1
|
Zhao Y, Yao Z, Lu L, Xu S, Sun J, Zhu Y, Wu Y, Yu Z. Carbon monoxide-releasing molecule-3 exerts neuroprotection effects after cardiac arrest in mice: A randomized controlled study. Resusc Plus 2024; 19:100703. [PMID: 39040821 PMCID: PMC11260602 DOI: 10.1016/j.resplu.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Background Post-cardiac arrest brain injury (PCABI) is the leading cause of death in survivors of cardiac arrest (CA). Carbon monoxide-releasing molecule (CORM-3) is a water-soluble exogenous carbon monoxide that has been shown to have neuroprotection benefits in several neurological disease models. However, the effects of CORM-3 on PCABI is still unclear. Methods A mice model combined asystole with hemorrhage was used. Mice were anesthetized and randomized into 4 groups (n = 12/group) and underwent either 9.5 min CA followed by cardiopulmonary resuscitation (CPR) or sham surgery. CORM-3 (30 mg/kg) or vehicle (normal saline) were administered at 1 h after return of spontaneous circulation or sham surgery. Survival, neurologic deficits, alterations in the permeability of the brain-blood barrier and cerebral blood flow, changes of oxidative stress level, level of neuroinflammation and neuronal degeneration, and the activation of Nrf2/HO-1 signaling pathway were measured. Results In CORM-3 treated mice that underwent CA/CPR, significantly improved survival (75.00% vs. 58.33%, P = 0.0146 (24 h) and 66.67% vs. 16.67%, P < 0.0001 (72 h)) and neurological function were observed at 24 h and 72 h after ROSC (P < 0.05 for each). Additionally, increased cerebral blood flow, expression of tight junctions, and reduced reactive oxygen species generation at 24 h after ROSC were observed (P < 0.05 for each). CORM-3 treated mice had less neuron death and alleviated neuroinflammation at 72 h after ROSC (P < 0.05 for each). Notably, the Nrf2/HO-1 signaling pathway was significantly activated in mice subjected to CA/CPR with CORM-3 treatment. Conclusions CORM-3 could improve survival and exert neuroprotection after CA/CPR in mice. CORM-3 may be a novel and promising pharmacological therapy for PCABI.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianfei Sun
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanping Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Payne FM, Dabb AR, Harrison JC, Sammut IA. Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction. Int J Mol Sci 2024; 25:9247. [PMID: 39273196 PMCID: PMC11395567 DOI: 10.3390/ijms25179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Fergus M Payne
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Alisha R Dabb
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joanne C Harrison
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
4
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
5
|
Lou Y, Li Z, Zheng H, Yuan Z, Li W, Zhang J, Shen W, Gao Y, Ran N, Kong X, Feng S. New strategy to treat spinal cord injury: Nafamostat mesilate suppressed NLRP3-mediated pyroptosis during acute phase. Int Immunopharmacol 2024; 134:112190. [PMID: 38703569 DOI: 10.1016/j.intimp.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Zonghao Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Han Zheng
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Zhongze Yuan
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Wenxiang Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Jianping Zhang
- Division of Surgery and Interventional Science, University College London, London HA7 4LP, United Kingdom
| | - Wenyuan Shen
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yiming Gao
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Ning Ran
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China.
| | - Xiaohong Kong
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| | - Shiqing Feng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| |
Collapse
|
6
|
Gao X, Jin B, Zhou X, Bai J, Zhong H, Zhao K, Huang Z, Wang C, Zhu J, Qin Q. Recent advances in the application of gasotransmitters in spinal cord injury. J Nanobiotechnology 2024; 22:277. [PMID: 38783332 PMCID: PMC11112916 DOI: 10.1186/s12951-024-02523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Bingrong Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Hao Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Kai Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zongrui Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Qin Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
7
|
Song Q, Cui Q, Sun S, Wang Y, Yuan Y, Zhang L. Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy. Mol Neurobiol 2024:10.1007/s12035-024-04188-3. [PMID: 38713439 DOI: 10.1007/s12035-024-04188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.
Collapse
Affiliation(s)
- Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China.
| |
Collapse
|
8
|
Hu Z, Wu T, Zhou Z, Zhang Y, Chen Q, Yao H, Ji M, Shen G, Dong C, Shi C, Huang Z, Jiang N, Han N, Tian X. Asiaticoside Attenuates Blood-Spinal Cord Barrier Disruption by Inhibiting Endoplasmic Reticulum Stress in Pericytes After Spinal Cord Injury. Mol Neurobiol 2024; 61:678-692. [PMID: 37653222 DOI: 10.1007/s12035-023-03605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The blood-spinal cord barrier (BSCB) plays a vital role in the recovery of spinal cord function after spinal cord injury (SCI). Pericytes, pluripotent members of the neurovascular unit (NVU), receive signals from neighboring cells and are critical for maintaining CNS function. Therapeutic targets for the BSCB include endothelial cells (ECs) and glial cells, but few drugs target pericytes. This study was designed to explore whether asiaticoside has a positively effect on pericytes and the integrity of the BSCB. In this study, we found that asiaticoside could inhibit the loss of junction proteins just 1 day after SCI in vivo, but our in vitro study showed no significant differences in the expression of endothelial junction proteins between the control and asiaticoside treatment groups. We also found that asiaticoside could inhibit endoplasmic reticulum (ER) stress and pericyte apoptosis, which might be associated with the inhibition of junction protein reduction in ECs. Thus, we investigated the interactions between pericytes and ECs. Our results showed that asiaticoside could decrease the release of matrix metalloproteinase (MMP)-9 in pericytes and therefore upregulate the expression of junction proteins in ECs. Furthermore, the protective effect of asiaticoside on pericytes is related to the inhibition of ER stress via the MAPK signaling pathway. Taken together, our results demonstrate that asiaticoside treatment inhibits BSCB disruption and enhances functional recovery after SCI.
Collapse
Affiliation(s)
- Zhenxin Hu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Tingting Wu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziheng Zhou
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315302, China
| | - Qiyue Chen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanbing Yao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengchu Ji
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ge Shen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenling Dong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chengge Shi
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhixian Huang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nizhou Jiang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Nan Han
- Department of Ultrasonography, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiliang Tian
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
9
|
Li Y, Sun L, Chen R, Ni W, Liang Y, Zhang H, He C, Shi B, Petropoulos S, Zhao C, Shi L. Single-Cell Analysis Reveals Cxcl14 + Fibroblast Accumulation in Regenerating Diabetic Wounds Treated by Hydrogel-Delivering Carbon Monoxide. ACS CENTRAL SCIENCE 2024; 10:184-198. [PMID: 38292600 PMCID: PMC10823591 DOI: 10.1021/acscentsci.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Nonhealing skin wounds are a problematic complication associated with diabetes. Therapeutic gases delivered by biomaterials have demonstrated powerful wound healing capabilities. However, the cellular responses and heterogeneity in the skin regeneration process after gas therapy remain elusive. Here, we display the benefit of the carbon monoxide (CO)-releasing hyaluronan hydrogel (CO@HAG) in promoting diabetic wound healing and investigate the cellular responses through single-cell transcriptomic analysis. The presented CO@HAG demonstrates wound microenvironment responsive gas releasing properties and accelerates the diabetic wound healing process in vivo. It is found that a new cluster of Cxcl14+ fibroblasts with progenitor property is accumulated in the CO@HAG-treated wound. This cluster of Cxcl14+ fibroblasts is yet unreported in the skin regeneration process. CO@HAG-treated wound macrophages feature a decrease in pro-inflammatory property, while their anti-inflammatory property increases. Moreover, the TGF-β signal between the pro-inflammatory (M1) macrophage and the Cxcl14+ fibroblast in the CO@HAG-treated wound is attenuated based on cell-cell interaction analysis. Our study provides a useful hydrogel-mediated gas therapy method for diabetic wounds and new insights into cellular events in the skin regeneration process after gas-releasing biomaterials therapy.
