1
|
Moran EA, Salas-Briceno K, Zhao W, Enya T, Aguilera AN, Acosta I, Alonzo F, Kiani D, Behnsen J, Alvarez C, Keane TM, Adams DJ, Lilue J, Ross SR. IFI207, a young and fast-evolving protein, controls retroviral replication via the STING pathway. mBio 2024; 15:e0120924. [PMID: 38860764 PMCID: PMC11253629 DOI: 10.1128/mbio.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.
Collapse
Affiliation(s)
- Eileen A. Moran
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Takuji Enya
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Alexya N. Aguilera
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Ivan Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Dara Kiani
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | | | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jingtao Lilue
- Gulbenkian Institute of Science, Oeiras, Portugal
- Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Shi X, Wei M, Feng Y, Yang Y, Zhang X, Chen H, Xing Y, Wang K, Wang W, Wang L, Wang A, Zhang G. IFI16 Positively Regulates RIG-I-Mediated Type I Interferon Production in a STING-Independent Manner. DNA Cell Biol 2024; 43:197-205. [PMID: 38466944 DOI: 10.1089/dna.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglu Wei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuwen Feng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuqi Xing
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Keqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wensheng Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| |
Collapse
|
3
|
Cho HJ, Lee DJ, Yi YS. Anti-inflammatory activity of calmodulin-lysine N-methyltransferase through suppressing the caspase-11 non-canonical inflammasome. Immunobiology 2023; 228:152758. [PMID: 37948850 DOI: 10.1016/j.imbio.2023.152758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Calmodulin (CaM)-lysine N-methyltransferase (CAMKMT) is a novel methyltransferase that catalyzes lysine trimethylation in CaM. However, its specific roles in inflammatory responses and diseases remain unclear. In this study, we investigated the effects of CAMKMT on caspase-11 non-canonical inflammasomes. CAMKMT expression levels were significantly decreased during inflammatory responses activated by caspase-11 non-canonical inflammasome in macrophages. Moreover, CaM lysine trimethylation was markedly inhibited, but no change was observed in CaM expression during these inflammatory responses in macrophages. Activation of the CaM downstream effectors, CaM-dependent proteinkinase kinase 2 and CaM-dependent proteinkinase type IV, was also inhibited during inflammatory responses activated by caspase-11 non-canonical inflammasome in macrophages. Notably, forced expression of CAMKMT restrained caspase-11 non-canonical inflammasome activation via inhibiting proteolytic activation of caspase-11 and gasdermin D (GSDMD), which in turn suppressed pyroptosis and the release of interleukin (IL)-1β and IL-18 in macrophages. Finally, an in vivo study revealed that CAMKMT ameliorated lipopolysaccharide (LPS)-stimulated acute lethal sepsis in mice by increasing the survival rate and reducing the serum levels of IL-1 β. These findings suggest CAMKMT as a novel methyltransferase that plays an anti-inflammatory role through restraining caspase-11 non-canonical inflammasome in macrophages.
Collapse
Affiliation(s)
- Hui-Jin Cho
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Dong Joon Lee
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
4
|
Baran M, Feriotti C, McGinley A, Carlile SR, Jiang Z, Calderon-Gonzalez R, Dumigan A, Sá-Pessoa J, Sutton CE, Kearney J, McLoughlin RM, Mills KHG, Fitzgerald KA, Bengeochea JA, Bowie AG. PYHIN protein IFI207 regulates cytokine transcription and IRF7 and contributes to the establishment of K. pneumoniae infection. Cell Rep 2023; 42:112341. [PMID: 37018072 DOI: 10.1016/j.celrep.2023.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
PYHIN proteins AIM2 and IFI204 sense pathogen DNA, while other PYHINs have been shown to regulate host gene expression through as-yet unclear mechanisms. We characterize mouse PYHIN IFI207, which we find is not involved in DNA sensing but rather is required for cytokine promoter induction in macrophages. IFI207 co-localizes with both active RNA polymerase II (RNA Pol II) and IRF7 in the nucleus and enhances IRF7-dependent gene promoter induction. Generation of Ifi207-/- mice shows no role for IFI207 in autoimmunity. Rather, IFI207 is required for the establishment of a Klebsiella pneumoniae lung infection and for Klebsiella macrophage phagocytosis. These insights into IFI207 function illustrate that PYHINs can have distinct roles in innate immunity independent of DNA sensing and highlight the need to better characterize the whole mouse locus, one gene at a time.
