1
|
Atnaf A, Akelew Y, Abebaw D, Muche Y, Getachew M, Mengist HM, Tsegaye A. The role of long noncoding RNAs in the diagnosis, prognosis and therapeutic biomarkers of acute myeloid leukemia. Ann Hematol 2024:10.1007/s00277-024-05987-3. [PMID: 39264436 DOI: 10.1007/s00277-024-05987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Acute myeloid leukemia (AML) is the abnormal proliferation of immature myeloid blast cells in the bone marrow. Currently, there are no universally recognized biomarkers for the early diagnosis, prognosis and effective treatment of AML to improve the overall survival of patients. Recent studies, however, have demonstrated that long noncoding RNAs (lncRNAs) are promising targets for the early diagnosis, prognosis and treatment of AML. A critical review of available data would be important to identify study gaps and provide perspectives. In this review, we explored comprehensive information on the potential use of lncRNAs as targets for the diagnosis, prognosis, and treatment of AML. LncRNAs are nonprotein-coding RNAs that are approximately 200 nucleotides long and play important roles in the regulation, metabolism and differentiation of tissues. In addition, they play important roles in the diagnosis, prognosis and treatment of different cancers, including AML. LncRNAs play multifaceted roles as oncogenes or tumor suppressor genes. Recently, deregulated lncRNAs were identified as novel players in the development of AML, making them promising prognostic indicators. Given that lncRNAs could have potential diagnostic marker roles, the lack of sufficient evidence identifying specific lncRNAs expressed in specific cancers hampers the use of lncRNAs as diagnostic markers of AML. The complex roles of lncRNAs in the pathophysiology of AML require further scrutiny to identify specific lncRNAs. This review, despite the lack of sufficient literature, discusses the therapeutic, diagnostic and prognostic roles of lncRNAs in AML and provides future insights that will contribute to studies targeting lncRNAs in the diagnosis, treatment, and management of AML.
Collapse
Affiliation(s)
- Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, 3168, Australia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Ortiz Rojas CA, Pereira-Martins DA, Bellido More CC, Sternadt D, Weinhäuser I, Hilberink JR, Coelho-Silva JL, Thomé CH, Ferreira GA, Ammatuna E, Huls G, Valk PJ, Schuringa JJ, Rego EM. A 4-gene prognostic index for enhancing acute myeloid leukaemia survival prediction. Br J Haematol 2024; 204:2287-2300. [PMID: 38651345 DOI: 10.1111/bjh.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Despite advancements in utilizing genetic markers to enhance acute myeloid leukaemia (AML) outcome prediction, significant disease heterogeneity persists, hindering clinical management. To refine survival predictions, we assessed the transcriptome of non-acute promyelocytic leukaemia chemotherapy-treated AML patients from five cohorts (n = 975). This led to the identification of a 4-gene prognostic index (4-PI) comprising CYP2E1, DHCR7, IL2RA and SQLE. The 4-PI effectively stratified patients into risk categories, with the high 4-PI group exhibiting TP53 mutations and cholesterol biosynthesis signatures. Single-cell RNA sequencing revealed enrichment for leukaemia stem cell signatures in high 4-PI cells. Validation across three cohorts (n = 671), including one with childhood AML, demonstrated the reproducibility and clinical utility of the 4-PI, even using cost-effective techniques like real-time quantitative polymerase chain reaction. Comparative analysis with 56 established prognostic indexes revealed the superior performance of the 4-PI, highlighting its potential to enhance AML risk stratification. Finally, the 4-PI demonstrated to be potential marker to reclassified patients from the intermediate ELN2017 category to the adverse category. In conclusion, the 4-PI emerges as a robust and straightforward prognostic tool to improve survival prediction in AML patients.
Collapse
Affiliation(s)
- Cesar Alexander Ortiz Rojas
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diego Antonio Pereira-Martins
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Candy Christie Bellido More
- Department of Pediatrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dominique Sternadt
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Isabel Weinhäuser
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacobien R Hilberink
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Juan Luiz Coelho-Silva
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Hassibe Thomé
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Germano Aguiar Ferreira
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Emanuele Ammatuna
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter J Valk
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Eduardo Magalhães Rego
- Hematology Division, Department of Internal Medicine, Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Lobo-Alves SC, Oliveira LAD, Kretzschmar GC, Valengo AE, Rosati R. Long noncoding RNA expression in acute lymphoblastic leukemia: A systematic review. Crit Rev Oncol Hematol 2024; 196:104290. [PMID: 38341118 DOI: 10.1016/j.critrevonc.2024.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as gene expression modulators, are potential players in Acute Lymphoblastic Leukemia (ALL) pathogenesis. We systematically explored current literature on lncRNA expression in ALL to identify lncRNAs consistently reported as differentially expressed (DE) either in ALL versus controls or between ALL subtypes. By comparing articles that provided global expression data for DE lncRNAs in the ETV6::RUNX1-positive ALL subtype, we identified four DE lncRNAs in three independent studies (two versus other subtypes and one versus controls), showing concordant expression of LINC01013, CRNDE and lnc-KLF7-1. Additionally, LINC01503 was consistently downregulated on ALL versus controls. Within RT-qPCR studies, twelve lncRNA were DE in more than one source. Thus, several lncRNAs were supported as DE in ALL by multiple sources, highlighting their potential role as candidate biomarkers or therapeutic targets. Finally, as lncRNA annotation is rapidly expanding, standardization of reporting and nomenclature is urgently needed to improve data verifiability and compilation.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Liana Alves de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Gabriela Canalli Kretzschmar
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Andressa Eloisa Valengo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
4
|
Kolesnikova MA, Sen’kova AV, Pospelova TI, Zenkova MA. Effective Prognostic Model for Therapy Response Prediction in Acute Myeloid Leukemia Patients. J Pers Med 2023; 13:1234. [PMID: 37623484 PMCID: PMC10455213 DOI: 10.3390/jpm13081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder characterized by the malignant transformation of bone marrow-derived myeloid progenitor cells with extremely short survival. To select the optimal treatment options and predict the response to therapy, the stratification of AML patients into risk groups based on genetic factors along with clinical characteristics is carried out. Despite this thorough approach, the therapy response and disease outcome for a particular patient with AML depends on several patient- and tumor-associated factors. Among these, tumor cell resistance to chemotherapeutic agents represents one of the main obstacles for improving survival outcomes in AML patients. In our study, a new prognostic scale for the risk stratification of AML patients based on the detection of the sensitivity or resistance of tumor cells to chemotherapeutic drugs in vitro as well as MDR1 mRNA/P-glycoprotein expression, tumor origin (primary or secondary), cytogenetic abnormalities, and aberrant immunophenotype was developed. This study included 53 patients diagnosed with AML. Patients who received intensive or non-intensive induction therapy were analyzed separately. Using correlation, ROC, and Cox regression analyses, we show that the risk stratification of AML patients in accordance with the developed prognostic scale correlates well with the response to therapy and represents an independent predictive factor for the overall survival of patients with newly diagnosed AML.