Collapse
Affiliation(s)
- Ya Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Lu Sun
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Ranxi Chen
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Wenpeng Ni
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Yuyun Liang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Hexu Zhang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Chaoyong He
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Bi Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Sophie Petropoulos
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Département
de Médecine, Université de
Montréal, Montreal Canada, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal, Axe Immunopathologie, H2X 19A 708 Montreal Canada
| | - Cheng Zhao
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Liyang Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Wang R, Bai J. Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury. Neural Regen Res 2024; 19:35-42. [PMID: 37488841 PMCID: PMC10479866 DOI: 10.4103/1673-5374.375304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic spinal cord injury is a devastating disorder characterized by sensory, motor, and autonomic dysfunction that severely compromises an individual's ability to perform activities of daily living. These adverse outcomes are closely related to the complex mechanism of spinal cord injury, the limited regenerative capacity of central neurons, and the inhibitory environment formed by traumatic injury. Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury. A number of therapeutic agents have been shown to improve the injury environment, mitigate secondary damage, and/or promote regeneration and repair. Among them, the spinal cord microcirculation has become an important target for the treatment of spinal cord injury. Drug interventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury. These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neurons, axons, and glial cells. This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury, including its structure and histopathological changes. Further, it summarizes the progress of drug therapies targeting the spinal cord microcirculation after spinal cord injury.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Ali R, Sen S, Hameed R, Nazir A, Verma S. Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation. J Control Release 2024; 365:132-160. [PMID: 37972768 DOI: 10.1016/j.jconrel.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Gasotransmitters are a group of short-lived gaseous signaling molecules displaying diverse biological functions depending upon their localized concentration. Nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) are three important examples of endogenously produced gasotransmitters that play a crucial role in human neurophysiology and pathogenesis. Alterations in their optimal physiological concentrations can lead to various severe pathophysiological consequences, including neurological disorders. Exogenous administration of gasotransmitters has emerged as a prominent therapeutic approach for treating such neurological diseases. However, their gaseous nature and short half-life limit their therapeutic delivery. Therefore, developing synthetic gasotransmitter-releasing strategies having control over the release and duration of these gaseous molecules has become imperative. However, the complex chemistry of synthesis and the challenges of specific quantified delivery of these gases, make their therapeutic application a challenging task. This review article provides a focused overview of emerging strategies for delivering gasotransmitters in a controlled and sustained manner to re-establish neurophysiological homeostasis.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
12
|
Li J, Huang Y, Ma T, Liu Y, Luo Y, Gao L, Li Z, Ye Z. Carbon Monoxide Releasing Molecule-3 Alleviates Oxidative Stress and Apoptosis in Selenite-Induced Cataract in Rats via Activating Nrf2/HO-1 Pathway. Curr Eye Res 2023; 48:919-929. [PMID: 37395371 DOI: 10.1080/02713683.2023.2232569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE This study investigated the protective effect of carbon monoxide releasing molecule-3 (CORM-3), the classical donor of carbon monoxide, on selenite-induced cataract in rats and explore its possible mechanism. METHODS Sprague-Dawley rat pups treated with sodium selenite (Na2SeO3) were chosen as the cataract model. Fifty rat pups were randomly divided into 5 groups: Control group, Na2SeO3 (3.46 mg/kg) group, low-dose CORM-3 (8 mg/kg/d) + Na2SeO3 group, high-dose CORM-3 (16 mg/kg/d) + Na2SeO3 group, and inactivated CORM-3 (iCORM-3) (8 mg/kg/d) + Na2SeO3 group. The protective effect of CORM-3 was tested by lens opacity scores, hematoxylin and eosin staining, TdT-mediated dUTP nick-end labeling assay, and enzyme-linked immunosorbent assay. Besides, quantitative real-time PCR and western blotting were used for mechanism validation. RESULTS Na2SeO3 induced nuclear cataract rapidly and stably, and the achievement ratio of Na2SeO3 group was 100%. CORM-3 alleviated lens opacity of selenite-induced cataract and attenuated the morphological changes of the rat lens. The levels of antioxidant enzymes GSH and SOD in rat lens were also increased by CORM-3 treatment. CORM-3 significantly reduced the ratio of apoptotic lens epithelial cells, besides, CORM-3 decreased the expression of Cleaved Caspase-3 and Bax induced by selenite and increased the expression of Bcl-2 in rat lens inhibited by selenite. Moreover, Nrf-2 and HO-1 were upregulated and Keap1 was downregulated after CORM-3 treatment. While iCORM-3 did not exert the same effect as CORM-3. CONCLUSIONS Exogenous CO released from CORM-3 alleviates oxidative stress and apoptosis in selenite-induced rat cataract via activating Nrf2/HO-1 pathway. CORM-3 may serve as a promising preventive and therapeutic strategy for cataract.
Collapse
Affiliation(s)
- Jinglan Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yating Liu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yu Luo
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Jiang W, He F, Ding G, Wu J. Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neurosci Ther 2023; 29:2843-2856. [PMID: 37081763 PMCID: PMC10493668 DOI: 10.1111/cns.14221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/01/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS Elamipretide (EPT), a novel mitochondria-targeted peptide, has been shown to be protective in a range of diseases. However, the effect of EPT in spinal cord injury (SCI) has yet to be elucidated. We aimed to investigate whether EPT would inhibit pyroptosis and protect against SCI. METHODS After establishing the SCI model, we determined the biochemical and morphological changes associated with pyroptosis, including neuronal cell death, proinflammatory cytokine expression, and signal pathway levels. Furthermore, mitochondrial function was assessed with flow cytometry, quantitative real-time polymerase chain reaction, and western blot. RESULTS Here, we demonstrate that EPT improved locomotor functional recovery following SCI as well as reduced neuronal loss. Moreover, EPT inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis occurrence and decreased pro-inflammatory cytokines levels following SCI. Furthermore, EPT alleviated mitochondrial dysfunction and reduced mitochondrial reactive oxygen species level. CONCLUSION EPT treatment may protect against SCI via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
14
|
Kim HN, McCrea MR, Li S. Advances in molecular therapies for targeting pathophysiology in spinal cord injury. Expert Opin Ther Targets 2023; 27:171-187. [PMID: 37017093 PMCID: PMC10148912 DOI: 10.1080/14728222.2023.2194532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) affects 25,000-50,000 people around the world each year and there is no cure for SCI patients currently. The primary injury damages spinal cord tissues and secondary injury mechanisms, including ischemia, apoptosis, inflammation, and astrogliosis, further exacerbate the lesions to the spinal cord. Recently, researchers have designed various therapeutic approaches for SCI by targeting its major cellular or molecular pathophysiology. AREAS COVERED Some strategies have shown promise in repairing injured spinal cord for functional recoveries, such as administering neuroprotective reagents, targeting specific genes to promote robust axon regeneration of disconnected spinal fiber tracts, targeting epigenetic factors to enhance cell survival and neural repair, and facilitating neuronal relay pathways and neuroplasticity for restoration of function after SCI. This review focuses on the major advances in preclinical molecular therapies for SCI reported in recent years. EXPERT OPINION Recent progress in developing novel and effective repairing strategies for SCI is encouraging, but many challenges remain for future design of effective treatments, including developing highly effective neuroprotectants for early interventions, stimulating robust neuronal regeneration with functional synaptic reconnections among disconnected neurons, maximizing the recovery of lost neural functions with combination strategies, and translating the most promising therapies into human use.
Collapse
Affiliation(s)
- Ha Neui Kim
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Madeline R. McCrea
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Jiang W, He F, Ding G, Wu J. Dopamine inhibits pyroptosis and attenuates secondary damage after spinal cord injury in female mice. Neurosci Lett 2023; 792:136935. [PMID: 36307053 DOI: 10.1016/j.neulet.2022.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND An excessive inflammatory response accompanies the pathogenesis of spinal cord injury (SCI) and has been found to be promoted by inflammasomes in a variety of disease models. Dopamine is a neurotransmitter that also regulates nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome-dependent neuroinflammation. However, little is known regarding the effects and molecular mechanisms underlying the role of dopamine in SCI. METHODS Functional recovery in mice was assessed with the Basso Mouse Scale (BMS). Neuronal loss was evaluated with immunochemical staining of NeuN. Pyroptosis was assessed with immunofluorescence staining, flow cytometry, western blotting, and cell viability and cytotoxicity assays. RESULTS Dopamine was significantly associated with enhanced locomotor recovery after SCI, and with decreased NLRP3 inflammasome activation, pyroptosis, neuronal loss and pro-inflammatory cytokine levels. In vitro data suggested that dopamine suppressed NLRP3 inflammasome activation and pyroptosis, and decreased pro-inflammatory cytokine levels. CONCLUSIONS Dopamine may be a novel approach for alleviating secondary damage after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China; Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
16
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
CORM-3 Attenuates Oxidative Stress-Induced Bone Loss via the Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5098358. [PMID: 36035220 PMCID: PMC9402314 DOI: 10.1155/2022/5098358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022]
Abstract
Bone metabolism occurs in the entire life of an individual and is required for maintaining skeletal homeostasis. The imbalance between osteogenesis and osteoclastogenesis eventually leads to osteoporosis. Oxidative stress is considered a major cause of bone homeostasis disorder, and relieving excessive oxidative stress in bone mesenchymal stem cells (BMSCs) is a potential treatment strategy for osteoporosis. Carbon monoxide releasing molecule-3 (CORM-3), the classical donor of carbon monoxide (CO), possesses antioxidation, antiapoptosis, and anti-inflammatory properties. In our study, we found that CORM-3 could reduce reactive oxygen species (ROS) accumulation and prevent mitochondrial dysfunction thereby restoring the osteogenic potential of the BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The action of CORM-3 was preliminarily considered the consequence of Nrf2/HO-1 axis activation. In addition, CORM-3 inhibited osteoclast formation in mouse primary bone marrow monocytes (BMMs) by inhibiting H2O2-induced polarization of M1 macrophages and endowing macrophages with M2 polarizating ability. Rat models further demonstrated that CORM-3 treatment could restore bone mass and enhance the expression of Nrf2 and osteogenic markers in the distal femurs. In summary, CORM-3 is a potential therapeutic agent for the treatment of osteoporosis.
