1
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Rascle P, Woolley G, Jost S, Manickam C, Reeves RK. NK cell education: Physiological and pathological influences. Front Immunol 2023; 14:1087155. [PMID: 36742337 PMCID: PMC9896005 DOI: 10.3389/fimmu.2023.1087155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Natural killer (NK) cells represent a critical defense against viral infections and cancers. NK cells require integration of activating and inhibitory NK cell receptors to detect target cells and the balance of these NK cell inputs defines the global NK cell response. The sensitivity of the response is largely defined by interactions between self-major histocompatibility complex class I (MHC-I) molecules and specific inhibitory NK cell receptors, so-called NK cell education. Thus, NK cell education is a crucial process to generate tuned effector NK cell responses in different diseases. In this review, we discuss the relationship between NK cell education and physiologic factors (type of self-MHC-I, self-MHC-I allelic variants, variant of the self-MHC-I-binding peptides, cytokine effects and inhibitory KIR expression) underlying NK cell education profiles (effector function or metabolism). Additionally, we describe the broad-spectrum of effector educated NK cell functions on different pathologies (such as HIV-1, CMV and tumors, among others).
Collapse
Affiliation(s)
- Philippe Rascle
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
4
|
A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against heterologous lethal Lassa fever. Cell Rep 2022; 40:111094. [PMID: 35858566 DOI: 10.1016/j.celrep.2022.111094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Lassa virus (LASV) is recognized by the World Health Organization as one of the top five pathogens likely to cause a severe outbreak. A recent unprecedented resurgence of LASV in Nigeria caused by genetically diverse strains underscores the need for licensed medical countermeasures. Single-injection vaccines that can rapidly control outbreaks and confer long-term immunity are needed. Vaccination of cynomolgus monkeys with a recombinant vesicular stomatitis virus vector expressing the glycoprotein precursor of LASV lineage IV strain Josiah (rVSVΔG-LASV-GPC) induces fast-acting protection in monkeys challenged 3 or 7 days later with a genetically heterologous lineage II isolate of LASV from Nigeria, while nonspecifically vaccinated control animals succumb to challenge. The rVSVΔG-LASV-GPC vaccine induces rapid activation of adaptive immunity and the transcription of natural killer (NK) cell-affiliated mRNAs. This study demonstrates that rVSVΔG-LASV-GPC may provide rapid protection in humans against LASV infections in cases where immediate public-health intervention is required.
Collapse
|
5
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
6
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
7
|
Maucourant C, Nonato Queiroz GA, Corneau A, Leandro Gois L, Meghraoui-Kheddar A, Tarantino N, Bandeira AC, Samri A, Blanc C, Yssel H, Rios Grassi MF, Vieillard V. NK Cell Responses in Zika Virus Infection Are Biased towards Cytokine-Mediated Effector Functions. THE JOURNAL OF IMMUNOLOGY 2021; 207:1333-1343. [PMID: 34408012 DOI: 10.4049/jimmunol.2001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.
Collapse
Affiliation(s)
- Christopher Maucourant
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Aurelien Corneau
- UPMC Univ Paris 06, Plateforme de Cytométrie, UMS30-LUMIC, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris, France; and
| | - Luana Leandro Gois
- FIOCRUZ, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Aida Meghraoui-Kheddar
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Nadine Tarantino
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Assia Samri
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Catherine Blanc
- UPMC Univ Paris 06, Plateforme de Cytométrie, UMS30-LUMIC, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris, France; and
| | - Hans Yssel
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Vincent Vieillard
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France;
| |
Collapse
|
8
|
Naemi FMA, Al-Adwani S, Al-Khatabi H, Al-Nazawi A. Frequency of HLA alleles among COVID-19 infected patients: Preliminary data from Saudi Arabia. Virology 2021; 560:1-7. [PMID: 34015620 PMCID: PMC8100873 DOI: 10.1016/j.virol.2021.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
HLA polymorphism is one of the genetic factors that may be associated with variations in susceptibility to COVID-19 infection. In this study, the frequency of HLA alleles among Saudi patients infected with COVID-19 was examined. The association with infection susceptibility and mortality was evaluated. This study included 135 Saudi COVID-19-infected patients (106 recovered and 29 died) who were admitted to hospitals because of their symptoms, and 135 healthy controls. HLA class I (A, B, C) and class II (DRB1, DQB1) genotyping was performed using the molecular method (PCR-rSSO). In this study, there was a significant increase in the frequency of HLA-A*01, B*56 and C*01 among infected patients compared to the control group (12.1% vs. 5.2%, p = 0.004, 3.7% vs. 0%, p = 0.006, 4.4% vs. 1.5%, p = 0.042, respectively). Moreover, there was a significant increase in the frequency of HLA-A*03 and C*06 among fatal patients compared to infected patients (13.8% vs. 5.7%, p = 0.036, 32.8% vs. 17.5%, p = 0.011, respectively). In terms of HLA class II, HLA-DRB1*04 was significantly higher in the control group compared to infected patients (27.4% vs. 16.3%, p = 0.002), while HLA-DRB1*08 was significantly higher in the infected group compared to the control (4.8% vs. 0.7%, p = 0.004). After statistical correction of the p value, A*01, B*56, DRB1*04 and DRB1*08 remained statistically significant (pc = 0.04, pc = 0.03, pc = 0.014 and pc = 0.028). This initial data suggested that individual HLA genotypes might play a role in determining susceptibility to COVID-19 infection and infection outcome. However, examining a larger sample size from different populations is required to determine a powerful association for clinical application.
