1
|
Ettenger RB, Seifert ME, Blydt-Hansen T, Briscoe DM, Holman J, Weng PL, Srivastava R, Fleming J, Malekzadeh M, Pearl M. Detection of Subclinical Rejection in Pediatric Kidney Transplantation: Current and Future Practices. Pediatr Transplant 2024; 28:e14836. [PMID: 39147695 DOI: 10.1111/petr.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The successes in the field of pediatric kidney transplantation over the past 60 years have been extraordinary. Year over year, there have been significant improvements in short-term graft survival. However, improvements in longer-term outcomes have been much less apparent. One important contributor has been the phenomenon of low-level rejection in the absence of clinical manifestations-so-called subclinical rejection (SCR). METHODS Traditionally, rejection has been diagnosed by changes in clinical parameters, including but not limited to serum creatinine and proteinuria. This review examines the shortcomings of this approach, the effects of SCR on kidney allograft outcome, the benefits and drawbacks of surveillance biopsies to identify SCR, and new urine and blood biomarkers that define the presence or absence of SCR. RESULTS Serum creatinine is an unreliable index of SCR. Surveillance biopsies are the method most utilized to detect SCR. However, these have significant drawbacks. New biomarkers show promise. These biomarkers include blood gene expression profiles and donor derived-cell free DNA; urine gene expression profiles; urinary cytokines, chemokines, and metabolomics; and other promising blood and urine tests. CONCLUSION Specific emphasis is placed on studies carried out in pediatric kidney transplant recipients. TRIAL REGISTRATION ClinicalTrials.gov: NCT03719339.
Collapse
Affiliation(s)
- Robert B Ettenger
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael E Seifert
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tom Blydt-Hansen
- Multi-Organ Transplant Program, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Briscoe
- Division of Nephrology, Department of Pediatrics Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Holman
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Patricia L Weng
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rachana Srivastava
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James Fleming
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Mohammed Malekzadeh
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Meghan Pearl
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
de Nattes T, Beadle J, Roufosse C. Biopsy-based transcriptomics in the diagnosis of kidney transplant rejection. Curr Opin Nephrol Hypertens 2024; 33:273-282. [PMID: 38411022 PMCID: PMC10990030 DOI: 10.1097/mnh.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW The last year has seen considerable progress in translational research exploring the clinical utility of biopsy-based transcriptomics of kidney transplant biopsies to enhance the diagnosis of rejection. This review will summarize recent findings with a focus on different platforms, potential clinical applications, and barriers to clinical adoption. RECENT FINDINGS Recent literature has focussed on using biopsy-based transcriptomics to improve diagnosis of rejection, in particular antibody-mediated rejection. Different techniques of gene expression analysis (reverse transcriptase quantitative PCR, microarrays, probe-based techniques) have been used either on separate samples with ideally preserved RNA, or on left over tissue from routine biopsy processing. Despite remarkable consistency in overall patterns of gene expression, there is no consensus on acceptable indications, or whether biopsy-based transcriptomics adds significant value at reasonable cost to current diagnostic practice. SUMMARY Access to biopsy-based transcriptomics will widen as regulatory approvals for platforms and gene expression models develop. Clinicians need more evidence and guidance to inform decisions on how to use precious biopsy samples for biopsy-based transcriptomics, and how to integrate results with standard histology-based diagnosis.