Collapse
Affiliation(s)
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia;
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk 630091, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia;
| |
Collapse
|
5
|
Farrar JE, Smith JL, Othus M, Huang BJ, Wang YC, Ries R, Hylkema T, Pogosova-Agadjanyan EL, Challa S, Leonti A, Shaw TI, Triche TJ, Gamis AS, Aplenc R, Kolb EA, Ma X, Stirewalt DL, Alonzo TA, Meshinchi S. Long Noncoding RNA Expression Independently Predicts Outcome in Pediatric Acute Myeloid Leukemia. J Clin Oncol 2023; 41:2949-2962. [PMID: 36795987 PMCID: PMC10414715 DOI: 10.1200/jco.22.01114] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Optimized strategies for risk classification are essential to tailor therapy for patients with biologically distinctive disease. Risk classification in pediatric acute myeloid leukemia (pAML) relies on detection of translocations and gene mutations. Long noncoding RNA (lncRNA) transcripts have been shown to associate with and mediate malignant phenotypes in acute myeloid leukemia (AML) but have not been comprehensively evaluated in pAML. METHODS To identify lncRNA transcripts associated with outcomes, we evaluated the annotated lncRNA landscape by transcript sequencing of 1,298 pediatric and 96 adult AML specimens. Upregulated lncRNAs identified in the pAML training set were used to establish a regularized Cox regression model of event-free survival (EFS), yielding a 37 lncRNA signature (lncScore). Discretized lncScores were correlated with initial and postinduction treatment outcomes using Cox proportional hazards models in validation sets. Predictive model performance was compared with standard stratification methods by concordance analysis. RESULTS Training set cases with positive lncScores had 5-year EFS and overall survival rates of 26.7% and 42.7%, respectively, compared with 56.9% and 76.3% with negative lncScores (hazard ratio, 2.48 and 3.16; P < .001). Pediatric validation cohorts and an adult AML group yielded comparable results in magnitude and significance. lncScore remained independently prognostic in multivariable models, including key factors used in preinduction and postinduction risk stratification. Subgroup analysis suggested that lncScores provide additional outcome information in heterogeneous subgroups currently classified as indeterminate risk. Concordance analysis showed that lncScore adds to overall classification accuracy with at least comparable predictive performance to current stratification methods that rely on multiple assays. CONCLUSION Inclusion of the lncScore enhances predictive power of traditional cytogenetic and mutation-defined stratification in pAML with potential, as a single assay, to replace these complex stratification schemes with comparable predictive accuracy.
Collapse
Affiliation(s)
- Jason E. Farrar
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Benjamin J. Huang
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | | | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Sneha Challa
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Amanda Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Timothy I. Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Timothy J. Triche
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Alan S. Gamis
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Richard Aplenc
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Xiaotu Ma
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN
| | - Derek L. Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Todd A. Alonzo
- Children's Oncology Group, Monrovia, CA
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
6
|
Mas AM, Huarte M. Long Noncoding RNA Signatures as Cancer Biomarkers. J Clin Oncol 2023; 41:3059-3062. [PMID: 37043713 DOI: 10.1200/jco.23.00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Affiliation(s)
- Aina M Mas
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
7
|
Mrózek K, Kohlschmidt J, Blachly JS, Nicolet D, Carroll AJ, Archer KJ, Mims AS, Larkin KT, Orwick S, Oakes CC, Kolitz JE, Powell BL, Blum WG, Marcucci G, Baer MR, Uy GL, Stock W, Byrd JC, Eisfeld AK. Outcome prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: an Alliance study. Leukemia 2023; 37:788-798. [PMID: 36823396 PMCID: PMC10079544 DOI: 10.1038/s41375-023-01846-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Recently, the European LeukemiaNet (ELN) revised its genetic-risk classification of acute myeloid leukemia (AML). We categorized 1637 adults with AML treated with cytarabine/anthracycline regimens according to the 2022 and 2017 ELN classifications. Compared with the 2017 ELN classification, 2022 favorable group decreased from 40% to 35% and adverse group increased from 37% to 41% of patients. The 2022 genetic-risk groups seemed to accurately reflect treatment outcomes in all patients and patients aged <60 years, but in patients aged ≥60 years, relapse rates, disease-free (DFS) and overall (OS) survival were not significantly different between intermediate and adverse groups. In younger African-American patients, DFS and OS did not differ between intermediate-risk and adverse-risk patients nor did DFS between favorable and intermediate groups. In Hispanic patients, DFS and OS did not differ between favorable and intermediate groups. Outcome prediction abilities of 2022 and 2017 ELN classifications were similar. Among favorable-risk patients, myelodysplasia-related mutations did not affect patients with CEBPAbZIP mutations or core-binding factor AML, but changed risk assignment of NPM1-mutated/FLT3-ITD-negative patients to intermediate. NPM1-mutated patients with adverse-risk cytogenetic abnormalities were closer prognostically to the intermediate than adverse group. Our analyses both confirm and challenge prognostic significance of some of the newly added markers.
