolysis and decreased CRC cell growth in vitro and in vivo. We screened 88 commercially available natural products and found that dioscin, a natural steroid saponin derived from several plants, significantly inhibited glycolysis in CRC cells. Dioscin decreased the protein level of Skp2 by shortening the half-life of Skp2. Further study showed that dioscin attenuated Skp2 phosphorylation on S72 and promoted the interaction between Skp2 and Cdh1, which eventually enhanced Skp2 lysine 48 (K48)-linked polyubiquitination and degradation. Depletion of Cdh1 impaired dioscin-induced Skp2 reduction, rescued HK2 expression, and glycolysis in CRC cells. Finally, dioscin delayed the in vivo tumor growth, promoted Skp2 ubiquitination, and inhibited Skp2 expression in a mouse xenograft model. INTERPRETATION This study suggests that in addition to pharmacological inactivation of Skp2, enhancement of ubiquitination-dependent Skp2 turnover is a promising approach for cancer treatment.
Collapse
|
28
|
Alafate W, Wang M, Zuo J, Wu W, Sun L, Liu C, Xie W, Wang J. Targeting Aurora kinase B attenuates chemoresistance in glioblastoma via a synergistic manner with temozolomide. Pathol Res Pract 2019; 215:152617. [DOI: 10.1016/j.prp.2019.152617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 02/01/2023]
|
29
|
Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int J Biol Sci 2019; 15:2497-2508. [PMID: 31595166 PMCID: PMC6775317 DOI: 10.7150/ijbs.37481] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human colorectal cancer (CRC). In the present study, we reported that Hexokinase 2 (HK2) is overexpressed in human CRC tissues and cell lines, knockout of HK2 inhibited cell proliferation, colony formation, and xenograft tumor growth. We demonstrated that the natural compound, xanthohumol, has a profound anti-tumor effect on CRC via down-regulation of HK2 and glycolysis. Xanthohumol suppressed CRC cell growth both in vitro and in vivo. Treatment with xanthohumol promoted the release of cytochrome C and activated the intrinsic apoptosis pathway. Moreover, our results revealed that xanthohumol down-regulated the EGFR-Akt signaling, exogenous overexpression of constitutively activated Akt1 significantly impaired xanthohumol-induced glycolysis suppression and apoptosis induction. Our results suggest that targeting HK2 appears to be a new approach for clinical CRC prevention or treatment.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
30
|
Varughese RS, Lam WST, Marican AABH, Viganeshwari SH, Bhave AS, Syn NL, Wang J, Wong ALA, Kumar AP, Lobie PE, Lee SC, Sethi G, Goh BC, Wang L. Biopharmacological considerations for accelerating drug development of deguelin, a rotenoid with potent chemotherapeutic and chemopreventive potential. Cancer 2019; 125:1789-1798. [PMID: 30933320 DOI: 10.1002/cncr.32069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Deguelin is a rotenoid compound that exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants. An analysis of evidence from both in vitro and in vivo studies suggests that deguelin displays potent anticancer activity against multiple cancer types and exhibits chemopreventive potential in Akt-inducible transgenic mouse models. Deguelin appears to impede carcinogenesis by enhancing cell apoptosis and hindering malignant transformation and tumor cell propagation. Crucial oncogenic pathways likely targeted by deguelin include the epithelial-to-mesenchymal transition; angiogenesis-related pathways; and the phosphoinositide 3-kinase/Akt, Wnt, epidermal growth factor receptor, c-Met, and hedgehog signal transduction cascades. This review article provides a comprehensive summary of current preclinical research featuring deguelin as a leading chemotherapeutic and chemopreventive compound, and it highlights the importance of identifying companion molecular biomarkers and performing systemic pharmacokinetic studies for accelerating the process of developing deguelin as a clinical anticancer agent.