Collapse
|
18
|
Jiang W, He F, Ding G, Wu J. Topotecan Reduces Neuron Death after Spinal Cord Injury by Suppressing Caspase-1-Dependent Pyroptosis. Mol Neurobiol 2022; 59:6033-6048. [DOI: 10.1007/s12035-022-02960-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
|
19
|
Jiang W, He F, Ding G, Wu J. Topoisomerase 1 inhibition modulates pyroptosis to improve recovery after spinal cord injury. FASEB J 2022; 36:e22294. [PMID: 35579890 DOI: 10.1096/fj.202100713rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Excessive neuroinflammation and neuronal loss contribute to mechanisms of spinal cord injury (SCI). Accumulating evidence has suggested that topoisomerase 1 (Top1) inhibition can suppress exacerbated immune responses and protect against lethal inflammation. Pyroptosis is a recently identified pro-inflammatory programmed mode of cell death. However, the effects and underlying mechanisms of Top1 inhibition in SCI remains unclear. Locomotor functional recovery in mice was evaluated through Basso Mouse Scale (BMS). Neuronal loss was evaluated by immunochemistry staining of NeuN. Pyroptosis was determined by immunofluorescence staining, western blot, flow cytometry, cell viability, and cytotoxicity assays. In the present study, we estimated the effects of chemical inhibition of Top1 in an SCI model. Administration of Top1 inhibitor camptothecin (CPT) to mice significantly improved locomotor functional recovery after SCI. Moreover, CPT reduced Top1 level, inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis, attenuated proinflammatory cytokines levels, diminished the number of neutrophil and neuronal loss in mice. Furthermore, CPT in oxygen-glucose deprivation neurons down-regulated Top1 level, attenuated NLRP3 inflammasome activation, and suppressed pyroptosis and inflammatory response. Together, our findings indicate that inhibition of Top1 with CPT can inhibit pyroptosis, control neuroinflammation, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
21
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
22
|
Yang B, Zhong W, Gu Y, Li Y. Emerging Mechanisms and Targeted Therapy of Pyroptosis in Central Nervous System Trauma. Front Cell Dev Biol 2022; 10:832114. [PMID: 35399534 PMCID: PMC8990238 DOI: 10.3389/fcell.2022.832114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 01/31/2023] Open
Abstract
Cell death can occur in different modes, ferroptosis, pyroptosis, apoptosis, and necroptosis. Recent studies have shown that pyroptosis can be effectively regulated and that like necroptosis, pyroptosis has been regarded as a type of programmed cell death. The mechanism of its occurrence can be divided into canonical inflammasome-induced pyroptosis and noncanonical inflammasome-induced pyroptosis. In the past research, pyroptosis has been shown to be closely related to various diseases, such as tumors, neurodegenerative diseases, and central nervous system trauma, and studies have pointed out that in central nervous system trauma, pyroptosis is activated. Furthermore, these studies have shown that the inhibition of pyroptosis can play a role in protecting nerve function. In this review, we summarized the mechanisms of pyroptosis, introduce treatment strategies for targeted pyroptosis in central nervous system trauma, and proposed some issues of targeted pyroptosis in the treatment of central nervous system injury.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Li
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yi Li,
| |
Collapse
|
23
|
Zhou Z, Li C, Bao T, Zhao X, Xiong W, Luo C, Yin G, Fan J. Exosome-shuttled miR-672-5p from anti-inflammatory microglia repair traumatic spinal cord injury by inhibiting AIM2/ASC/Caspase-1 signaling pathway mediated neuronal pyroptosis. J Neurotrauma 2022; 39:1057-1074. [PMID: 35243913 DOI: 10.1089/neu.2021.0464] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic spinal cord injury (TSCI) is a devastating traumatic disease of the central nervous system, which leads to refractory loss of motor and sensory function. So far, there is no effective treatment for TSCI. Recently, however, nano-sized exosomes from various spinal cord cells have shown great prospects in the treatment of various diseases, including TSCI. Microglia are one of the components of the spinal cord microenvironment. Anti-inflammatory microglia (M2) have been shown to inhibit inflammation and promote the functional recovery of spinal cord after TSCI. However, the role micro RNAs (miRNAs) in exosomes derived from M2 microglia in the treatment of TSCI is unclear. In this study, we investigated whether M2 microglial exosomes (M2-Exos) could better promote the functional behavior recovery of mice with TSCI than M0 microglial exosomes (Exos). Compared with Exos, M2-Exos were found to have a better effect in promoting the recovery of functional behavior, promoting axon regeneration and reducing the level of pyroptosis of spinal cord neurons after TSCI. Through a series of experiments, we also confirmed that miR-672-5p is the most critical miRNA associated with M2-Exos, and that its targeting gene is AIM2. M2-Exos rich in miR-672-5p could inhibit the AIM2/ASC/Caspase-1 signaling pathway by inhibiting AIM2 activity, so as to inhibit neuronal pyroptosis and finally promote the recovery of functional behavior in mice with TSCI. In conclusion, our study suggests that the application of M2-Exos may be a promising treatment strategy for TSCI.
Collapse
Affiliation(s)
- Zheng Zhou
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Emergency Medicine, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China, Nanjing, China, 210029;
| | - Cong Li
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Orthopaedics, Nanjing, Jiangsu, China;
| | - Tianyi Bao
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Orthopaedics, Nanjing, Jiangsu, China;
| | - Xuan Zhao
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Orthopaedics, Nanjing, Jiangsu, China;
| | - Wu Xiong
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Orthopaedics, Nanjing, Jiangsu, China;
| | - Chunyang Luo
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Emergency Medicine, Nanjing, Jiangsu, China;
| | - Guoyong Yin
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Orthopaedics, Nanjing, Jiangsu, China;
| | - Jin Fan
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Orthopaedics, Nanjing, Jiangsu, China;
| |
Collapse
|
24
|
Zhou C, Zheng J, Fan Y, Wu J. TI: NLRP3 Inflammasome-Dependent Pyroptosis in CNS Trauma: A Potential Therapeutic Target. Front Cell Dev Biol 2022; 10:821225. [PMID: 35186932 PMCID: PMC8847380 DOI: 10.3389/fcell.2022.821225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Central nervous system (CNS) trauma, including traumatic brain injury (TBI) and traumatic spinal cord injury (SCI), is characterized by high morbidity, disability, and mortality. TBI and SCI have similar pathophysiological mechanisms and are often accompanied by serious inflammatory responses. Pyroptosis, an inflammation-dependent programmed cell death, is becoming a major problem in CNS post-traumatic injury. Notably, the pyrin domain containing 3 (NLRP3) inflammasome is a key protein in the pyroptosis signaling pathway. Therefore, underlying mechanism of the NLRP3 inflammasome in the development of CNS trauma has attracted much attention. In this review, we briefly summarize the molecular mechanisms of NLRP3 inflammasome in pyroptosis signaling pathway, including its prime and activation. Moreover, the dynamic expression pattern, and roles of the NLRP3 inflammasome in CNS post-traumatic injury are summarized. The therapeutic applications of NLRP3 inflammasome activation inhibitors are also discussed.