Collapse
Grants
- UG1 CA233180 NCI NIH HHS
- U10 CA180821 NCI NIH HHS
- UG1 CA189850 NCI NIH HHS
- P30 CA033572 NCI NIH HHS
- UG1 CA233247 NCI NIH HHS
- R35 CA197734 NCI NIH HHS
- UG1 CA233339 NCI NIH HHS
- P50 CA140158 NCI NIH HHS
- UG1 CA233331 NCI NIH HHS
- U10 CA180882 NCI NIH HHS
- UG1 CA233338 NCI NIH HHS
- U24 CA196171 NCI NIH HHS
- P30 CA016058 NCI NIH HHS
- UG1 CA233327 NCI NIH HHS
- Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
- Aptevo, Daiichi Sankyo, Glycomemetics, Kartos Pharmaceuticals, Xencor and Genentech
- U.S. Department of Health & Human Services | NIH | NCI | Division of Cancer Epidemiology and Genetics, National Cancer Institute (National Cancer Institute Division of Cancer Epidemiology and Genetics)
- BLP is a consultant for Cornerstone Pharmaceuticals and reported research funding from Ambit Biosciences, Cornerstone, Genentech, Hoffman LaRoche, Jazz Pharmaceuticals, Novartis and Pfizer.
- WGB reported honoraria from Abbvie, Syndax, and AmerisourceBergen and research funding from Celyad Oncology, Nkarta, Xencor, Forma Therapeutics and Leukemia and Lymphoma Society.
- Agios Savvas Regional Cancer Hospital
- GLU is a consultant for AbbVie, Agios, Jazz, GlaxoSmithKline, Genentech, and Novartis; reported honoraria from Astellas and research funding from Macrogenics.
- JCB consults for Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; receives honoraria from Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; he is a Chairman of the Scientific Advisory Board of Vincerx Pharmaceuticals and a member of advisory committee of Newave; and is a current equity holder of Vincerx Pharmaceuticals.
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- American Cancer Society (American Cancer Society, Inc.)
- Leukemia Research Foundation (LRF)
- Pelotonia
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Jessica Kohlschmidt
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | | | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Geoffrey L Uy
- Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Yang YT, Yao CY, Chiu PJ, Kao CJ, Hou HA, Lin CC, Chou WC, Tien HF. Evaluation of the clinical significance of global mRNA alternative splicing in patients with acute myeloid leukemia. Am J Hematol 2023; 98:784-793. [PMID: 36855936 DOI: 10.1002/ajh.26893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Aberrant alternative splicing (AS) is involved in leukemogenesis. This study explored the clinical impact of alterations in global AS patterns in 341 patients with acute myeloid leukemia (AML) newly diagnosed at the National Taiwan University Hospital and validated it using The Cancer Genome Atlas (TCGA) cohort. While studying normal cord blood CD34+ /CD38- cells, we found that AML cells exhibited significantly different global splicing patterns. AML with mutated TP53 had a particularly high degree of genome-wide aberrations in the splicing patterns. Aberrance in the global splicing pattern was an independent unfavorable prognostic factor affecting the overall survival of patients with AML receiving standard intensive chemotherapy. The integration of global splicing patterns into the 2022 European LeukemiaNet risk classification could stratify AML patients into four groups with distinct prognoses in both our experimental and TCGA cohorts. We further identified four genes with AS alterations that harbored prognostic significance in both of these cohorts. Moreover, these survival-associated AS events are involved in several important cellular processes that might be associated with poor response to intensive chemotherapy. In summary, our study demonstrated the clinical and biological implications of differential global splicing patterns in AML patients. Further studies with larger prospective cohorts are required to confirm these findings.
Collapse
Affiliation(s)
- Yi-Tsung Yang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Yao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Ju Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chein-Jun Kao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
9
|
Hussein MAR, Ahmed AE, ElNahass Y, El-Dahshan D, Ali MAM. Downregulation of IRAIN long non-coding RNA predicts unfavourable clinical outcome in acute myeloid leukaemia patients. Biomarkers 2023; 28:323-340. [PMID: 36657106 DOI: 10.1080/1354750x.2023.2171128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Although it has been shown that the long non-coding RNA (lncRNA) insulin-like growth factor type 1 receptor (IGF1R) antisense imprinted non-protein coding RNA (IRAIN) is downregulated in leukaemia cell lines, its usefulness as a prognostic marker in acute myeloid leukaemia (AML) has not yet been thoroughly investigated. Here, we sought to determine whether the expression of IRAIN is associated with clinical outcome of AML patients. SUBJECTS & METHODS Using quantitative real-time polymerase chain reaction (qRT-PCR), IRAIN expression levels were assessed in peripheral blood leukocyte samples from 150 patients with AML and 50 healthy controls. Analysis was done on the relationship between IRAIN expression and clinical outcomes in AML patients. RESULTS When compared to healthy controls, IRAIN expression was markedly reduced in AML patients (P = 0.019). IRAIN expression could distinguish French-American-British (FAB) subtypes of AML (P = 0.024). Low IRAIN expression status was associated with shorter event-free survival (EFS) in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.004). IRAIN downregulation was identified as an independent adverse prognostic marker for complete remission (CR) not only in the in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.006) but also in the AML-M4/M5 subgroup (P = 0.033). CONCLUSION Aberrantly low IRAIN expression is closely associated with lower CR rates in AML patients, particularly in non-t(15;17) cytogenetically abnormal AML and M4/M5 AML, suggesting that the determination of IRAIN expression level at diagnosis provides valuable prognostic information, serves as a promising biomarker for evaluating treatment response, and helps predicting clinical outcome of AML patients.