Collapse
Affiliation(s)
- Rahel Sarah Varughese
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Walter Sze-Tung Lam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Ahmad Abdurrahman Bin Hanifah Marican
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - S Hema Viganeshwari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Anuja Satish Bhave
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Nicholas L Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Jigang Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Gautam Sethi
- Department of Pharmacology, National University Health System, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore.,Department of Medicine, National University Health System, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| |
Collapse
|
31
|
Zhou L, Li M, Yu X, Gao F, Li W. Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells. Int J Biol Sci 2019; 15:826-837. [PMID: 30906213 PMCID: PMC6429016 DOI: 10.7150/ijbs.31749] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human non-small cell lung cancer (NSCLC). In the present study, we reported the natural compound, piperlongumine, has a profound anti-tumor effect on NSCLC via regulation of glycolysis. Piperlongumine suppressed the proliferation, colony formation and HK2-mediated glycolysis in NSCLC cells. We demonstrated that exposure to piperlongumine disrupted the interaction between HK2 and VDAC1, induced the activation of the intrinsic apoptosis signaling pathway. Moreover, our results revealed that piperlongumine down-regulated the Akt signaling, exogenous overexpression of constitutively activated Akt1 in HCC827 and H1975 cells significantly rescued piperlongumine-induced glycolysis suppression and apoptosis. The xenograft mouse model data demonstrated the pivotal role of suppression of Akt activation and HK2-mediated glycolysis in mediating the in vivo antitumor effects of piperlongumine. The expression of HK2 was higher in malignant NSCLC tissues than that of the paired adjacent tissues, and was positively correlated with poor survival time. Our results suggest that HK2 could be used as a potential predictor of survival and targeting HK2 appears to be a new approach for clinical NSCLC prevention or treatment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Changsha Stomatological Hospital, Changsha, Hunan 410004, P.R. China
| | - Xinyou Yu
- Shandong Lvdu Bio-Industry Co., Ltd., Binzhou, Shandong 256600, P.R. China
| | - Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
32
|
Sarkar A, Sen S. A Comparative Analysis of the Molecular Interaction Techniques for In Silico Drug Design. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09830-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Nukui M, O'Connor CM, Murphy EA. The Natural Flavonoid Compound Deguelin Inhibits HCMV Lytic Replication within Fibroblasts. Viruses 2018; 10:v10110614. [PMID: 30405048 PMCID: PMC6265796 DOI: 10.3390/v10110614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus for which there is no vaccine or cure. This viral infection, once acquired, is life-long, residing latently in hematopoietic cells. However, latently infected individuals with weakened immune systems often undergo HCMV reactivation, which can cause serious complications in immunosuppressed and immunocompromised patients. Current anti-viral therapies target late stages of viral replication, and are often met with therapeutic resistance, necessitating the development of novel therapeutics. In this current study, we identified a naturally-occurring flavonoid compound, deguelin, which inhibits HCMV lytic replication. Our findings reveal that nanomolar concentrations of deguelin significantly suppress the production of the infectious virus. Further, we show that deguelin inhibits the lytic cycle during the phase of the replication cycle consistent with early (E) gene and protein expression. Importantly, our data reveal that deguelin inhibits replication of a ganciclovir-resistant strain of HCMV. Together, our findings identify a novel, naturally occurring compound that may prove useful in the treatment of HCMV replication.
Collapse
Affiliation(s)
- Masatoshi Nukui
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Eain A Murphy
- FORGE Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18901, USA.
| |
Collapse
|
34
|
Li W, Yu X, Xia Z, Yu X, Xie L, Ma X, Zhou H, Liu L, Wang J, Yang Y, Liu H. Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells. J Cell Mol Med 2018; 22:6213-6227. [PMID: 30255595 PMCID: PMC6237602 DOI: 10.1111/jcmm.13908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Deguelin, a natural rotenoid isolated from several plants, has been reported to exert anti‐tumour effects in various cancers. However, the molecular mechanism of this regulation remains to be fully elucidated. Here, we found that deguelin inhibited the growth of non‐small cell lung cancer (NSCLC) cells both in vitro and in vivo by downregulation of Bmi1 expression. Our data showed that Bmi1 is highly expressed in human NSCLC tissues and cell lines. Knockdown of Bmi1 significantly suppressed NSCLC cell proliferation and colony formation. Deguelin treatment attenuated the binding activity of Bmi1 to the Noxa promoter, thus resulting in Noxa transcription and apoptosis activation. Knockdown of Bmi1 promoted Noxa expression and enhanced deguelin‐induced apoptosis, whereas overexpression of Bmi1 down‐regulated Noxa protein level and deguelin‐induced apoptosis. Overall, our study demonstrated a novel apoptotic mechanism for deguelin to exert its anti‐tumour activity in NSCLC cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Zhou Y, Li M, Yu X, Liu T, Li T, Zhou L, Liu W, Li W, Gao F. Butein suppresses hepatocellular carcinoma growth via modulating Aurora B kinase activity. Int J Biol Sci 2018; 14:1521-1534. [PMID: 30263005 PMCID: PMC6158728 DOI: 10.7150/ijbs.25334] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023] Open
Abstract
Aurora B is aberrantly expressed in various tumors and shown to be a promising target for cancer therapy. Butein, a chalcone isolated from Rhus cerniciflua, has demonstrated antitumor activities in different cancers. In this study, we aimed to validate whether Aurora B kinase was the direct target of butein to exhibit its potency in hepatocellular carcinoma (HCC). Comparing with the normal cell line and tissue, Aurora B was overexpressed in all tested HCC cells and the majority of tumor tissue. Knocking down of Aurora B with shRNA substantially inhibited HCC cell proliferation, colony formation and delayed tumor growth in nude mice. Except computer docking, a series of kinase assays revealed butein directly interacted with Aurora B and inhibited its kinase activity. Along with the decrease of Aurora B and histone H3 phosphorylation, HCC cells were induced G2/M cell cycle arrest and subjected to cell apoptosis. Butein-mediated antitumor activities were substantially impaired in Aurora B knockdown cells, suggesting Aurora B was an important target of butein in HCC. Oral administration of butein substantially restrained HCC xenograft growth and the expressions of Ki67 and phosphor-histone H3 were significantly decreased in butein-treated tissue. To the best of our knowledge, our studies revealed that Aurora B was the direct target of butein in HCC.