Collapse
Affiliation(s)
- Marcin Baran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Claudia Feriotti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Aoife McGinley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Simon R Carlile
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Zhaozhao Jiang
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo Calderon-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Caroline E Sutton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Katherine A Fitzgerald
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jose A Bengeochea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland.
| |
Collapse
|
5
|
Yi YS, Kim HG, Kim JH, Yang WS, Kim E, Park JG, Aziz N, Parameswaran N, Cho JY. Syk promotes phagocytosis by inducing reactive oxygen species generation and suppressing SOCS1 in macrophage-mediated inflammatory responses. Int J Immunopathol Pharmacol 2022; 36:3946320221133018. [PMID: 36214175 PMCID: PMC9548688 DOI: 10.1177/03946320221133018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Inflammation, a vital innate immune response against infection and injury, is mediated by macrophages. Spleen tyrosine kinase (Syk) regulates inflammatory responses in macrophages; however, its role and underlying mechanisms are uncertain. MATERIALS AND METHODS In this study, overexpression and knockout (KO) cell preparations, phagocytosis analysis, confocal microscopy, reactive oxygen species (ROS) determination, mRNA analysis, and immunoprecipitation/western blotting analyses were used to investigate the role of Syk in phagocytosis and its underlying mechanisms in macrophages during inflammatory responses. RESULTS Syk inhibition by Syk KO, Syk-specific small interfering RNA (siSyk), and a selective Syk inhibitor (piceatannol) significantly reduced the phagocytic activity of RAW264.7 cells. Syk inhibition also decreased cytochrome c generation by inhibiting ROS-generating enzymes in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and ROS scavenging suppressed the phagocytic activity of RAW264.7 cells. LPS induced the tyrosine nitration (N-Tyr) of suppressor of cytokine signaling 1 (SOCS1) through Syk-induced ROS generation in RAW264.7 cells. On the other hand, ROS scavenging suppressed the N-Tyr of SOCS1 and phagocytosis. Moreover, SOCS1 overexpression decreased phagocytic activity, and SOCS1 inhibition increased the phagocytic activity of RAW264.7 cells. CONCLUSION These results suggest that Syk plays a critical role in the phagocytic activity of macrophages by inducing ROS generation and suppressing SOCS1 through SOCS1 nitration during inflammatory responses.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea,Department of Life Sciences, Kyonggi University, Suwon, Korea,Young-Su Yi, Department of Life Sciences, Kyonggi University,154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea. Jae Youl Cho, Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon Gyeonggi-do 16419, Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI, USA
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea,Young-Su Yi, Department of Life Sciences, Kyonggi University,154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea. Jae Youl Cho, Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon Gyeonggi-do 16419, Korea.