Collapse
Affiliation(s)
- Mohamed A R Hussein
- Residues Laboratories, General Organization for Export & Import Control, Cairo International Airport, Cairo, Egypt
| | - Amr E Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser ElNahass
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Dina El-Dahshan
- Department of Clinical Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Tsai XCH, Sun KJ, Lo MY, Tien FM, Kuo YY, Tseng MH, Peng YL, Chuang YK, Ko BS, Tang JL, Sun HI, Liu MC, Liu CW, Lin CC, Yao M, Chou WC, Hou HA, Tien HF. Poor prognostic implications of myelodysplasia-related mutations in both older and younger patients with de novo AML. Blood Cancer J 2023; 13:4. [PMID: 36599822 DOI: 10.1038/s41408-022-00774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
A set of myelodysplasia-related (MDS-R) gene mutations are incorporated into the 2022 European LeukemiaNet risk classification as adverse genetic factors for acute myeloid leukemia (AML) based on their poor prognostic impact on older patients. The impact of these mutations on younger patients (age < 60 years) remains elusive. In the study of 1213 patients with de novo non-M3 AML, we identified MDS-R mutations in 32.7% of the total cohort, 44.9% of older patients and 23.4% of younger patients. The patients with MDS-R mutations had a significantly lower complete remission rate in both younger and older age groups. With a median follow-up of 9.2 years, the MDS-R group experienced shorter overall survival (P = 0.034 for older and 0.035 for younger patients) and event-free survival (P = 0.004 for older and 0.042 for younger patients). Furthermore, patients with MDS-R mutations more frequently harbored measurable residual disease that was detectable using next generation sequencing at morphological CR than those without MDS-R mutations. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) might ameliorate the negative impact of MDS-R mutations. In summary, AML patients with MDS-R mutations have significantly poorer outcomes regardless of age. More intensive treatment, such as allo-HSCT and/or novel therapies, is warranted for AML patients with MDS-R mutations.
Collapse
Affiliation(s)
- Xavier Cheng-Hong Tsai
- Department of Medical Education and Research, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Jui Sun
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Yen Lo
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Feng-Ming Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Mei-Hsuan Tseng
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Peng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Kuang Chuang
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Bor-Sheng Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan.,Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Jih-Luh Tang
- Department of Hematological Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan.,Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Hsun-I Sun
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Ming-Chih Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Wen Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Mishra S, Liu J, Chai L, Tenen DG. Diverse functions of long noncoding RNAs in acute myeloid leukemia: emerging roles in pathophysiology, prognosis, and treatment resistance. Curr Opin Hematol 2022; 29:34-43. [PMID: 34854833 PMCID: PMC8647777 DOI: 10.1097/moh.0000000000000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Advancements in the next-generation sequencing technologies have identified rare transcripts of long noncoding RNAs (lncRNAs) in the genome of cancers, including in acute myeloid leukemia (AML). The purpose of this review is to highlight the contribution of lncRNAs in AML pathogenesis, prognosis, and chemoresistance. RECENT FINDINGS Several studies have recently reported that deregulated lncRNAs are novel key players in the development of AML and are associated with AML pathophysiology and may serve as prognostic indicators. A few aberrantly expressed lncRNAs that correlated with the recurrent genetic mutations in AML such as NPM1 and RUNX1 have recently been characterized. Moreover, a few lncRNAs in MLL-rearranged leukemia have been described. Additionally, the involvement of lncRNAs in AML chemoresistance has been postulated. SUMMARY Investigating the functional roles of the noncoding regions including lncRNAs, may provide novel insights into the pathophysiology, refine the prognostic schema, and provide novel therapeutic treatment strategies in AML.
Collapse
Affiliation(s)
- Srishti Mishra
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Jun Liu
- Department of Pathology, Brigham & Women's Hospital
| | - Li Chai
- Department of Pathology, Brigham & Women's Hospital
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Nan FY, Gu Y, Xu ZJ, Sun GK, Zhou JD, Zhang TJ, Ma JC, Leng JY, Lin J, Qian J. Abnormal expression and methylation of PRR34-AS1 are associated with adverse outcomes in acute myeloid leukemia. Cancer Med 2021; 10:5283-5296. [PMID: 34227248 PMCID: PMC8335806 DOI: 10.1002/cam4.4085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
It was previously reported that PRR34‐AS1 was overexpressed in some solid tumors. PRR34‐AS1 promoter was shown to have a differential methylation region (DMR), and was hypomethylated in acute myeloid leukemia (AML). Therefore, the present study used real‐time quantitative PCR (RQ‐PCR) to explore the expression characteristics of PRR34‐AS1 in AML. In addition, the correlation between the expression of PRR34‐AS1 and clinical prognosis of AML was determined. The findings of this study indicated that high PRR34‐AS1 expression was bound up with shorter overall survival (OS) in AML patients (p = 0.002). Moreover, patients with high expression of PRR34‐AS1 had significantly lower complete remission (CR) rate compared with those with low expression of PRR34‐AS1 after induction chemotherapy. Furthermore, multivariate analysis confirmed that PRR34‐AS1 expression was an independent factor affecting CR in whole‐AML, non‐APL‐AML, and CN‐AML patients (p = 0.032, 0.039, and 0.036, respectively). Methylation‐specific PCR (MSP) and bisulfite sequencing PCR (BSP) were used to explore the methylation status of PRR34‐AS1. PRR34‐AS1 promoter showed a pattern of hypomethylation in AML patients compared with normal controls (p = 0.122). Notably, of whole‐AML and non‐APL‐AML patients, PRR34‐AS1 hypomethylated patients presented a significantly shorter OS than those with a hypermethylated PRR34‐AS1 (p = 0.010 and 0.037, respectively). Multivariate analysis confirmed that the hypomethylation of PRR34‐AS1 served as an independent prognostic indicator in both whole‐cohort AML and non‐APL‐AML categories (p = 0.057 and 0.018, respectively). In summary, the findings of this study showed that abnormalities in PRR34‐AS1 are associated with poor prognosis in AML. Therefore, monitoring this index may be important in the prognosis of AML and can provide information on effective chemotherapy against the disease.