Collapse
Affiliation(s)
- Conghui Zhou
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinfeng Zheng
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunpeng Fan
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junsong Wu
- Department of Orthopaedics of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Junsong Wu,
| |
Collapse
|
25
|
Cheng P, Liao HY, Zhang HH. The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma 2022; 25:101760. [PMID: 35070684 PMCID: PMC8762069 DOI: 10.1016/j.jcot.2022.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, a complex pathologic process that can eventually lead to severe neurological dysfunction. The Wnt/mTOR signaling pathway is a pervasive signaling cascade that regulates a wide range of physiological processes during embryonic development, from stem cell pluripotency to cell fate. Numerous studies have reported that Wnt/mTOR signaling pathway plays an important role in neural development, synaptogenesis, neuron growth, differentiation and survival after the central nervous system (CNS) is damaged. Wnt/mTOR also plays an important role in regulating various pathophysiological processes after spinal cord injury (SCI). After SCI, Wnt/mTOR signal regulates the physiological and pathological processes of neural stem cell proliferation and differentiation, neuronal axon regeneration, neuroinflammation and pain through multiple pathways. Due to the characteristics of the Wnt signal in SCI make it a potential therapeutic target of SCI. In this paper, the characteristics of Wnt/mTOR signal, the role of Wnt/mTOR pathway on SCI and related mechanisms are reviewed, and some unsolved problems are discussed. It is hoped to provide reference value for the research field of the role of Wnt/mTOR pathway in SCI, and provide a theoretical basis for biological therapy of SCI.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| | - Hai-Yang Liao
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 342800, PR China
| | - Hai-Hong Zhang
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| |
Collapse
|
26
|
Carbon Monoxide (CO) as a Retinal Regulator of Heme Oxygenases -1, and -2 (HO’s) Expression. Biomedicines 2022; 10:biomedicines10020358. [PMID: 35203567 PMCID: PMC8962416 DOI: 10.3390/biomedicines10020358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Carbon monoxide (CO) has been proposed as a chemical light signal and neural system modulator via heme oxygenases -1 and -2 (HO-1 and HO-2). Many papers have proven the CO-HO circuit to be important for such physiological pathways as the molecular biological clock and the GnRH axis, but also in such pathological occurrences as ischemic injuries, or inflammation as a regenerative and neuroprotective factor. In this in vivo experiment, we used three groups of pigs: control—housed in natural conditions without any procedures; without CO—adapted and kept in constant darkness, infused with blank plasma; and with CO—adapted and kept in constant darkness infused with CO-enriched plasma. After the experiments, each animal was slaughtered and its eyes were collected for further analysis. Quantitative PCR and Western blot analysis were performed to show statistical differences in the expressions between the experimental groups. Our data revealed that exogenous CO is regulator of mRNA transcription for HO-1 and HO-2 and PCNA. Moreover, the mRNA abundance of analyzed factors in the experimental group after CO elevation revealed a restored gene-expression level similar to the control group, which we had observed in the group’s restored protein level after CO elevation. In conclusion, exogenous CO regulates HO’s and PCNA gene expression on transcriptional and translational levels in a similar way as a light cue.
Collapse
|
27
|
Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 2022; 17:194-202. [PMID: 34100456 PMCID: PMC8451579 DOI: 10.4103/1673-5374.314323] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXOs) can be substituted for BMSCs in cell transplantation. However, the underlying mechanisms remain unclear. In this study, a rat model of T10 spinal cord injury was established using the impact method. Then, 30 minutes and 1 day after spinal cord injury, the rats were administered 200 μL exosomes via the tail vein (200 μg/mL; approximately 1 × 106 BMSCs). Treatment with BMSC-EXOs greatly reduced neuronal cell death, improved myelin arrangement and reduced myelin loss, increased pericyte/endothelial cell coverage on the vascular wall, decreased blood-spinal cord barrier leakage, reduced caspase 1 expression, inhibited interleukin-1β release, and accelerated locomotor functional recovery in rats with spinal cord injury. In the cell culture experiment, pericytes were treated with interferon-γ and tumor necrosis factor-α. Then, Lipofectamine 3000 was used to deliver lipopolysaccharide into the cells, and the cells were co-incubated with adenosine triphosphate to simulate injury in vitro. Pre-treatment with BMSC-EXOs for 8 hours greatly reduced pericyte pyroptosis and increased pericyte survival rate. These findings suggest that BMSC-EXOs may protect pericytes by inhibiting pyroptosis and by improving blood-spinal cord barrier integrity, thereby promoting the survival of neurons and the extension of nerve fibers, and ultimately improving motor function in rats with spinal cord injury. All protocols were conducted with the approval of the Animal Ethics Committee of Zhengzhou University on March 16, 2019.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lu-Lu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Fei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kai-Min Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ran-Ran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yao-Bing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Jie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
28
|
Luo Y, Ullah R, Wang J, Du Y, Huang S, Meng L, Gao Y, Gong M, Galaj E, Yin X, Shi H. Exogenous Carbon Monoxide Produces Rapid Antidepressant- and Anxiolytic-Like Effects. Front Pharmacol 2021; 12:757417. [PMID: 34867375 PMCID: PMC8637155 DOI: 10.3389/fphar.2021.757417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO), a byproduct of heme catalyzed by heme oxygenase (HO), has been reported to exert antioxidant and anti-inflammatory actions, and to produce significant neuroprotective effects. The potential effects of CO and even HO on depressive-like behaviors are still poorly understood. Utilizing several approaches including adeno-associated virus (AAV)-mediated overexpression of HO-1, systemic CO-releasing molecules (CO-RMs), CO-rich saline or CO gas treatment procedures in combination with hydrogen peroxide (H2O2)-induced PC12 cell injury model, and lipopolysaccharide (LPS)-induced depression mouse model, the present study aimed to investigate the potential antidepressant- and anxiolytic-like effects of endogenous and exogenous CO administration in vivo and in vitro. The results of in vitro experiments showed that both CO-RM-3 and CO-RM-A1 pretreatment blocked H2O2-induced cellular injuries by increasing cell survival and decreasing cell apoptosis and necrosis. Similar to the effects of CO-RM-3 and CO-RM-A1 pretreatment, AAV-mediated HO-1 overexpression in the dorsal hippocampus produced significant antidepressant-like activities in mice under normal conditions. Further investigation showed that the CO gas treatment significantly blocked LPS-induced depressive- and anxiety-like behaviors in mice. Taken together, our results suggest that the activation of HO-1 and/or exogenous CO administration produces protective effects and exerts antidepressant- and anxiolytic-like effects. These data uncover a novel function of the HO-1/CO system that appears to be a promising therapeutic target for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Rafi Ullah
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Wang
- Department of Obstetrics and Gynecology, The No.1 Hospital of Yongnian District Handan City, Handan, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Ewa Galaj
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, United States
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
29
|
Zhang X, Huo Z, Luan H, Huang Y, Shen Y, Sheng L, Liang J, Wu F. Scutellarin ameliorates hepatic lipid accumulation by enhancing autophagy and suppressing IRE1α/XBP1 pathway. Phytother Res 2021; 36:433-447. [PMID: 34859513 DOI: 10.1002/ptr.7344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease characterized by excessive lipid accumulation in hepatocytes. Endoplasmic reticulum (ER) stress and autophagy play an important role in lipid accumulation. In this study, scutellarin (Scu) was examined in palmitic acid-treated HepG2 cells and C57/BL6 mice fed a high-fat diet (HFD). Scu reduced intracellular lipid content and inhibited sterol regulatory element binding protein-1c (SREBP-1c)-mediated lipid synthesis and fatty acid translocase-mediated lipid uptake in HepG2 cells. Additionally, Scu restored impaired autophagy and inhibited excessive activation of ER stress in vivo and in vitro. Moreover, Scu upregulated forkhead box O transcription factor 1-mediated autophagy by inhibiting inositol-requiring enzyme 1α (IRE1α)/X-box-binding protein 1 (XBP1) branch activation, while XBP1s overexpression exacerbated the lipid accumulation and impaired autophagy in HepG2 cells and also weakened the positive effects of Scu. Furthermore, Scu attenuated ER stress by activating autophagy, ultimately downregulating SREBP-1c-mediated lipid synthesis, and autophagy inhibitors offset these beneficial effects. Scu inhibited the crosstalk between autophagy and ER stress and downregulated saturated fatty acid-induced lipid accumulation in hepatocytes. These findings demonstrate that Scu ameliorates hepatic lipid accumulation by enhancing autophagy and suppressing ER stress via the IRE1α/XBP1 pathway.