| |
Collapse
|
6
|
Pucinelli CM, Lima RB, Almeida LKY, Lucisano MP, Córdoba AZ, Marchesan JT, da Silva LAB, da Silva RAB. Interferon‐gamma inducible protein 16 and type I interferon receptors expression in experimental apical periodontitis induced in wild type mice. Int Endod J 2022; 55:1042-1052. [DOI: 10.1111/iej.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- C. M. Pucinelli
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - R. B. Lima
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - L. K. Y. Almeida
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - M. P. Lucisano
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - A. Z. Córdoba
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - J. T. Marchesan
- Department of Periodontology ‐ University of North Carolina at Chapel Hill School of Dentistry Chapel Hill NC EUA
| | - L. A. B. da Silva
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - R. A. B. da Silva
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| |
Collapse
|
7
|
sGRP78 enhances selective autophagy of monomeric TLR4 to regulate myeloid cell death. Cell Death Dis 2022; 13:587. [PMID: 35798718 PMCID: PMC9262968 DOI: 10.1038/s41419-022-05048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Soluble glucose regulated protein 78 (sGRP78) has long been suggested as a mediator resolution of inflammation. We previously reported that sGRP78 induced the rapid endocytosis of TLR4 with defective TLR4 signaling. To elucidate the underlying mechanisms, in this study, we investigated how sGRP78 influenced the behavior and trafficking of TLR4 in myeloid cells. It was found that sGRP78 promoted LPS endocytosis with monomeric TLR4. This internalized monomeric TLR4 formed complexes with p62-LC3, and was degraded in autolysosomes. Furthermore, the sGRP78-enhanced autophagy-dependent TLR4 degradation caused apoptosis and ferroptosis in myeloid cells, contributing to the sGRP78-mediated resolution of inflammation. These reports establish innovative mechanisms for endotoxin clearance and immune regulation by TLR4 degradation, linking innate immunity with multiple ancient processes, including autophagy, apoptosis, and ferroptosis, together through a shared resolution-associated molecular pattern (RAMP)-sGRP78.
Collapse
|
8
|
Fan X, Jiao L, Jin T. Activation and Immune Regulation Mechanisms of PYHIN Family During Microbial Infection. Front Microbiol 2022; 12:809412. [PMID: 35145495 PMCID: PMC8822057 DOI: 10.3389/fmicb.2021.809412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The innate immune system defenses against pathogen infections via patten-recognition receptors (PRRs). PRRs initiate immune responses by recognizing pathogen-associated molecular patterns (PAMPs), including peptidoglycan, lipopolysaccharide, and nucleic acids. Several nucleic acid sensors or families have been identified, such as RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), cyclic GMP-AMP synthase (cGAS), and PYHIN family receptors. In recent years, the PYHIN family cytosolic DNA receptors have increased attention because of their important roles in initiating innate immune responses. The family members in humans include Absent in melanoma 2 (AIM2), IFN-γ inducible protein 16 (IFI16), interferon-inducible protein X (IFIX), and myeloid cell nuclear differentiation antigen (MNDA). The PYHIN family members are also identified in mice, including AIM2, p202, p203, p204, and p205. Herein, we summarize recent advances in understanding the activation and immune regulation mechanisms of the PYHIN family during microbial infection. Furthermore, structural characterizations of AIM2, IFI16, p202, and p204 provide more accurate insights into the signaling mechanisms of PYHIN family receptors. Overall, the molecular details will facilitate the development of reagents to defense against viral infections.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Molecular and Translational Medicine, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lianying Jiao,
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Tengchuan Jin,
| |
Collapse
|
9
|
Yi YS, Kim HG, Kim JH, Yang WS, Kim E, Jeong D, Park JG, Aziz N, Kim S, Parameswaran N, Cho JY. Syk-MyD88 Axis Is a Critical Determinant of Inflammatory-Response in Activated Macrophages. Front Immunol 2022; 12:767366. [PMID: 35003083 PMCID: PMC8733199 DOI: 10.3389/fimmu.2021.767366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Background Inflammation, a vital immune response to infection and injury, is mediated by macrophage activation. While spleen tyrosine kinase (Syk) and myeloid differentiation primary response 88 (MyD88) are reportedly involved in inflammatory responses in macrophages, their roles and underlying mechanisms are largely unknown. Methods Here, the role of the MyD88-Syk axis and the mechanism by which Syk and MyD88 cooperate during macrophage-mediated inflammatory responses are explored using knockout conditions of these proteins and mutation strategy as well as flowcytometric and immunoblotting analyses. Results Syk rapidly activates the nuclear factor-kappa B (NF-κB) signaling pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the activation of the NF-κB signaling pathway is abolished in Syk−/− RAW264.7 cells. MyD88 activates Syk and Syk-induced activation of NF-κB signaling pathway in LPS-stimulated RAW264.7 cells but Syk-induced inflammatory responses are significantly inhibited in MyD88−/− RAW264.7 cells. MyD88 interacts with Syk through the tyrosine 58 residue (Y58) in the hemi-immunoreceptor tyrosine-based activation motif (ITAM) of MyD88, leading to Syk activation and Syk-induced activation of the NF-κB signaling pathway. Src activates MyD88 by phosphorylation at Y58 via the Src kinase domain. In addition, Ras-related C3 botulinum toxin substrate 1 (Rac1) activation and Rac1-induced formation of filamentous actin (F actin) activate Src in LPS-stimulated RAW264.7 cells. Conclusions These results suggest that the MyD88-Syk axis is a critical player in macrophage-mediated inflammatory responses, and its function is promoted by an upstream Src kinase activated by Rac1-generated filamentous actin (F-actin).