Collapse
Affiliation(s)
- Yuanfeng Zhou
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.,Department of Infectious Diseases, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, P.R. China
| | - Ming Li
- Changsha Stomatological Hospital, Changsha, Hunan 410004, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xinyou Yu
- Shandong Lvdu Bio-Industry Co., Ltd., Binzhou, Shandong 256600, P.R. China
| | - Ting Liu
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410000, P.R. China
| | - Tian Li
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410000, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenbin Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410000, P.R. China
| |
Collapse
|
36
|
Li W, Yu X, Ma X, Xie L, Xia Z, Liu L, Yu X, Wang J, Zhou H, Zhou X, Yang Y, Liu H. Deguelin attenuates non-small cell lung cancer cell metastasis through inhibiting the CtsZ/FAK signaling pathway. Cell Signal 2018; 50:131-141. [PMID: 30018008 DOI: 10.1016/j.cellsig.2018.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer is the leading cause of cancer-related death among both men and women every year, mainly due to metastasis. Although natural compound deguelin has been reported to inhibited cell migration and invasion in various cancer cells, the details of this regulation progress remain to be fully elucidated. In this study, we investigated the underlying mechanism of deguelin-suppressed metastasis of non-small cell lung cancer (NSCLC) cells. Our results demonstrate that deguelin inhibits NSCLC cell migration, invasion, and metastasis both in vitro and in vivo. These inhibitory effects of deguelin were mediated by suppressing of Cathepsin Z (CtsZ) expression and interrupting the interaction of CtsZ with integrin β3. Moreover, deguelin inhibits the activation of CtsZ downstream FAK/Src/Paxillin signaling. Knockdown of CtsZ mimicked the effect of deguelin on NSCLC cells migration and invasion. Our study reveals that deguelin exerts its anti-metastatic effect both in vitro and in vivo is partly dependent on the suppression of CtsZ signaling. Deguelin would be a potential anti-metastasis agent against NSCLC.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong 256600, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
37
|
Yao J, Liu J, Zhao W. By blocking hexokinase-2 phosphorylation, limonin suppresses tumor glycolysis and induces cell apoptosis in hepatocellular carcinoma. Onco Targets Ther 2018; 11:3793-3803. [PMID: 30013360 PMCID: PMC6037266 DOI: 10.2147/ott.s165220] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction The purpose of present study was to investigate the effect of limonin on tumor glycolysis and the underlying mechanisms in hepatocellular carcinoma (HCC). Methods Cell proliferation and colony formation assays were performed to evaluate the potency of limonin against HCC cells in vitro. The glucose consumption and lactate production after limonin treatment was determined. The effect of limonin on hexokinase-2 (HK-2) activity was assessed and the mitochondrial location of HK-2 was studied by immunoprecipitation. Cell apoptosis and protein expression were detected by flow cytometry and western blotting respectively. Protein overexpression by plasmid transfection was adopted to investigate the molecular mechanisms. Results HCC proliferation and colony formation were inhibited by limonin in vitro. With the suppression of HK-2 activity, the glycolytic level in HCC cells was substantially reduced, which was evidenced by the decrease of glucose consumption and lactate production. The phosphorylation of HK-2 was substantially inhibited by limonin, which resulted in the disassociation of HK-2 from mitochondria. Due to the reduction of HK-2 in mitochondria, increasing Bax were shifted to the mitochondria and gave rise to the release of cytochrome C, which induced HCC cells to subject to mitochondria-mediated apoptosis. Mechanism investigations revealed that the decrease of HK-2 phosphorylation was mainly due to the inhibition of Akt activity. In Akt exogenously overexpressed HCC cells, limonin-mediated cell proliferation inhibition, glycolysis suppression and apoptosis induction were significantly impaired. Conclusion Limonin inhibited the tumor glycolysis in hepatocellular carcinoma by suppressing HK-2 activity, and the suppression of HK-2 was closely related to the decrease of Akt activity.
Collapse
Affiliation(s)
- Junliang Yao
- Department of General Surgery, Jinshan Hospital, Affiliated to Fudan University, Shanghai, People's Republic of China,
| | - Jingtian Liu
- Department of General Surgery, Jinshan Hospital, Affiliated to Fudan University, Shanghai, People's Republic of China,
| | - Wensheng Zhao
- Department of General Surgery, Jinshan Hospital, Affiliated to Fudan University, Shanghai, People's Republic of China,
| |
Collapse
|
38
|
Baba Y, Kato Y. Deguelin, a Novel Anti-Tumorigenic Agent in Human Esophageal Squamous Cell Carcinoma. EBioMedicine 2017; 26:10. [PMID: 29157837 PMCID: PMC5832608 DOI: 10.1016/j.ebiom.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yuh Baba
- Department of General Clinical Medicine, Ohu University School of Dentistry, 31-1 Mitsumido, Tomiya-machi, Koriyama City, Fukushima 963-8611, Japan.
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Mitsumido, Tomiya-machi, Koriyama City, Fukushima 963-8611, Japan
| |
Collapse
|