Collapse
Affiliation(s)
- Fang-Yu Nan
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Guo-Kang Sun
- West China School of Public Health and China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Hola MAM, Ali MAM, ElNahass Y, Salem TAE, Mohamed MR. Expression and prognostic relevance of long noncoding RNAs CRNDE and AOX2P in adult acute myeloid leukemia. Int J Lab Hematol 2021; 43:732-742. [PMID: 34129278 DOI: 10.1111/ijlh.13586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Several long noncoding RNAs (lncRNAs) have been demonstrated to play a critical role in the tumorigenesis of acute myeloid leukemia (AML), and altered expression of certain lncRNAs has been recognized as a potential prognostic marker in AML patients. Here, we sought to determine whether the expression of the lncRNA colorectal neoplasia differentially expressed (CRNDE) and aldehyde oxidase 2 pseudogene (AOX2P) is associated with clinicopathological features and clinical outcome of patients with AML. METHODS CRNDE and AOX2P expression levels were measured in diagnostic blood samples from 200 adult patients with de novo AML, along with 50 healthy control blood samples, using quantitative real-time polymerase chain reaction (qRT-PCR). The association of CRNDE and AOX2P expression with the clinicopathological characteristics and outcome of AML patients was analyzed. RESULTS Upregulated CRNDE expression was independently associated with lower complete remission (CR) rates in the whole cohort of AML (P < .001). AOX2P overexpression was identified as an independent adverse prognostic marker for CR in the CN-AML (P = .009) and non-t (15;17) AML (P < .001) subgroups. Patients with high CRNDE expression had a significantly shorter event-free survival (EFS, whole cohort of AML: P = .017; CN-AML: P = .001; non-t (15;17) AML: P = .006) and inferior overall survival (OS, whole cohort of AML: P = .002; t(15;17) AML: P = .001) than those with low CRNDE expression. EFS and OS did not differ significantly between patients with high AOX2P expression and those with low expression. CONCLUSION Aberrantly upregulated CRNDE expression and, to a lesser extent, AOX2P overexpression, are associated with poor prognosis in AML patients, suggesting that the determination of CRNDE and, perhaps, AOX2P, expression level at diagnosis provides valuable prognostic information, allows refinement of risk stratification, and helps clinical decision-making in AML.
Collapse
Affiliation(s)
- Mona A M Hola
- Cytogenetics and Molecular Biology Laboratory, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yasser ElNahass
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Tarek A E Salem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Menofia, Egypt.,Department of Pathology, Biochemistry Unit, College of Medicine, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Mohamed R Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Hu X, Wang B, Chen Q, Huang A, Fu W, Liu L, Zhang Y, Tang G, Cheng H, Ni X, Gao L, Chen J, Chen L, Zhang W, Yang J, Cao S, Yu L, Wang J. A clinical prediction model identifies a subgroup with inferior survival within intermediate risk acute myeloid leukemia. J Cancer 2021; 12:4912-4923. [PMID: 34234861 PMCID: PMC8247394 DOI: 10.7150/jca.57231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Intermediate risk acute myeloid leukemia (AML) comprises around 50% of AML patients and is featured with heterogeneous clinical outcomes. The study aimed to generate a prediction model to identify intermediate risk AML patients with an inferior survival. We performed targeted next generation sequencing analysis for 121 patients with 2017 European LeukemiaNet-defined intermediate risk AML, revealing 122 mutated genes, with 24 genes mutated in > 10% of patients. A prognostic nomogram characterized by white blood cell count ≥10×109/L at diagnosis, mutated DNMT3A and genes involved in signaling pathways was developed for 110 patients who were with clinical outcomes. Two subgroups were identified: intermediate low risk (ILR; 43.6%, 48/110) and intermediate high risk (IHR; 56.4%, 62/110). The model was prognostic of overall survival (OS) and relapse-free survival (RFS) (OS: Concordance index [C-index]: 0.703, 95%CI: 0.643-0.763; RFS: C-index: 0.681, 95%CI 0.620-0.741), and was successfully validated with two independent cohorts. Allogeneic hematopoietic stem cell transplantation (alloHSCT) reduced the relapse risk of IHR patients (3-year RFS: alloHSCT: 40.0±12.8% vs. chemotherapy: 8.6±5.8%, P= 0.010). The prediction model can help identify patients with an unfavorable prognosis and refine risk-adapted therapy for intermediate risk AML patients.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Bianhong Wang
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Department of Health Statistics, Second Military Medical University, Shanghai 200433, China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd. Beijing, 100176, China
| | - Ying Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Hui Cheng
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Jie Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd. Beijing, 100176, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Hematology and Oncology, Shenzhen University General Hospital; Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
15
|
Peterlin P, Gaschet J, Guillaume T, Garnier A, Eveillard M, Le Bourgeois A, Cherel M, Debord C, Le Bris Y, Theisen O, Godon C, Mahé B, Dubruille V, Wuilleme S, Touzeau C, Gastinne T, Blin N, Lok A, Tessoulin B, Le Gouill S, Moreau P, Béné MC, Chevallier P. A new cytokine-based dynamic stratification during induction is highly predictive of survivals in acute myeloid leukemia. Cancer Med 2020; 10:642-648. [PMID: 33369136 PMCID: PMC7877358 DOI: 10.1002/cam4.3648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to assess the potential impact of the kinetics of serum levels of seven cytokines during induction in acute myeloid leukemia (AML) patients. Indeed, the role of cytokines, in the pathophysiology and response to therapy of AML patients, remains under investigation. Here, we report on the impact of peripheral levels of two cytokines, the Fms‐like tyrosine kinase 3 ligand (FL) and interleukin‐6 (IL‐6), evaluated during first‐line intensive induction. A new risk stratification can be proposed, which supersedes the ELN 2017 classification to predict survivals in AML patients by examining the kinetic profile of these cytokines during the induction phase. It segregates three groups of, respectively, high‐risk, characterized by a stagnation of low FL levels, intermediate risk, with dynamic increasing FL levels and high IL‐6 at day 22, and favorable risk with increasing FL levels but low IL‐6 at day 22.