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Department of Life Sciences, Kyonggi University, Suwon, South Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Suk Kim
- Institute of Animal Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI, United States
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
10
|
Preuss JM, Burret U, Gröger M, Kress S, Scheuerle A, Möller P, Tuckermann JP, Wepler M, Vettorazzi S. Impaired Glucocorticoid Receptor Signaling Aggravates Lung Injury after Hemorrhagic Shock. Cells 2021; 11:cells11010112. [PMID: 35011674 PMCID: PMC8750862 DOI: 10.3390/cells11010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
We previously showed that attenuated lung injury after hemorrhagic shock (HS) coincided with enhanced levels of the glucocorticoid (GC) receptor (GR) in lung tissue of swine. Here, we investigated the effects of impaired GR signaling on the lung during resuscitated HS using a dysfunctional GR mouse model (GRdim/dim). In a mouse intensive care unit, HS led to impaired lung mechanics and aggravated lung inflammation in GRdim/dim mice compared to wildtype mice (GR+/+). After HS, high levels of the pro-inflammatory and pro-apoptotic transcription factor STAT1/pSTAT1 were found in lung samples from GRdim/dim mice. Lungs of GRdim/dim mice revealed apoptosis, most likely as consequence of reduced expression of the lung-protective Angpt1 compared to GR+/+ after HS. RNA-sequencing revealed increased expression of pro-apoptotic and cytokine-signaling associated genes in lung tissue of GRdim/dim mice. Furthermore, high levels of pro-inflammatory cytokines and iNOS were found in lungs of GRdim/dim mice. Our results indicate impaired repression of STAT1/pSTAT1 due to dysfunctional GR signaling in GRdim/dim mice, which leads to increased inflammation and apoptosis in the lungs. These data highlight the crucial role of functional GR signaling to attenuate HS-induced lung damage.
Collapse
Affiliation(s)
- Jonathan M. Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
| | - Michael Gröger
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany; (M.G.); (S.K.); (M.W.)
| | - Sandra Kress
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany; (M.G.); (S.K.); (M.W.)
| | - Angelika Scheuerle
- Institute of Pathology, University Hospital, 89081 Ulm, Germany; (A.S.); (P.M.)
| | - Peter Möller
- Institute of Pathology, University Hospital, 89081 Ulm, Germany; (A.S.); (P.M.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
| | - Martin Wepler
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany; (M.G.); (S.K.); (M.W.)