Collapse
Affiliation(s)
- Xueying Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaojiong Huo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huiling Luan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yihai Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanhui Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Sheng
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jiangyu Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Zhao YJ, Qiao H, Liu DF, Li J, Li JX, Chang SE, Lu T, Li FT, Wang D, Li HP, He XJ, Wang F. Lithium promotes recovery after spinal cord injury. Neural Regen Res 2021; 17:1324-1333. [PMID: 34782578 PMCID: PMC8643056 DOI: 10.4103/1673-5374.327348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lithium is associated with oxidative stress and apoptosis, but the mechanism by which lithium protects against spinal cord injury remains poorly understood. In this study, we found that intraperitoneal administration of lithium chloride (LiCl) in a rat model of spinal cord injury alleviated pathological spinal cord injury and inhibited expression of tumor necrosis factor α, interleukin-6, and interleukin 1 β. Lithium inhibited pyroptosis and reduced inflammation by inhibiting Caspase-1 expression, reducing the oxidative stress response, and inhibiting activation of the Nod-like receptor protein 3 inflammasome. We also investigated the neuroprotective effects of lithium intervention on oxygen/glucose-deprived PC12 cells. We found that lithium reduced inflammation, oxidative damage, apoptosis, and necrosis and up-regulated nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 in PC12 cells. All-trans retinoic acid, an Nrf2 inhibitor, reversed the effects of lithium. These results suggest that lithium exerts anti-inflammatory, anti-oxidant, and anti-pyroptotic effects through the Nrf2/heme oxygenase-1 pathway to promote recovery after spinal cord injury. This study was approved by the Animal Ethics Committee of Xi’an Jiaotong University (approval No. 2018-2053) on October 23, 2018.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong-Fan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jia-Xi Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Su-E Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Teng Lu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Feng-Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao-Peng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Xi-Jing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine; Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Fang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
31
|
Xu J, Cai S, Zhao J, Xu K, Ji H, Wu C, Xiao J, Wu Y. Advances in the Relationship Between Pyroptosis and Diabetic Neuropathy. Front Cell Dev Biol 2021; 9:753660. [PMID: 34712670 PMCID: PMC8545826 DOI: 10.3389/fcell.2021.753660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyroptosis is a novel programmed cell death process that promotes the release of interleukin-1β (IL-1β) and interleukin-18 (IL-18) by activating inflammasomes and gasdermin D (GSDMD), leading to cell swelling and rupture. Pyroptosis is involved in the regulation of the occurrence and development of cardiovascular and cerebrovascular diseases, tumors, and nerve injury. Diabetes is a metabolic disorder characterized by long-term hyperglycemia, insulin resistance, and chronic inflammation. The people have paid more and more attention to the relationship between pyroptosis, diabetes, and its complications, especially its important regulatory significance in diabetic neurological diseases, such as diabetic encephalopathy (DE) and diabetic peripheral neuropathy (DPN). This article will give an in-depth overview of the relationship between pyroptosis, diabetes, and its related neuropathy, and discuss the regulatory pathway and significance of pyroptosis in diabetes-associated neuropathy.
Collapse
Affiliation(s)
- Jingyu Xu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shufang Cai
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jiaxin Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengbiao Wu
- Clinical Research Center, Affiliated Xiangshan Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
32
|
Liu R, Peng Z, Zhang Y, Li R, Wang Y. Upregulation of miR‑128 inhibits neuronal cell apoptosis following spinal cord injury via FasL downregulation by repressing ULK1. Mol Med Rep 2021; 24:667. [PMID: 34296305 PMCID: PMC8335739 DOI: 10.3892/mmr.2021.12306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by permanent motor deficits followed by inflammation and oxidative stress, causing neuronal cell death. The present study aimed to investigate the role of microRNA (miR)‑128 in neuronal cell apoptosis and its underlying mechanism. Targeting relationships among miR‑128 and Unc‑51 like autophagy activating kinase 1 (ULK1) and Fas ligand (FasL) were verified using dual‑luciferase reporter assay and ChIP assays. Loss‑ and gain‑of‑function assays were conducted in rat models of SCI to determine the roles of miR‑128 and ULK1 in neuronal cell apoptosis, inflammation, and motor function. Apoptosis, motor function and expression of inflammatory factors were respectively determined by Terminal deoxynucleotidyl transferase‑mediated dUTp nick end‑labeling, Basso, Beattie and Bresnahan (BBB) score and enzyme‑linked immunosorbent assay. Hematoxylin and eosin staining, Nissl staining and immunofluorescence were respectively performed to observe morphological changes and number of neurons and nestin‑positive cells. The neuronal cells were isolated from neuron injury models and cultured in vitro. MTT and flow cytometry was conducted to determine the neuronal cell viability and apoptosis respectively. miR‑128 was downregulated whereas ULK1 was upregulated in rats with SCI. Overexpression of miR‑128 or downregulation of ULK1 inhibited neuronal cell apoptosis and inflammation as evidenced by an increased BBB score and more neurons and nestin‑positive cells, but reduced expression of inflammatory and apoptosis‑related factors. ULK1 was negatively regulated by miR‑128, whereas FasL was positively regulated by ULK1. In vitro experiments validated the roles of miR‑128 and ULK1 in neuronal cell differentiation and apoptosis. In conclusion, the upregulation of miR‑128 depresses neuronal cell apoptosis by downregulating ULK1, thereby attenuating SCI via the downregulation of FasL.
Collapse
Affiliation(s)
- Ruixuan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhibin Peng
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yubo Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Rui Li
- Department of Orthopaedics, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yansong Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
33
|
Zinc Regulates Glucose Metabolism of the Spinal Cord and Neurons and Promotes Functional Recovery after Spinal Cord Injury through the AMPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4331625. [PMID: 34373765 PMCID: PMC8349299 DOI: 10.1155/2021/4331625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a traumatic disease that can cause severe nervous system dysfunction. SCI often causes spinal cord mitochondrial dysfunction and produces glucose metabolism disorders, which affect neuronal survival. Zinc is an essential trace element in the human body and plays multiple roles in the nervous system. This experiment is intended to evaluate whether zinc can regulate the spinal cord and neuronal glucose metabolism and promote motor functional recovery after SCI. Then we explore its molecular mechanism. We evaluated the function of zinc from the aspects of glucose uptake and the protection of the mitochondria in vivo and in vitro. The results showed that zinc elevated the expression level of GLUT4 and promoted glucose uptake. Zinc enhanced the expression of proteins such as PGC-1α and NRF2, reduced oxidative stress, and promoted mitochondrial production. In addition, zinc decreased neuronal apoptosis and promoted the recovery of motor function in SCI mice. After administration of AMPK inhibitor, the therapeutic effect of zinc was reversed. Therefore, we concluded that zinc regulated the glucose metabolism of the spinal cord and neurons and promoted functional recovery after SCI through the AMPK pathway, which is expected to become a potential treatment strategy for SCI.
Collapse
|
34
|
Topical application of CNTF, GDNF and BDNF in combination attenuates blood-spinal cord barrier permeability, edema formation, hemeoxygenase-2 upregulation, and cord pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:357-376. [PMID: 34689864 DOI: 10.1016/bs.pbr.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) is one of the leading causes of disability in Military personnel for which no suitable therapeutic strategies are available till today. Thus, exploration of novel therapeutic measures is highly needed to enhance the quality of life of SCI victims. Previously, topical application of BDNF and GDNF in combination over the injured spinal cord after 90min induced marked neuroprotection. In present investigation, we added CNTF in combination with BDNF and/or GDNF treatment to examine weather the triple combination applied over the traumatic cord after 90 or 120min could thwart cord pathology. Since neurotrophins attenuate nitric oxide (NO) production in SCI, the role of carbon monoxide (CO) production that is similar to NO in inducing cell injury was explored using immunohistochemistry of the constitutive isoform of enzyme hemeoxygenase-2 (HO-2). SCI inflicted over the right dorsal horn of the T10-11 segments by making an incision of 2mm deep and 5mm long upregulated the HO-2 immunostaining in the T9 and T12 segments after 5h injury. These perifocal segments are associated with breakdown of the blood-spinal cord barrier (BSCB), edema development and cell injuries. Topical application of CNTF with BDNF and GDNF in combination (10ng each) after 90 and 120min over the injured spinal cord significantly attenuated the BSCB breakdown, edema formation, cell injury and overexpression of HO-2. These observations are the first to show that CNTF with BDNF and GDNF induced superior neuroprotection in SCI probably by downregulation of CO production, not reported earlier.
Collapse
|
35
|
Xia N, Gao Z, Hu H, Li D, Zhang C, Mei X, Wu C. Nerve growth factor loaded macrophage-derived nanovesicles for inhibiting neuronal apoptosis after spinal cord injury. J Biomater Appl 2021; 36:276-288. [PMID: 34167336 DOI: 10.1177/08853282211025912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is an extremely destructive central nervous system lesion. Studies have shown that NGF can promote nerve regeneration after SCI. However, it cannot produce the desired effect due to its stability in the body and is difficulty in passing through the blood-brain barrier. In this study, we prepared nanovesicles derived from macrophage membrane encapsulating NGF (NGF-NVs) as a drug carrier for the treatment of SCI. Cell experiments showed that NGF-NVs were effectively taken up by PC12 cells and inhibited neuronal apoptosis. In vivo imaging experiments, a large quantity of NGF was delivered to the injured site with the aid of the good targeting of NVs. In animal experiments, NGF-NVs improved the survival of neurons by significantly activating the PI3K/AKT signaling pathway and had good behavioral and histological recovery effects after SCI. Therefore, NVs are a potential drug delivery vector for SCI therapy.