Collapse
Affiliation(s)
- Pierre Peterlin
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Joelle Gaschet
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Thierry Guillaume
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Marion Eveillard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Hematology Biology, CHU, Nantes, France
| | | | - Michel Cherel
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine Unit, ICO Cancer Center Gauducheau, Saint Herblain, France
| | | | - Yannick Le Bris
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Hematology Biology, CHU, Nantes, France
| | | | | | | | | | | | | | | | | | - Anne Lok
- Hematology Clinic, CHU, Nantes, France
| | | | - Steven Le Gouill
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Philippe Moreau
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Marie-C Béné
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Hematology Biology, CHU, Nantes, France
| | - Patrice Chevallier
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
16
|
Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: The next frontier in precision cancer medicine. Semin Cancer Biol 2020; 84:50-59. [PMID: 32950605 DOI: 10.1016/j.semcancer.2020.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/16/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
Transcriptomics, which encompasses assessments of alternative splicing and alternative polyadenylation, identification of fusion transcripts, explorations of noncoding RNAs, transcript annotation, and discovery of novel transcripts, is a valuable tool for understanding cancer mechanisms and identifying biomarkers. Recent advances in high-throughput technologies have enabled large-scale gene expression profiling. Importantly, RNA expression profiling of tumor tissue has been successfully used to determine clinically actionable molecular alterations. The WINTHER precision medicine clinical trial was the first prospective trial in diverse solid malignancies that assessed both genomics and transcriptomics to match treatments to specific molecular alterations. The use of transcriptome analysis in WINTHER and other trials increased the number of targetable -omic changes compared to genomic profiling alone. Other applications of transcriptomics involve the evaluation of tumor and circulating noncoding RNAs as predictive and prognostic biomarkers, the improvement of risk stratification by the use of prognostic and predictive multigene assays, the identification of fusion transcripts that drive tumors, and an improved understanding of the impact of DNA changes as some genomic alterations are silenced at the RNA level. Finally, RNA sequencing and gene expression analysis have been incorporated into clinical trials to identify markers predicting response to immunotherapy. Many issues regarding the complexity of the analysis, its reproducibility and variability, and the interpretation of the results still need to be addressed. The integration of transcriptomics with genomics, proteomics, epigenetics, and tumor immune profiling will improve biomarker discovery and our understanding of disease mechanisms and, thereby, accelerate the implementation of precision oncology.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA.
| | - Elena Fountzilas
- Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, Greece
| | - Leonidas Bleris
- Bioengineering Department, The University of Texas at Dallas, Richardson, TX, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| |
Collapse
|
17
|
AML risk stratification models utilizing ELN-2017 guidelines and additional prognostic factors: a SWOG report. Biomark Res 2020; 8:29. [PMID: 32817791 PMCID: PMC7425159 DOI: 10.1186/s40364-020-00208-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Background The recently updated European LeukemiaNet risk stratification guidelines combine cytogenetic abnormalities and genetic mutations to provide the means to triage patients with acute myeloid leukemia for optimal therapies. Despite the identification of many prognostic factors, relatively few have made their way into clinical practice. Methods In order to assess and improve the performance of the European LeukemiaNet guidelines, we developed novel prognostic models using the biomarkers from the guidelines, age, performance status and select transcript biomarkers. The models were developed separately for mononuclear cells and viable leukemic blasts from previously untreated acute myeloid leukemia patients (discovery cohort, N = 185) who received intensive chemotherapy. Models were validated in an independent set of similarly treated patients (validation cohort, N = 166). Results Models using European LeukemiaNet guidelines were significantly associated with clinical outcomes and, therefore, utilized as a baseline for comparisons. Models incorporating age and expression of select transcripts with biomarkers from European LeukemiaNet guidelines demonstrated higher area under the curve and C-statistics but did not show a substantial improvement in performance in the validation cohort. Subset analyses demonstrated that models using only the European LeukemiaNet guidelines were a better fit for younger patients (age < 55) than for older patients. Models integrating age and European LeukemiaNet guidelines visually showed more separation between risk groups in older patients. Models excluding results for ASXL1, CEBPA, RUNX1 and TP53, demonstrated that these mutations provide a limited overall contribution to risk stratification across the entire population, given the low frequency of mutations and confounding risk factors. Conclusions While European LeukemiaNet guidelines remain a critical tool for triaging patients with acute myeloid leukemia, the findings illustrate the need for additional prognostic factors, including age, to improve risk stratification.
Collapse
|
18
|
Gao J, Wang F, Wu P, Chen Y, Jia Y. Aberrant LncRNA Expression in Leukemia. J Cancer 2020; 11:4284-4296. [PMID: 32368311 PMCID: PMC7196264 DOI: 10.7150/jca.42093] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Leukemia is a common malignant cancer of the hematopoietic system, whose pathogenesis has not been fully elucidated. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides without protein-coding function. Recent studies report their role in cellular processes such as the regulation of gene expression, as well as in the carcinogenesis, occurrence, development, and prognosis of various tumors. Evidence indicating relationships between a variety of lncRNAs and leukemia pathophysiology has increased dramatically in the previous decade, with specific lncRNAs expected to serve as diagnostic biomarkers, novel therapeutic targets, and predictors of clinical outcomes. Furthermore, these lncRNAs might offer insight into disease pathogenesis and novel treatment options. This review summarizes progress in studies on the role(s) of lncRNAs in leukemia.