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, 89081 Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
- Correspondence:
| |
Collapse
|
11
|
Li S, Cao L, Zhang Z, Kuang M, Chen L, Zhao Y, Luo Y, Yin Z, You F. Cytosolic and nuclear recognition of virus and viral evasion. MOLECULAR BIOMEDICINE 2021; 2:30. [PMID: 35006471 PMCID: PMC8607372 DOI: 10.1186/s43556-021-00046-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
The innate immune system is the first line of host defense, which responds rapidly to viral infection. Innate recognition of viruses is mediated by a set of pattern recognition receptors (PRRs) that sense viral genomic nucleic acids and/or replication intermediates. PRRs are mainly localized either to the endosomes, the plasma membrane or the cytoplasm. Recent evidence suggested that several proteins located in the nucleus could also act as viral sensors. In turn, these important elements are becoming the target for most viruses to evade host immune surveillance. In this review, we focus on the recent progress in the study of viral recognition and evasion.
Collapse
Affiliation(s)
- Siji Li
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
12
|
Fan X, Jiang J, Zhao D, Chen F, Ma H, Smith P, Unterholzner L, Xiao TS, Jin T. Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Res 2021; 49:2959-2972. [PMID: 33619523 PMCID: PMC7969034 DOI: 10.1093/nar/gkab076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 02/14/2021] [Indexed: 12/25/2022] Open
Abstract
The interferon gamma-inducible protein 16 (IFI16) and its murine homologous protein p204 function in non-sequence specific dsDNA sensing; however, the exact dsDNA recognition mechanisms of IFI16/p204, which harbour two HIN domains, remain unclear. In the present study, we determined crystal structures of p204 HINa and HINb domains, which are highly similar to those of other PYHIN family proteins. Moreover, we obtained the crystal structure of p204 HINab domain in complex with dsDNA and provided insights into the dsDNA binding mode. p204 HINab binds dsDNA mainly through α2 helix of HINa and HINb, and the linker between them, revealing a similar HIN:DNA binding mode. Both HINa and HINb are vital for HINab recognition of dsDNA, as confirmed by fluorescence polarization assays. Furthermore, a HINa dimerization interface was observed in structures of p204 HINa and HINab:dsDNA complex, which is involved in binding dsDNA. The linker between HINa and HINb reveals dynamic flexibility in solution and changes its direction at ∼90° angle in comparison with crystal structure of HINab:dsDNA complex. These structural information provide insights into the mechanism of DNA recognition by different HIN domains, and shed light on the unique roles of two HIN domains in activating the IFI16/p204 signaling pathway.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jiansheng Jiang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
| | - Feng Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
| | - Huan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
| | - Patrick Smith
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| |
Collapse
|
13
|
Cardiopulmonary Bypass Induces Acute Lung Injury via the High-Mobility Group Box 1/Toll-Like Receptor 4 Pathway. DISEASE MARKERS 2020; 2020:8854700. [PMID: 33062073 PMCID: PMC7532999 DOI: 10.1155/2020/8854700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
During cardiopulmonary bypass (CPB), pulmonary ischemia/reperfusion (I/R) injury can cause acute lung injury (ALI). Our previous research confirmed that abnormal high-mobility group box 1 (HMGB1) release after CPB was closely related to ALI. However, the mechanism underlying the HMGB1-mediated induction of ALI after CPB is unclear. Our previous study found that HMGB1 binds Toll-like receptor 4 (TLR4), leading to lung injury, but direct evidence of a role for these proteins in the mechanism of CPB-induced lung injury has not been shown. We examined the effects of inhibiting HMGB1 or reducing TLR4 expression on CPB-induced lung injury in rats administered anti-HMBG1 antibody or TLR4 short-hairpin RNA (shTLR4), respectively. In these rat lungs, we studied the histologic changes and levels of interleukin- (IL-) 1β, tumour necrosis factor- (TNF-) α, HMGB1, and TLR4 after CPB. After CPB, the lung tissues from untreated rats showed histologic features of injury and significantly elevated levels of IL-1β, TNF-α, HMGB1, and TLR4. Treatment with anti-HMGB1 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1β, TNF-α, HMGB1, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB. Treatment with shTLR4 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1β, TNF-α, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB, but could not alleviate the HMGB1 protein levels induced by CPB. In summary, the present study demonstrated that the HMGB1/TLR4 pathway mediated the development of ALI induced by CPB.