Collapse
Affiliation(s)
- Tristan de Nattes
- Univ Rouen Normandie, INSERM U1234, CHU Rouen, Department of Nephrology, Rouen, France
| | - Jack Beadle
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Candice Roufosse
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
3
|
Steinbrink JM, Miller C, Myers RA, Sanoff S, Mazur A, Burke TW, Byrns J, Jackson AM, Luo X, McClain MT. Transcriptional responses define dysregulated immune activation in Hepatitis C (HCV)-naïve recipients of HCV-infected donor kidneys. PLoS One 2023; 18:e0280602. [PMID: 36701416 PMCID: PMC9879532 DOI: 10.1371/journal.pone.0280602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Renal transplantation from hepatitis C (HCV) nucleic acid amplification test-positive (NAAT-positive) donors to uninfected recipients has greatly increased the organ donation pool. However, there is concern for adverse outcomes in these recipients due to dysregulated immunologic activation secondary to active inflammation from acute viremia at the time of transplantation. This includes increased rates of cytomegalovirus (CMV) DNAemia and allograft rejection. In this study, we evaluate transcriptional responses in circulating leukocytes to define the character, timing, and resolution of this immune dysregulation and assess for biomarkers of adverse outcomes in transplant patients. We enrolled 67 renal transplant recipients (30 controls, 37 HCV recipients) and performed RNA sequencing on serial samples from one, 3-, and 6-months post-transplant. CMV DNAemia and allograft rejection outcomes were measured. Least absolute shrinkage and selection operator was utilized to develop gene expression classifiers predictive of clinical outcomes. Acute HCV incited a marked transcriptomic response in circulating leukocytes of renal transplant recipients in the acute post-transplant setting, despite the presence of immunosuppression, with 109 genes significantly differentially expressed compared to controls. These HCV infection-associated genes were reflective of antiviral immune pathways and generally resolved by the 3-month timepoint after sustained viral response (SVR) for HCV. Differential gene expression was also noted from patients who developed CMV DNAemia or allograft rejection compared to those who did not, although transcriptomic classifiers could not accurately predict these outcomes, likely due to sample size and variable time-to-event. Acute HCV infection incites evidence of immune activation and canonical antiviral responses in the human host even in the presence of systemic immunosuppression. After treatment of HCV with antiviral therapy and subsequent aviremia, this immune activation resolves. Changes in gene expression patterns in circulating leukocytes are associated with some clinical outcomes, although larger studies are needed to develop accurate predictive classifiers of these events.
Collapse
Affiliation(s)
- Julie M. Steinbrink
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC, United States of America
- * E-mail:
| | - Cameron Miller
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Rachel A. Myers
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Scott Sanoff
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Anna Mazur
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Thomas W. Burke
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Jennifer Byrns
- Department of Pharmacy, Duke University Medical Center, Durham, NC, United States of America
| | - Annette M. Jackson
- Departments of Surgery and Immunology, Duke University, Durham, NC, United States of America
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Micah T. McClain
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC, United States of America
- Division of Infectious Diseases, Durham Veterans Affairs Health Care System, Durham, NC, United States of America
| |
Collapse
|
4
|
Sedej I, Štalekar M, Tušek Žnidarič M, Goričar K, Kojc N, Kogovšek P, Dolžan V, Arnol M, Lenassi M. Extracellular vesicle-bound DNA in urine is indicative of kidney allograft injury. J Extracell Vesicles 2022; 11:e12268. [PMID: 36149031 PMCID: PMC9503341 DOI: 10.1002/jev2.12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
Extracellular vesicle‐bound DNA (evDNA) is an understudied extracellular vesicle (EV) cargo, particularly in cancer‐unrelated research. Although evDNA has been detected in urine, little is known about its characteristics, localization, and biomarker potential for kidney pathologies. To address this, we enriched EVs from urine of well‐characterized kidney transplant recipients undergoing allograft biopsy, characterized their evDNA and its association to allograft injury. The SEC‐based method enriched pure EVs from urine of kidney transplant recipients, regardless of the allograft injury. Urinary evDNA represented up to 29.2 ± 8% (mean ± SD) of cell‐free DNA (cfDNA) and correlated with cfDNA in several characteristics but was less fragmented (P < 0.001). Importantly, using DNase treatment and immunogold labelling TEM, we demonstrated that evDNA was bound to the surface of urinary EVs. Normalised evDNA yield (P = 0.042) and evDNA copy number (P = 0.027) significantly differed between patients with normal histology, rejection injury and non‐rejection injury, the later groups having significantly larger uEVs (mean diameter, P = 0.045) and more DNA bound per uEV. ddDNA is detectable in uEV samples of kidney allograft recipients, but its quantity is highly variable. In a proof‐of‐principle study, several evDNA characteristics correlated with clinical and histological parameters (P = 0.040), supporting that the potential of evDNA as a biomarker for kidney allograft injury should be further investigated.