Collapse
Affiliation(s)
- Fatmah M A Naemi
- Histocompatibility and Immunogenetics Laboratory, King Fahd General Hospital, Ministry of Health, Jeddah, Saudi Arabia.
| | - Shurooq Al-Adwani
- Histocompatibility and Immunogenetics Laboratory, King Fahd General Hospital, Ministry of Health, Jeddah, Saudi Arabia.
| | - Heba Al-Khatabi
- Center of Excellence in Genomic Medicine Research, King Fahd Medical Research Center, King Abdul-Aziz University, Jeddah, Saudi Arabia.
| | | |
Collapse
|
9
|
Diaz-Salazar C, Sun JC. Natural killer cell responses to emerging viruses of zoonotic origin. Curr Opin Virol 2020; 44:97-111. [PMID: 32784125 PMCID: PMC7415341 DOI: 10.1016/j.coviro.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Emerging viral diseases pose a major threat to public health worldwide. Nearly all emerging viruses, including Ebola, Dengue, Nipah, West Nile, Zika, and coronaviruses (including SARS-Cov2, the causative agent of the current COVID-19 pandemic), have zoonotic origins, indicating that animal-to-human transmission constitutes a primary mode of acquisition of novel infectious diseases. Why these viruses can cause profound pathologies in humans, while natural reservoir hosts often show little evidence of disease is not completely understood. Differences in the host immune response, especially within the innate compartment, have been suggested to be involved in this divergence. Natural killer (NK) cells are innate lymphocytes that play a critical role in the early antiviral response, secreting effector cytokines and clearing infected cells. In this review, we will discuss the mechanisms through which NK cells interact with viruses, their contribution towards maintaining equilibrium between the virus and its natural host, and their role in disease progression in humans and other non-natural hosts.
Collapse
Affiliation(s)
- Carlos Diaz-Salazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
10
|
Rowaiye AB, Onuh OA, Oli AN, Okpalefe OA, Oni S, Nwankwo EJ. The pandemic COVID-19: a tale of viremia, cellular oxidation and immune dysfunction. Pan Afr Med J 2020; 36:188. [PMID: 32952832 PMCID: PMC7467617 DOI: 10.11604/pamj.2020.36.188.23476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2 is a tester of the immune system. While it spares the healthy, it brings severe morbidity and in a few cases, mortality to its victims. This article aims at critically reviewing the key virulence factors of COVID-19 which are the viremia, cellular oxidation and immune dysfunction. The averse economic effect of certain disease control measures such as national lock-downs and social distancing, though beneficial, makes them unsustainable. Worse still is the fact that wild animals and domestic pets are carriers of SARS-CoV-2 suggesting that the disease would take longer than expected to be eradicated globally. A better understanding of the pathological dynamics of COVID-19 would help the general populace to prepare for possible infection by the invisible enemy. While the world prospects for vaccines and therapeutic agents against the SARS-CoV-2, clinicians should also seek to modulate the immune system for optimum performance. Immunoprophylactic and immunomodulatory strategies are recommended for the different strata of stakeholders combating the pandemic with the hope that morbidities and mortalities associated with COVID-19 would be drastically reduced.