Collapse
|
14
|
Bartok E, Hartmann G. Immune Sensing Mechanisms that Discriminate Self from Altered Self and Foreign Nucleic Acids. Immunity 2020; 53:54-77. [PMID: 32668228 PMCID: PMC7359798 DOI: 10.1016/j.immuni.2020.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
All lifeforms have developed highly sophisticated systems equipped to detect altered self and non-self nucleic acids (NA). In vertebrates, NA-sensing receptors safeguard the integrity of the organism by detecting pathogens, dyshomeostasis and damage, and inducing appropriate responses to eliminate pathogens and reconstitute homeostasis. Effector mechanisms include i) immune signaling, ii) restriction of NA functions such as inhibition of mRNA translation, and iii) cell death pathways. An appropriate effector response is necessary for host defense, but dysregulated NA-sensing can lead to devastating autoimmune and autoinflammatory disease. Their inherent biochemical similarity renders the reliable distinction between self NA under homeostatic conditions and altered or exogenous NA particularly challenging. In this review, we provide an overview of recent progress in our understanding of the closely coordinated and regulated network of innate immune receptors, restriction factors, and nucleases to effectively respond to pathogens and maintain host integrity.
Collapse
Affiliation(s)
- Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
15
|
Yang B, Li R, Liu PN, Geng X, Mooney BP, Chen C, Cheng J, Fritsche KL, Beversdorf DQ, Lee JC, Sun GY, Greenlief CM. Quantitative Proteomics Reveals Docosahexaenoic Acid-Mediated Neuroprotective Effects in Lipopolysaccharide-Stimulated Microglial Cells. J Proteome Res 2020; 19:2236-2246. [PMID: 32302149 PMCID: PMC7282485 DOI: 10.1021/acs.jproteome.9b00792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The high levels of docosahexaenoic
acid (DHA) in cell membranes
within the brain have led to a number of studies exploring its function.
These studies have shown that DHA can reduce inflammatory responses
in microglial cells. However, the method of action is poorly understood.
Here, we report the effects of DHA on microglial cells stimulated
with lipopolysaccharides (LPSs). Data were acquired using the parallel
accumulation serial fragmentation method in a hybrid trapped ion mobility-quadrupole
time-of-flight mass spectrometer. Over 2800 proteins are identified
using label-free quantitative proteomics. Cells exposed to LPSs and/or
DHA resulted in changes in cell morphology and expression of 49 proteins
with differential abundance (greater than 1.5-fold change). The data
provide details about pathways that are influenced in this system
including the nuclear factor κ-light-chain-enhancer of the activated
B cells (NF-κB) pathway. Western blots and enzyme-linked immunosorbent
assay studies are used to help confirm the proteomic results. The
MS data are available at ProteomeXchange.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Runting Li
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States
| | - Pei N Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Xue Geng
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Brian P Mooney
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia 65211, Missouri, United States
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia 65211, Missouri, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, Missouri, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, University of Missouri, Columbia 65211, Missouri, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| |
Collapse
|
16
|
Diao L, Tao J, Wang Y, Hu Y, He W. Co-Delivery Of Dihydroartemisinin And HMGB1 siRNA By TAT-Modified Cationic Liposomes Through The TLR4 Signaling Pathway For Treatment Of Lupus Nephritis. Int J Nanomedicine 2019; 14:8627-8645. [PMID: 31806961 PMCID: PMC6839745 DOI: 10.2147/ijn.s220754] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background and purpose Systemic lupus erythematous (SLE) is an autoimmune disease caused by many factors. Lupus nephritis (LN) is a common complication of SLE and represents a major cause of morbidity and mortality. Previous studies have shown the advantages of multi-targeted therapy for LN and that TLR4 signaling is a target of anti-LN drugs. High-mobility group box 1 (HMGB1), a nuclear protein with a proinflammatory cytokine activity, binds specifically to TLR4 to induce inflammation. We aimed to develop PEGylated TAT peptide-cationic