Collapse
Affiliation(s)
- Ivana Sedej
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Štalekar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Nong W, Huang F, Mao F, Lao D, Gong Z, Huang W. DCAF12 and HSPA1A May Serve as Potential Diagnostic Biomarkers for Myasthenia Gravis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8587273. [PMID: 35655486 PMCID: PMC9155969 DOI: 10.1155/2022/8587273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease that severely affects the life quality of patients. This study explores the differences in immune cell types between MG and healthy control and the role of immune-related genes in the diagnosis of MG. Methods The GSE85452 dataset was downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma package to determine differentially expressed genes (DEGs) between patients with MG and the control group. Differentially expressed immune cells were analyzed using single-sample gene set enrichment analysis (GSEA), while immune cell-associated modules were identified by weighted gene coexpression network analysis (WGCNA). Then, the expression of the identified hub genes was confirmed by RT-PCR in peripheral blood mononuclear cells (PBMCs) of MG patients. The R package pROC was used to plot the receiver operating characteristics (ROC) curves. Results The modules related to CD56bright natural killer cells were identified by GSEA and WGCNA. The proportion of CD56bright natural killer cells in the peripheral blood of MG patients is low. The results of RT-PCR showed that the levels of DDB1- and CUL4-associated factor 12 (DCAF12) and heat shock protein family A member 1A (HSPA1A) were significantly decreased in peripheral blood mononuclear cells of MG patients compared with healthy controls. The ROC curve results of DCAF12 and HSPA1A mRNA in MG diagnosis were 0.780 and 0.830, respectively. Conclusions CD56bright NK cell is lower in MG patients and may affect MG occurrence. DCAF12 and HSPA1A are lowly expressed in PBMCs of MG patients and may serve as the diagnostic biomarkers of MG.
Collapse
Affiliation(s)
- Weidong Nong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fang Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fengping Mao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Dayuan Lao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Zhuowei Gong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Wen Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| |
Collapse
|
6
|
Ravichandran R, Bansal S, Rahman M, Sureshbabu A, Sankpal N, Fleming T, Bharat A, Mohanakumar T. Extracellular Vesicles Mediate Immune Responses to Tissue-Associated Self-Antigens: Role in Solid Organ Transplantations. Front Immunol 2022; 13:861583. [PMID: 35572510 PMCID: PMC9094427 DOI: 10.3389/fimmu.2022.861583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Transplantation is a treatment option for patients diagnosed with end-stage organ diseases; however, long-term graft survival is affected by rejection of the transplanted organ by immune and nonimmune responses. Several studies have demonstrated that both acute and chronic rejection can occur after transplantation of kidney, heart, and lungs. A strong correlation has been reported between de novo synthesis of donor-specific antibodies (HLA-DSAs) and development of both acute and chronic rejection; however, some transplant recipients with chronic rejection do not have detectable HLA-DSAs. Studies of sera from such patients demonstrate that immune responses to tissue-associated antigens (TaAgs) may also play an important role in the development of chronic rejection, either alone or in combination with HLA-DSAs. The synergistic effect between HLA-DSAs and antibodies to TaAgs is being established, but the underlying mechanism is yet to be defined. We hypothesize that HLA-DSAs damage the transplanted donor organ resulting in stress and leading to the release of extracellular vesicles, which contribute to chronic rejection. These vesicles express both donor human leukocyte antigen (HLA) and non-HLA TaAgs, which can activate antigen-presenting cells and lead to immune responses and development of antibodies to both donor HLA and non-HLA tissue-associated Ags. Extracellular vesicles (EVs) are released by cells under many circumstances due to both physiological and pathological conditions. Primarily employing clinical specimens obtained from human lung transplant recipients undergoing acute or chronic rejection, our group has demonstrated that circulating extracellular vesicles display both mismatched donor HLA molecules and lung-associated Ags (collagen-V and K-alpha 1 tubulin). This review focuses on recent studies demonstrating an important role of antibodies to tissue-associated Ags in the rejection of transplanted organs, particularly chronic rejection. We will also discuss the important role of extracellular vesicles released from transplanted organs in cross-talk between alloimmunity and autoimmunity to tissue-associated Ags after solid organ transplantation.