Collapse
Affiliation(s)
- Adekunle Babajide Rowaiye
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharm Scs, Nnamdi Azikiwe University, Awka, Nigeria
| | - Olukemi Adejoke Onuh
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharm Scs, Nnamdi Azikiwe University, Awka, Nigeria
| | | | - Solomon Oni
- Bioresources Development Centre, Isanlu, National Biotechnology Development Agency, Abuja, Nigeria
| | | |
Collapse
|
11
|
In-silico identification of the vaccine candidate epitopes against the Lassa virus hemorrhagic fever. Sci Rep 2020; 10:7667. [PMID: 32376973 PMCID: PMC7203123 DOI: 10.1038/s41598-020-63640-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/21/2020] [Indexed: 11/18/2022] Open
Abstract
Lassa virus (LASV), a member of the Arenaviridae, is an ambisense RNA virus that causes severe hemorrhagic fever with a high fatality rate in humans in West and Central Africa. Currently, no FDA approved drugs or vaccines are available for the treatment of LASV fever. The LASV glycoprotein complex (GP) is a promising target for vaccine or drug development. It is situated on the virion envelope and plays key roles in LASV growth, cell tropism, host range, and pathogenicity. In an effort to discover new LASV vaccines, we employ several sequence-based computational prediction tools to identify LASV GP major histocompatibility complex (MHC) class I and II T-cell epitopes. In addition, many sequence- and structure-based computational prediction tools were used to identify LASV GP B-cell epitopes. The predicted T- and B-cell epitopes were further filtered based on the consensus approach that resulted in the identification of thirty new epitopes that have not been previously tested experimentally. Epitope-allele complexes were obtained for selected strongly binding alleles to the MHC-I T-cell epitopes using molecular docking and the complexes were relaxed with molecular dynamics simulations to investigate the interaction and dynamics of the epitope-allele complexes. These predictions provide guidance to the experimental investigations and validation of the epitopes with the potential for stimulating T-cell responses and B-cell antibodies against LASV and allow the design and development of LASV vaccines.
Collapse
|
12
|
Abstract
The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
13
|
Population structure of Lassa Mammarenavirus in West Africa. Viruses 2020; 12:v12040437. [PMID: 32294960 PMCID: PMC7232344 DOI: 10.3390/v12040437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 01/01/2023] Open
Abstract
Lassa mammarenavirus (LASV) is the etiologic agent of Lassa fever. In endemic regions in West Africa, LASV genetic diversity tends to cluster by geographic area. Seven LASV lineages are recognized, but the role of viral genetic determinants on disease presentation in humans is uncertain. We investigated the geographic structure and distribution of LASV in West Africa. We found strong spatial clustering of LASV populations, with two major east–west and north–south diversity gradients. Analysis of ancestry components indicated that known LASV lineages diverged from an ancestral population that most likely circulated in Nigeria, although alternative locations, such as Togo, cannot be excluded. Extant sequences carrying the largest contribution of this ancestral population include the prototype Pinneo strain, the Togo isolates, and a few viruses isolated in Nigeria. The LASV populations that experienced the strongest drift circulate in Mali and the Ivory Coast. By focusing on sequences form a single LASV sublineage (IIg), we identified an ancestry component possibly associated with protection from a fatal disease outcome. Although the same ancestry component tends to associate with lower viral loads in plasma, the small sample size requires that these results are treated with extreme caution.
Collapse
|
14
|
The Evolutionary Arms Race between Virus and NK Cells: Diversity Enables Population-Level Virus Control. Viruses 2019; 11:v11100959. [PMID: 31627371 PMCID: PMC6832630 DOI: 10.3390/v11100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses and natural killer (NK) cells have a long co-evolutionary history, evidenced by patterns of specific NK gene frequencies in those susceptible or resistant to infections. The killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands together form the most polymorphic receptor-ligand partnership in the human genome and govern the process of NK cell education. The KIR and HLA genes segregate independently, thus creating an array of reactive potentials within and between the NK cell repertoires of individuals. In this review, we discuss the interplay between NK cell education and adaptation with virus infection, with a special focus on three viruses for which the NK cell response is often studied: human immunodeficiency virus (HIV), hepatitis C virus (HCV) and human cytomegalovirus (HCMV). Through this lens, we highlight the complex co-evolution of viruses and NK cells, and their impact on viral control.
Collapse
|
15
|
Differential Immune Responses to Hemorrhagic Fever-Causing Arenaviruses. Vaccines (Basel) 2019; 7:vaccines7040138. [PMID: 31581720 PMCID: PMC6963578 DOI: 10.3390/vaccines7040138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections.
Collapse
|