liposomes (TAT-CLs) to deliver anti-HMGB1 siRNA and dihydroartemisinin (DHA) to increase LN therapeutic efficiency and explore their treatment mechanism. Methods We constructed the TAT-CLs-DHA/siRNA delivery system using the thin film hydration method. The uptake and localization of Cy3-labeled siRNA were detected by confocal microscopy and flow cytometry. MTT assays were used to detect glomerular mesangial cell proliferation. Real-time PCR, Western blot analysis, and ELISA evaluated the anti-inflammatory mechanism of TAT-CLs-DHA/siRNA. Results We constructed the TAT-CLs-DHA/siRNA delivery system measuring approximately 140 nm with superior storage and serum stabilities. In vitro, it showed significantly greater uptake compared with unmodified liposomes and significant inhibition of glomerular mesangial cell proliferation. TAT-CLs-DHA/siRNA inhibited NF-κB activation in a concentration-dependent manner. Real-time PCR and Western blot analysis showed that TAT-CLs-DHA/siRNA downregulated expression of HMGB1 mRNA and protein. TAT-CLs-DHA/siRNA markedly diminished Toll-like receptor 4 (TLR4) expression and subsequent activation of MyD88, IRAK4, and NF-κB. Conclusion TAT-CLs-DHA/siRNA may have the potential for treatment of inflammatory diseases such as LN mediated by the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Jin Tao
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Yiqi Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, People's Republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
17
|
Tian Y, Yin Q. Structural analysis of the HIN1 domain of interferon-inducible protein 204. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:455-460. [PMID: 31204693 DOI: 10.1107/s2053230x19007167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/17/2019] [Indexed: 11/10/2022]
Abstract
Interferon-inducible protein 204 (p204) binds to microbial DNA to elicit inflammatory responses and induce interferon production. p204 also modulates cell proliferation and differentiation by regulating various transcription factors. The C-terminal HIN domains in p204 are believed to be responsible for DNA binding, but the binding mode is not fully understood. The DNA-binding affinity of the p204 HIN1 domain has been characterized and its crystal structure has been determined, providing insight into its interaction with DNA. Surface-charge distribution together with sequence alignment suggests that the p204 HIN domain uses its L12 and L45 loops for DNA binding.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Jian J, Wei W, Yin G, Hettinghouse A, Liu C, Shi Y. RNA-Seq analysis of interferon inducible p204-mediated network in anti-tumor immunity. Sci Rep 2018; 8:6495. [PMID: 29691417 PMCID: PMC5915582 DOI: 10.1038/s41598-018-24561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
p204, a murine member of the interferon-inducible p200 protein family, and its human analogue, IFI16, have been shown to function as tumor suppressors in vitro, but the molecular events involved, in particular in vivo, remain unclear. Herein we induced the Lewis Lung carcinoma (LLC) murine model of human lung cancer in p204 null mice (KO) and their control littermates (WT). We compared the transcriptome in spleen from WT and p204 KO mice using a high-throughput RNA-sequencing array. A total 30.02 Gb of clean data were obtained, and overall Q30% was greater than 90.54%. More than 75% of clean data from 12 transcriptome samples were mapped to exons. The results showed that only 11 genes exhibited altered expression in untreated p204 KO mice relative to untreated WT mice, while 393 altered genes were identified in tumor-bearing p204 KO mice when compared with tumor-bearing WT mice. Further differentially expressed gene cluster and gene ontology consortium classification revealed that numerous cytokines and their receptors, chemoattractant molecules, and adhesion molecules were significantly induced in p204 KO mice. This study provides novel insights to the p204 network in anti-tumor immune response and also presents a foundation for future work concerning p204-mediated gene expressions and pathways.
Collapse
Affiliation(s)
- Jinlong Jian
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.,Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Wei Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Guowei Yin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongxiang Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|