Collapse
Affiliation(s)
- Nan Xia
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Hengshuo Hu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Daoyong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chuanjie Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
36
|
Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J, Ding R. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 2021; 168:142-154. [PMID: 33823244 DOI: 10.1016/j.freeradbiomed.2021.03.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury that characterized by oxidative stress and inflammatory response. Kaempferol is reported to be an anti-neuroinflammation in neurologic disorders. Nevertheless, the role and mechanism of kaempferol in SCI remains unclear. The present study aims to investigate effects of kaempferol on SCI and its possible underlying mechanisms in in vivo and in vitro models. A C5 hemi-contusion injury was induced in Sprague-Dawley rats to investigate the neuroprotective effects of kaempferol after SCI. For in vitro study, the BV2 microglia cell lines were pretreated with or without kaempferol. A combination of molecular and histological methods was used to clarify the mechanism and explore the signaling pathway both in vivo and in vitro. One-way analysis of variance (ANOVA) was conducted with Bonferroni post hoc tests to examine the differences between groups. The in vivo studies showed that kaempferol could improve the recovery of hindlimb motor function and ameliorate tissue damage in the spinal cord after SCI. Moreover, administration of kaempferol reduced microglia activation and oxidative stress level in the spinal cord. The in vitro studies showed that kaempferol suppressed the microglia activation resulting from the administration of LPS with ATP to BV-2 cells. Pretreated BV2 cells with kaempferol reduced the generation of reactive oxygen species (ROS) by inhibiting NADPH oxidase 4, and then, suppressed the phosphorylation of p38 MAPK and JNK, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. We also observed that kaempferol could inhibite the pyroptosis related proteins (NLRP3 Caspase-1 p10 ASC N-GSDMD) and reduce the release of IL-18 and IL-1β. In conclusion, kaempferol was able to reduce oxidative stress and inflammatory response through down-regulation of ROS dependent MAPKs- NF-κB and pyroptosis signaling pathway, which suggested that kaempferol might be a novel promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinqiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baihui Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wangsheng Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Congrui Liao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiangheng Dai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ruoting Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
37
|
Zhu JJ, Yu BY, Huang XK, He MZ, Chen BW, Chen TT, Fang HY, Chen SQ, Fu XQ, Li PJ, Lin ZL, Zhu JH. Neferine Protects against Hypoxic-Ischemic Brain Damage in Neonatal Rats by Suppressing NLRP3-Mediated Inflammasome Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6654954. [PMID: 34046147 PMCID: PMC8128543 DOI: 10.1155/2021/6654954] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is recognized as the main cause of neonatal death, and efficient treatment strategies remain limited. Given the prevalence of HIE and the associated fatality, further studies on its pathogenesis are warranted. Oxidative stress and neuroinflammatory injury are two important factors leading to brain tissue injury and nerve cell loss in HIE. Neferine, an alkaloid extracted from lotus seed embryo, exerts considerable effects against several diseases such as cancers and myocardial injury. In this study, we demonstrated the neuroprotective effect of neferine on HIE and hypothesized that it involves the inhibition of neuronal pyroptosis, thereby ameliorating neurological inflammation and oxidative stress. We demonstrated that the mRNA levels of proteins associated with pyroptosis including caspase-1, the caspase adaptor ASC, gasdermin D, interleukin- (IL-) 18, IL-1β, and some inflammatory factors were significantly increased in neonatal HIBD model rats compared to those in the control group. The increase in these factors was significantly suppressed by treatment with neferine. We stimulated PC12 cells with CoCl2 to induce neuronal HIBD in vitro and investigated the relationship between neferine and pyroptosis by altering the expression of the NLRP3 inflammasome. The overexpression of NLRP3 partially reversed the neuroprotective effect of neferine on HIBD, whereas NLRP3 knockdown further inhibited caspase-1 activation and IL-1β and IL18 expression. In addition, simultaneous alteration of NLRP3 expression induced changes in intracellular oxidative stress levels after HIBD. These findings indicate that neferine ameliorates neuroinflammation and oxidative stress injury by inhibiting pyroptosis after HIBD. Our study provides valuable information for future studies on neferine with respect to neuroinflammation and pyroptosis.
Collapse
Affiliation(s)
- Jin-jin Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bin-yuan Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao-kai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min-zhi He
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bin-wen Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting-ting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huang-yi Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shang-qin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao-qin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Pei-jun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhen-lang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-hu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
38
|
Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y, Xin Y, Wang XP. CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 2021; 341:113683. [PMID: 33711325 DOI: 10.1016/j.expneurol.2021.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) induced the gastrointestinal inflammation that is associated with TBI-related morbidity and mortality. Carbon monoxide-releasing molecule (CORM)-3 is a water-soluble exogenous carbon monoxide that exerts protective effects against inflammation-induced pyroptosis. We investigated the gastrointestinal inflammation in a rodent model of traumatic brain injury (TBI) with subsequent hemorrhagic shock and resuscitation (HSR), as well as effects of CORM-3 using an intestinal injection on both gut and brain. METHODS Following exposure to TBI plus HSR, rats were administrated with CORM-3 (8 mg/kg) through an intestinal injection after resuscitation immediately. The pathological changes and pyroptosis in the gut were measured at 24 h and 30 day post-trauma. We also assessed the intestinal and cortical CO content, as well as IL-1β and IL-18 levels in the serum within 48 h after trauma. We then explored pathological changes in the ventromedial prefrontal cortex (vmPFC) and neurological behavior deficits on 30 day post-trauma. RESULTS After TBI + HSR exposure, CORM-3-treated rats presented significantly decreased pyroptosis, more CO content in the jejunum, and lower IL-1β, IL-18 levels in the serum at 24 h after trauma. Moreover, the rats treated with CORM-3 exerted ameliorated jejunal and vmPFC injury, enhanced learning/memory ability and exploratory activity, improved anxiety-like behaviors than the TBI + HSR-treated rats on 30 day post-trauma. CONCLUSION These experimental data demonstrated and bidirectional gut-brain interactions after TBI, anti-inflammatory effects of CORM-3, which may improve late outcomes after brain injury.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jin-Shu Hu
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
39
|
Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 2021; 28:97-109. [PMID: 33364048 PMCID: PMC7753222 DOI: 10.1016/j.jare.2020.08.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently, spinal cord injury (SCI) is a pathological incident that triggers several neuropathological conditions, leading to the initiation of neuronal damage with several pro-inflammatory mediators' release. However, pyroptosis is recognized as a new programmed cell death mechanism regulated by the stimulation of caspase-1 and/or caspase-11/-4/-5 signaling pathways with a series of inflammatory responses. AIM Our current review concisely summarizes the potential role of pyroptosis-regulated programmed cell death in SCI, according to several molecular and pathophysiological mechanisms. This review also highlights the targeting of pyroptosis signaling pathways and inflammasome components and its therapeutic implications for the treatment of SCI. KEY SCIENTIFIC CONCEPTS Multiple pieces of evidence have illustrated that pyroptosis plays significant roles in cell swelling, plasma membrane lysis, chromatin fragmentation and intracellular pro-inflammatory factors including IL-18 and IL-1β release. In addition, pyroptosis is directly mediated by the recently discovered family of pore-forming protein known as GSDMD. Current investigations have documented that pyroptosis-regulated cell death plays a critical role in the pathogenesis of multiple neurological disorders as well as SCI. Our narrative article suggests that inhibiting the pyroptosis-regulated cell death and inflammasome components could be a promising therapeutic approach for the treatment of SCI in the near future.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, apoptosis-associated speck-like protein
- ATP, Adenosine triphosphate
- BBG, Brilliant blue G
- CCK-8, Cell Counting Kit-8
- CNS, central nervous system
- CO, Carbon monoxide
- CORM-3, Carbon monoxide releasing molecle-3
- Caspase-1
- Cx43, Connexin 43
- DAMPs, Damage-associated molecular patterns
- DRD1, Dopamine Receptor D1
- ECH, Echinacoside
- GSDMD, Gasdermin D
- Gal-3, Galectin-3
- H2O2, Hydrogen peroxide
- HO-1, Heme oxygenase-1
- IL-18, Interleukin-18
- IL-1β, Interleukin-1 beta
- IRE1, Inositol requiring enzyme 1
- JOA, Japanese orthopedics association
- LPS, Lipopolysaccharide
- NDI, Neck data index
- NF-κB, Nuclear factor-kappa B
- NLRP1, NOD-like receptor protein 1
- NLRP1b, NOD-like receptor protein 1b
- NLRP3
- NLRP3, Nucleotide-binding domain-like receptor protein 3
- Neuroinflammation
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OPCs, Oligodendrocyte progenitor cells
- PAMPs, Pathogen-associated molecular patterns
- PRRs, Pattern recognition receptors
- Pyroptosis
- ROS, Reactive oxygen species
- Spinal cord injury
- TLR4, Toll-like receptor 4
- TXNIP, Thioredoxin-interacting protein
- Therapeutic implications
- double stranded DNAIR, Ischemia reperfusion
- si-RNA, Small interfering RNA
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| |
Collapse
|
40
|
Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2020; 226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of morbidity and disability in the world. Over the past few decades, the exact molecular mechanisms describing secondary, persistent injuries, as well as primary and transient injuries, have attracted massive attention to the clinicians and researchers. Recent investigations have distinctly shown the critical roles of innate and adaptive immune responses in regulating sterile neuroinflammation and functional outcomes after SCI. In past years, some promising advances in immunotherapeutic options have efficaciously been identified for the treatment of SCI. In our narrative review, we have mainly focused on the new therapeutic strategies such as the maturation and apoptosis of immune cells by several agents, mesenchymal stem cells (MSCs) as well as multi-factor combination therapy, which have recently provided novel ideas and prospects for the future treatment of SCI. This article also illustrates the latest progress in clarifying the potential roles of innate and adaptive immune responses in SCI, the progression and specification of prospective immunotherapy and outstanding issues in the area.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Khadija Tul Kubra
- Department of Pharmacy, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jaheda Akter
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chattogram-4318, Chittagong, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka 1229, Bangladesh
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China.