Collapse
Affiliation(s)
- Jie Gao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fujue Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pengqiang Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingying Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
19
|
Dai YJ, Hu F, He SY, Wang YY. Epigenetic landscape analysis of lncRNAs in acute myeloid leukemia with DNMT3A mutations. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:318. [PMID: 32355762 PMCID: PMC7186694 DOI: 10.21037/atm.2020.02.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Acute myeloid leukemia (AML) is a type of cancer that consists of a group of hematological malignancies with high heterogeneity. DNA methyltransferase 3A (DNMT3A)-mutated AML patients have a poor prognosis. Some long non-coding RNAs (lncRNAs) have been reported to enhance therapeutic sensitivity, and so could affect the overall survival rate of elderly cytogenetically normal acute myeloid leukemia (CN-AML) patients; however, studies on the lncRNA signature in DNMT3A-mutated AML are rare. Method The DNMT3A R878H conditional knock-in mouse model was constructed to explore the lncRNAs of DNMT3A mutation by using the Cuffcomparison method. Cis and trans regulation networks were used to predict candidate genes. The expression levels in leukemic cell lines and the prognostic index of these candidate genes were analyzed with the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and OncoLnc databases. The data for each sample were statistically analyzed using GraphPad Prism. Results In this study, we applied the DNMT3A R878H conditional knock-in mouse model to explore the lncRNA epigenetic landscape of DNMT3A mutation by using the Cuffcomparison method. Twenty-three differentially expressed lncRNAs were identified in Dnmt3aR878H/WTMx1-Cre+ mice. We next predicted the downstream targetable genes regulated by these lncRNAs through cis and trans regulation networks and found 124 candidate genes are related to these lncRNAs. In further analysis of 124 genes, we found that increased mRNA expression levels of interleukin 1 receptor type 2 (IL1R2), Krüppel-like factor 13 (KLF13), ATPase H+ transporting V1 subunit A (ATP6V1A), proteasome 26S Subunit, non-ATPase 3 (PSMD3), and pyrroline-5-carboxylate reductase 2 (PYCR2) were associated with poor prognosis in AML. Functional analysis of these genes demonstrated that the pathways involved in autophagy, cell cycle, and hematopoietic stem cell differentiation were more enriched in Dnmt3aR878H/WTMx1-Cre+ mice. Conclusion Our study was the first to use DNMT3A R878H conditional knock-in mouse model to predict the specific lncRNAs regulated by the DNMT3A mutation in AML. Six candidate genes were found to be associated with DNMT3A mutation with poor prognosis. Our results provided a possible treatment strategy for this disease.
Collapse
Affiliation(s)
- Yu-Jun Dai
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China.,Center State Key Laboratory of Oncology in South China, Guangzhou 510000, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Fang Hu
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China.,Center State Key Laboratory of Oncology in South China, Guangzhou 510000, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Si-Yuan He
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
20
|
Yuan Y, Wang Q, Ma SL, Xu LQ, Liu MY, Han B, Du N, Sun XL, Yin XL, Cao FF. lncRNA PCAT-1 interacting with FZD6 contributes to the malignancy of acute myeloid leukemia cells through activating Wnt/β-catenin signaling pathway. Am J Transl Res 2019; 11:7104-7114. [PMID: 31814913 PMCID: PMC6895506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Accumulating evidence has suggested the involvement of long noncoding RNAs (lncRNAs) on the acute myeloid leukemia (AML). Therefore, this study aimed to investigate the unknown function of lncRNA Prostate cancer-associated transcript-1 (PCAT-1) in AML cells. Our data found that PCAT-1 was highly expressed in AML-M1/2 and AML-M3 patients than normal controls and its expression was significantly up-regulated in AML cell lines Kasumi-6 and HL-60. The functional experiments demonstrated that knockdown of PCAT-1 remarkably inhibited proliferation, arrested cell cycle progression and triggered apoptosis of AML cells. Mechanistically, we revealed that PCAT-1 could directly interact with FZD6 protein to regulate its stability. Overexpression of FZD6 partly abolished the effects of PCAT-1 silencing on AML cells. Our integrated experiments then suggested that PCAT-1 could activate the Wnt/β-catenin signaling pathway in an FZD6-dependent manner. Taken together, the present study indicated that PCAT-1 interacting with FZD6 to activate Wnt/β-catenin signaling, which may play an important role in the pathogenesis of AML.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Qian Wang
- Department of Nuclear Medicine, The 971 Hospital of The Chinese People’s Liberation ArmyQingdao 266000, Shandong Province, People’s Republic of China
| | - Shu Li Ma
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Long Qiang Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Meng Yang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Bin Han
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Ning Du
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Xiao Lan Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Xiao Lin Yin
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| | - Fang Fang Cao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, People’s Republic of China
| |
Collapse
|
21
|
Gourvest M, Brousset P, Bousquet M. Long Noncoding RNAs in Acute Myeloid Leukemia: Functional Characterization and Clinical Relevance. Cancers (Basel) 2019; 11:cancers11111638. [PMID: 31653018 PMCID: PMC6896193 DOI: 10.3390/cancers11111638] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is the most common form of leukemia in adults with an incidence of 4.3 per 100,000 cases per year. Historically, the identification of genetic alterations in AML focused on protein-coding genes to provide biomarkers and to understand the molecular complexity of AML. Despite these findings and because of the heterogeneity of this disease, questions as to the molecular mechanisms underlying AML development and progression remained unsolved. Recently, transcriptome-wide profiling approaches have uncovered a large family of long noncoding RNAs (lncRNAs). Larger than 200 nucleotides and with no apparent protein coding potential, lncRNAs could unveil a new set of players in AML development. Originally considered as dark matter, lncRNAs have critical roles to play in the different steps of gene expression and thus affect cellular homeostasis including proliferation, survival, differentiation, migration or genomic stability. Consequently, lncRNAs are found to be differentially expressed in tumors, notably in AML, and linked to the transformation of healthy cells into leukemic cells. In this review, we aim to summarize the knowledge concerning lncRNAs functions and implications in AML, with a particular emphasis on their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Morgane Gourvest
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| | - Pierre Brousset
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| | - Marina Bousquet
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM-Université Paul Sabatier Toulouse III-CNRS ERL5294, 31037 Toulouse, France.