| |
Collapse
|
41
|
Clinical Characteristics of Visual Dysfunction in Carbon Monoxide Poisoning Patients. J Ophthalmol 2020; 2020:9537360. [PMID: 33029389 PMCID: PMC7528143 DOI: 10.1155/2020/9537360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/12/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose The aim of the present study was to analyze the clinical characteristics of visual dysfunction in patients with carbon monoxide (CO) poisoning. Methods A total of 436 patients with CO poisoning were enrolled in our hospital from October 2012 to December 2018, including 193 patients with moderate poisoning (MP group), 165 with severe poisoning (SP group), and 78 with delayed encephalopathy (DE group). The clinical characteristics of visual dysfunction in patients with CO poisoning were analyzed through the collection of medical history, regular physical examination, brain magnetic resonance imaging (MRI), ophthalmological examination, the National Eye Institute Visual Function Questionnaire (NEI-VFQ), and its influencing factors. Results Some patients in the three groups had visual dysfunction. The main ocular symptoms were local pain, eye movement disorder, and visual field defect. The key pathological factors were keratopathy, retinal nerve cell damage, optic nerve damage, retinal vascular disease, macular disease, and occipital visual center damage. The clinical symptoms of visual dysfunction after CO poisoning lasted for a long time (>12 months) and were not completely consistent with the positive results of the ophthalmological examination. A few sequelae of ophthalmology were still left after the help of medicine. Conclusion The incidence of visual dysfunction in patients with CO poisoning was high, the clinical symptoms were rich and diverse, the duration of disease was long, and the prognosis was poor. Thus, the relevant ophthalmological examination and intervention treatment should be perfected as soon as possible.
Collapse
|
42
|
Li X, Yu Z, Zong W, Chen P, Li J, Wang M, Ding F, Xie M, Wang W, Luo X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation 2020; 17:263. [PMID: 32891159 PMCID: PMC7487532 DOI: 10.1186/s12974-020-01942-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/25/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes neurological dysfunction with devastating consequences. SCI pathogenesis is accompanied by inflammasome activation and neuronal damage. But the spatial pattern and the time course of neuronal pyroptosis and apoptosis after SCI should be further elucidated. The microglial voltage-gated proton channel (Hv1) is implicated in reactive oxygen species (ROS)-induced neuronal damage following ischemic stroke. However, there is a lack of quantification on the neuronal pyroptosis and apoptosis associated with microglial Hv1 after SCI. METHODS We analyzed spatial and temporal characteristics of neuronal pyroptosis and apoptosis following SCI and investigated the effects of Hv1 deficiency on neuronal pyroptosis and the nod-like receptor 3 (NLRP3) inflammasome pathway by using a mouse model of SCI. We tested the effects of Hv1-deficient microglia on ROS production in vivo and examined the relationship between ROS and neuronal pyroptosis in vitro. RESULTS We observed that apoptosis was detected closer to the injury core than pyroptosis. The incidence of neuronal apoptosis peaked on day 1 after SCI and occurred before pyroptosis. Hv1 deficiency reduced neuronal apoptosis and NLRP3-inflammasome-mediated pyroptosis, improved axonal regeneration, and reduced motor deficits. SCI led to elevated ROS levels, whereas Hv1 deficiency downregulated microglial ROS generation. In vitro, ROS upregulated neuronal pyroptosis and activated the NLRP3 inflammasome pathway, both of which were reversed by addition of a ROS scavenger. Our results suggested that microglial Hv1 regulated neuronal apoptosis and NLRP3-induced neuronal pyroptosis after SCI by mediating ROS production. CONCLUSION Following SCI, neuronal pyroptosis lasted longer and occurred farther away from the injury core compared with that of neuronal apoptosis. Microglial Hv1 deficiency downregulated microglial ROS generation and reduced apoptosis and NLRP3-induced neuronal pyroptosis. Our findings may provide novel insights into Hv1-associated mechanisms underlying neuronal damage after SCI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
43
|
Li Y, Zhang LM, Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP. CORM-3 ameliorates neurodegeneration in the amygdala and improves depression- and anxiety-like behavior in a rat model of combined traumatic brain injury and hemorrhagic shock. Neurochem Int 2020; 140:104842. [PMID: 32858089 DOI: 10.1016/j.neuint.2020.104842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Emotional disturbances characterized by depression and anxiety among survivors of traumatic brain injury (TBI) impact the quality of life severely. Currently, there is a lack of effective drug treatment for neurodegeneration induced by TBI, mainly due to failed efficacy of compounds such as corticosteroids, calcium channel blockers, and excitatory amino acid inhibitors. Thus, we sought to continue with our investigation on CORM-3, a water-soluble exogenous carbon monoxide-releasing molecule with excellent anti-inflammatory actions employed in a previous study using a rat model of combined TBI with hemorrhage shock and resuscitation (HSR). METHODS Rats were administrated with CORM-3 after induction of TBI and HSR and examined depressive and anxiety-like behaviors, along with cerebral function employing functional magnetic resonance imaging (MRI) 30-days post-trauma. Also, the following variables were measured: 1) neuronal pyroptosis and apoptosis 24 h post-trauma, 2) the roles of PKG-ERK1/2 signaling pathways with the use of the protein kinase G (PKG) specific inhibitor, KT5823. RESULTS CORM-3-treated rats displayed significant ameliorated depression- and anxiety-like behaviors, improved cerebral blood flow, and fractional anisotropy (FA), showed less neuronal pyroptosis and apoptosis in the amygdala, and upregulated the phosphorylation of Vasodilator-stimulated phosphoprotein (VASP) and ERK1/2. However, CORM-3 neuroprotective effects against trauma were only partially reversed by KT5823. CONCLUSION CORM-3 ameliorated the emotional deficits and neuronal death induced in the amygdala post-TBI and HSR rat model, and PKG-ERK1/2 signaling might be implicated in the underlying mechanism.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
44
|
Zheng G, Zheng F, Luo Z, Ma H, Zheng D, Xiang G, Xu C, Zhou Y, Wu Y, Tian N, Wu Y, Zhang T, Ni W, Wang S, Xu H, Zhang X. CO-Releasing Molecule (CORM)-3 Ameliorates Spinal Cord-Blood Barrier Disruption Following Injury to the Spinal Cord. Front Pharmacol 2020; 11:761. [PMID: 32581781 PMCID: PMC7287126 DOI: 10.3389/fphar.2020.00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a clinical tough neurological problem without efficient cure currently. Blood-spinal cord barrier (BSCB) interruption is not only a crucial pathological feature for SCI process but is a possible target for future SCI treatments; however, few treatments have been developed to intervene BSCB. In the present study, we intravenously injected CO-releasing molecule3 (CORM-3), a classical exogenous CO donor, to the rats experiencing SCI and assessed its protection on BSCB integrity in rats. Our results demonstrated that the exogenous increasing of CO by CORM-3 blocked the tight junction (TJ) protein degeneration and neutrophils infiltration, subsequently suppressed the BSCB damage and improved the motor recovery after SCI. And we certified that the CO-induced down-regulation of MMP-9 expression and activity in neutrophil might be associated with the NF-κB signaling. Taken together, our study indicates that CO-releasing molecule (CORM)-3 ameliorates BSCB after spinal cord injury.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Fanghong Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Haiwei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Dongdong Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Wenzhou, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
45
|
Carbon Monoxide-Releasing Molecule-3 Suppresses Tumor Necrosis Factor- α- and Interleukin-1 β-Induced Expression of Junctional Molecules on Human Gingival Fibroblasts via the Heme Oxygenase-1 Pathway. Mediators Inflamm 2020; 2020:6302391. [PMID: 32410860 PMCID: PMC7204158 DOI: 10.1155/2020/6302391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Human gingival fibroblast barrier dysfunction caused by inflammation contributes to gingivitis and can lead to inflammatory periodontal disease. The disease features include upregulated epithelial permeability, increased inflammatory mediators, and downregulated junctional complex molecules. Carbon monoxide- (CO-) releasing molecule-3 (CORM-3) is a water-soluble compound that has demonstrated anti-inflammatory effects in in vitro and in vivo studies. In this study, we aimed to investigate the effects of CORM-3 on the expression of tight and adherens junction molecules on human gingival fibroblasts (HGFs) stimulated with tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). HGFs were cultured from the explants of normal human gingival tissues, which were stimulated in the presence or absence of CORM-3. Epithelial barrier function was evaluated by paracellular permeability and junctional complex molecule expression analyses. The protein and mRNA expression levels of adherens junction molecules (VE-cadherin and β-catenin) and tight junction molecules (zona occludens-1, ZO-1) were studied using western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-PCR). The mRNA and protein expression levels of these cytokines were also analyzed in HGFs transiently transfected with HO-1 small interfering RNA (siRNA) in response to TNF-α and IL-1β stimulation. CORM-3 reduced permeability and enhanced the expression of junctional complex molecules (ZO-1, VE-cadherin, and β-catenin) in TNF-α- and IL-1β-induced HGFs. However, these effects of CORM-3 were attenuated when HO-1 siRNA was transiently transfected in HGFs. These findings indicate that CORM-3 exerts anti-inflammatory effects on TNF-α- and IL-1β-stimulated HGFs via the HO-1 pathway, which suggests the promising potential of CORM-3 in the treatment of inflammatory periodontal disease.
Collapse
|
46
|
CORM-2-Solid Lipid Nanoparticles Maintain Integrity of Blood-Spinal Cord Barrier After Spinal Cord Injury in Rats. Mol Neurobiol 2020; 57:2671-2689. [DOI: 10.1007/s12035-020-01914-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
|
47
|
Fu L, Zhang DX, Zhang LM, Song YC, Liu FH, Li Y, Wang XP, Zheng WC, Wang XD, Gui CX, Kong XJ, Kang LQ. Exogenous carbon monoxide protects against mitochondrial DNA‑induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation. Int J Mol Med 2020; 45:1176-1186. [PMID: 32124959 PMCID: PMC7053849 DOI: 10.3892/ijmm.2020.4493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/29/2020] [Indexed: 11/05/2022] Open
Abstract
Carbon monoxide‑releasing molecule‑3 (CORM‑3), which is an exogenous carbon monoxide (CO) compound, slowly releases CO under physiological conditions; this exerts neuroprotective effects against incomplete ischemia/reperfusion injury. The objective of the present study was to investigate whether the administration of CORM‑3 protects against nucleotide‑binding oligomerization domain‑like receptor pyrin domain‑3 (NLRP3) inflammasome formation and neuronal pyroptosis in the hippocampus following hemorrhagic shock and resuscitation (HSR). To establish this, an HSR model was created. Hemorrhagic shock was induced in adult male Sprague‑Dawley rats under sevoflurane anesthesia by bleeding using a heparinized syringe to maintain a mean arterial pressure of 30±5 mmHg for 60 min. Resuscitation was performed by reperfusion of the blood and, if necessary, administering sterile saline to achieve the baseline arterial pressure. Following resuscitation, CORM‑3 (4 mg/kg) was injected via the femoral vein. Neuronal pyroptosis in the hippocampus, mitochondrial morphology, mitochondrial DNA (mtDNA), brain magnetic resonance imaging, expression levels of NLRP3 and the interaction of pro‑caspase‑1 and apoptosis‑associated speck‑like protein containing a CARD domain (ASC) were examined 12 h after HSR; locomotor activity was assessed 7 days after HSR. Compared with HSR‑treated rats, CORM‑3 administration resulted in a lower level of neuronal pyroptosis in the hippocampus, improved mitochondrial morphology, a lower mtDNA level, steadier levels of metabolites, decreased expression levels of NLRP3 and pro‑caspase‑1 interacting with ASC and enhanced locomotor activity. In conclusion, treatment with CORM‑3 ameliorated impairments of locomotor and exploratory activities in a rat model of HSR. The mechanism may be associated with the inhibition of mitochondrial DNA‑induced pyroptosis via improvements in cell metabolism.
Collapse
Affiliation(s)
- Lan Fu
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yan-Cheng Song
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Feng-Hai Liu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiao-Dong Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Chun-Xiao Gui
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiang-Jun Kong
- Central Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Li-Qing Kang
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
48
|
Li W, Wu F, Chen L, Li Q, Ma J, Li M, Shi Y. Carbon Monoxide Attenuates Lipopolysaccharides (LPS)-Induced Acute Lung Injury in Neonatal Rats via Downregulation of Cx43 to Reduce Necroptosis. Med Sci Monit 2019; 25:6255-6263. [PMID: 31429423 PMCID: PMC6713028 DOI: 10.12659/msm.917751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Acute lung injury (ALI) is one of major causes of death in newborns, making it urgent to improve therapy. Administration of low dose carbon monoxide (CO) plays a protective role in ALI but the mechanisms are not fully understood. This study was designed to test the therapeutic effect of monoxide-releasing molecule 3 (MORM3) in lipopolysaccharide (LPS) induced neonatal ALI and the possibly associated molecular mechanisms. Material/Methods For this study, 3- to 8-day old Newborn Sprague-Dawley rats were subjected to intraperitoneal injection of 3 mg/kg LPS to induce ALI. Then animals received intraperitoneal injection of carbon monoxide-releasing molecules 3 (CORM3) (8 mg/kg) or inactive CORM3 (iCORM3) for 7 consecutive days. Lung tissues were collected for histological examination and total cell counts and protein content in bronchoalveolar lavage fluid (BALF) were measured. Expression of Cx43 and necroptosis-related markers were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results LPS exposure induced significant lung injury indicated by histological damage, increased lung wet/dry weight ratio (W/D) and increased total cell counts and protein concentration in BALF. These changes were significantly ameliorated by administration of CORM3 but not iCORM3. LPS also increased necroptosis-related markers RIP1, RIP3, and MLKL and their elevation was blocked by CORM3. CORM3 administration ameliorated LPS induced elevation of Cx43 expression and adenoviral overexpression of Cx43 abolished lung protective effect of CORM3. CORM3 administration attenuated LPS induced activation of extracellular-signal-regulated kinase (ERK) and its protection against necroptosis was abolished by ERK inhibitor U0126. Conclusions CORM3 attenuates LPS-Induced ALI in neonatal rats and its lung protective effect might be through downregulation of Cx43 to attenuate ERK signaling and ameliorate necroptosis, suggesting CORM3 as a potential therapeutic drug for ALI in neonates.
Collapse
Affiliation(s)
- Wanwei Li
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Fang Wu
- Department of Neonatology, Chongqing Angel Women's and Children's Hospital, Chongqing, China (mainland)
| | - Long Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| | - Qian Li
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Juan Ma
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Mengchun Li
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Yuan Shi
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China (mainland)
| |
Collapse
|
49
|
Hu ZC, Luo ZC, Jiang BJ, Fu X, Xuan JW, Li XB, Bian YJ, Ni WF, Xue JX. The Protective Effect of Magnolol in Osteoarthritis: In vitro and in vivo Studies. Front Pharmacol 2019; 10:393. [PMID: 31040782 PMCID: PMC6476971 DOI: 10.3389/fphar.2019.00393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA), defined as a long-term progressive joint disease, is characterized by cartilage impairment and erosion. In recent decades, magnolol, as a type of lignin extracted from Magnolia officinalis, has been proved to play a potent anti-inflammatory role in various diseases. The current research sought to examine the latent mechanism of magnolol and its protective role in alleviating the progress of OA in vivo as well as in vitro experimentations. In vitro, the over-production of Nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), induced by interleukin-1 beta (IL-1β), were all inhibited notably by magnolol in a concentration-dependent manner. Moreover, magnolol could also downregulate the expression of metalloproteinase 13 (MMP13) and thrombospondin motifs 5 (ADAMTS5). All these changes ultimately led to the deterioration of the extracellular matrix (ECM) induced by IL-1β. Mechanistically, magnolol suppressed the activation of PI3K/Akt/NF-κB pathway. Furthermore, a powerful binding capacity between magnolol and PI3K was also revealed in our molecular docking research. In addition, magnolol-induced protective effects in OA development were also detected in a mouse model. In summary, this research suggested that magnolol possessed a new therapeutic potential for the development of OA.
Collapse
Affiliation(s)
- Zhi-Chao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Zu-Cheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Bing-Jie Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Xin Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Jiang-Wei Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Xiao-Bin Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Yu-Jie Bian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Wen-Fei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Ji-Xin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| |
Collapse
|
50
|
de Rivero Vaccari JP. Carbon monoxide releasing molecule-3 inhibits inflammasome activation: A potential therapy for spinal cord injury. EBioMedicine 2019; 40:17-18. [PMID: 30651220 PMCID: PMC6413334 DOI: 10.1016/j.ebiom.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|