| |
Collapse
|
22
|
Zimta AA, Tomuleasa C, Sahnoune I, Calin GA, Berindan-Neagoe I. Long Non-coding RNAs in Myeloid Malignancies. Front Oncol 2019; 9:1048. [PMID: 31681586 PMCID: PMC6813191 DOI: 10.3389/fonc.2019.01048] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) represents 80% of adult leukemias and 15-20% of childhood leukemias. AML are characterized by the presence of 20% blasts or more in the bone marrow, or defining cytogenetic abnormalities. Laboratory diagnoses of myelodysplastic syndromes (MDS) depend on morphological changes based on dysplasia in peripheral blood and bone marrow, including peripheral blood smears, bone marrow aspirate smears, and bone marrow biopsies. As leukemic cells are not functional, the patient develops anemia, neutropenia, and thrombocytopenia, leading to fatigue, recurrent infections, and hemorrhage. The genetic background and associated mutations in AML blasts determine the clinical course of the disease. Over the last decade, non-coding RNAs transcripts that do not codify for proteins but play a role in regulation of functions have been shown to have multiple applications in the diagnosis, prognosis and therapeutic approach of various types of cancers, including myeloid malignancies. After a comprehensive review of current literature, we found reports of multiple long non-coding RNAs (lncRNAs) that can differentiate between AML types and how their exogenous modulation can dramatically change the behavior of AML cells. These lncRNAs include: H19, LINC00877, RP11-84C10, CRINDE, RP11848P1.3, ZNF667-AS1, AC111000.4-202, SFMBT2, LINC02082-201, MEG3, AC009495.2, PVT1, HOTTIP, SNHG5, and CCAT1. In addition, by performing an analysis on available AML data in The Cancer Genome Atlas (TCGA), we found 10 lncRNAs with significantly differential expression between patients in favorable, intermediate/normal, or poor cytogenetic risk categories. These are: DANCR, PRDM16-DT, SNHG6, OIP5-AS1, SNHG16, JPX, FTX, KCNQ1OT1, TP73-AS1, and GAS5. The identification of a molecular signature based on lncRNAs has the potential for have deep clinical significance, as it could potentially help better define the evolution from low-grade MDS to high-grade MDS to AML, changing the course of therapy. This would allow clinicians to provide a more personalized, patient-tailored therapeutic approach, moving from transfusion-based therapy, as is the case for low-grade MDS, to the introduction of azacytidine-based chemotherapy or allogeneic stem cell transplantation, which is the current treatment for high-grade MDS.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Iman Sahnoune
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Wang Y. Comprehensive long non-coding RNA expression profiling by RNA sequencing reveals potential biomarkers for acute myeloid leukemia risk. Cancer Biomark 2019; 26:93-108. [DOI: 10.3233/cbm-190215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Zhang N, Chen Y, Shen Y, Lou S, Deng J. Comprehensive analysis the potential biomarkers for the high-risk of childhood acute myeloid leukemia based on a competing endogenous RNA network. Blood Cells Mol Dis 2019; 79:102352. [PMID: 31404908 DOI: 10.1016/j.bcmd.2019.102352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/01/2019] [Indexed: 01/13/2023]
Abstract
Acute myeloid leukemia (AML) is a common form of hematological malignancies, the discovery of non-coding RNA (ncRNA) plays an important role in diverse biological processes including hematopoietic differentiation and proliferation. However, the interaction mechanism of key RNAs and their regulatory network in childhood AML are still to be elucidated. RNA profiles were downloaded from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database and identified specific lncRNAs, miRNAs, and mRNAs in high-risk group of childhood AML. A lncRNA-mRNA-miRNA ceRNA network in childhood AML was constructed. A total of 2064 mRNAs, 615 lncRNAs, and 60 miRNAs were identified as significantly differentially expressed, and 13 lncRNAs, 7 miRNAs, and 67 mRNAs were incorporated in the ceRNA network. Functional analysis showed that these DEmRNAs were significantly enriched in Ras signaling pathway, TGF-beta signaling pathway, and other tumor-related pathways. Among the network, 10 RNAs (LINC00471, hsa-mir-100, hsa-mir-150, ANP32E, ERMP1, MYO1B, PAPD7, PTGIS, TERF1, and VEGFA) was associated with high-risk group of childhood AML and functions were significant for prognosis. Then, these findings together provide a new insight into the pathogenesis of high-risk group of childhood AML that can assist clinicians clarify the function of lncRNA to guide the treatment and in-depth study.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing 400010, PR China
| | - Ying Chen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing 400010, PR China
| | - Yan Shen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing 400010, PR China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing 400010, PR China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing 400010, PR China.
| |
Collapse
|
25
|
Ng M, Heckl D, Klusmann JH. The Regulatory Roles of Long Noncoding RNAs in Acute Myeloid Leukemia. Front Oncol 2019; 9:570. [PMID: 31338324 PMCID: PMC6629768 DOI: 10.3389/fonc.2019.00570] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023] Open
Abstract
In this post-genomic era, long noncoding RNAs (lncRNAs) are rapidly gaining recognition for their crucial roles across diverse biological processes and contexts. The human blood system is no exception, where dozens of lncRNAs have been established as regulators of normal and/or malignant hematopoiesis, and where ongoing works continue to uncover novel lncRNA functions. Our review focuses on lncRNAs that are involved in the pathogenesis of acute myeloid leukemia (AML) and the mechanisms through which they control gene expression in this disease context. We also comment on genome-wide sequencing or profiling studies that have implicated large sets of lncRNAs in AML pathophysiology.
Collapse
Affiliation(s)
- Michelle Ng
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|