Collapse
Affiliation(s)
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Narendra Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Ankit Bharat
- Department of Surgery-Thoracic, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
7
|
Lim JH, Chung BH, Lee SH, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Kim CD. Omics-based biomarkers for diagnosis and prediction of kidney allograft rejection. Korean J Intern Med 2022; 37:520-533. [PMID: 35417937 PMCID: PMC9082440 DOI: 10.3904/kjim.2021.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Kidney transplantation is the preferred treatment for patients with end-stage kidney disease, because it prolongs survival and improves quality of life. Allograft biopsy is the gold standard for diagnosing allograft rejection. However, it is invasive and reactive, and continuous monitoring is unrealistic. Various biomarkers for diagnosing allograft rejection have been developed over the last two decades based on omics technologies to overcome these limitations. Omics technologies are based on a holistic view of the molecules that constitute an individual. They include genomics, transcriptomics, proteomics, and metabolomics. The omics approach has dramatically accelerated biomarker discovery and enhanced our understanding of multifactorial biological processes in the field of transplantation. However, clinical application of omics-based biomarkers is limited by several issues. First, no large-scale prospective randomized controlled trial has been conducted to compare omics-based biomarkers with traditional biomarkers for rejection. Second, given the variety and complexity of injuries that a kidney allograft may experience, it is likely that no single omics approach will suffice to predict rejection or outcome. Therefore, integrated methods using multiomics technologies are needed. Herein, we introduce omics technologies and review the latest literature on omics biomarkers predictive of allograft rejection in kidney transplant recipients.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Byung Ha Chung
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Ji-Young Choi
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Sun-Hee Park
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| |
Collapse
|
8
|
Al Jurdi A, Gassen RB, Borges TJ, Solhjou Z, Hullekes FE, Lape IT, Efe O, Alghamdi A, Patel P, Choi JY, Mohammed MT, Bohan B, Pattanayak V, Rosales I, Cravedi P, Kotton CN, Azzi JR, Riella LV. Non-Invasive Monitoring for Rejection in Kidney Transplant Recipients After SARS-CoV-2 mRNA Vaccination. Front Immunol 2022; 13:838985. [PMID: 35281011 PMCID: PMC8913529 DOI: 10.3389/fimmu.2022.838985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Studies have shown reduced antiviral responses in kidney transplant recipients (KTRs) following SARS-CoV-2 mRNA vaccination, but data on post-vaccination alloimmune responses and antiviral responses against the Delta (B.1.617.2) variant are limited. Materials and methods To address this issue, we conducted a prospective, multi-center study of 58 adult KTRs receiving mRNA-BNT162b2 or mRNA-1273 vaccines. We used multiple complementary non-invasive biomarkers for rejection monitoring including serum creatinine, proteinuria, donor-derived cell-free DNA, peripheral blood gene expression profile (PBGEP), urinary CXCL9 mRNA and de novo donor-specific antibodies (DSA). Secondary outcomes included development of anti-viral immune responses against the wild-type and Delta variant of SARS-CoV-2. Results At a median of 85 days, no KTRs developed de novo DSAs and only one patient developed acute rejection following recent conversion to belatacept, which was associated with increased creatinine and urinary CXCL9 levels. During follow-up, there were no significant changes in proteinuria, donor-derived cell-free DNA levels or PBGEP. 36% of KTRs in our cohort developed anti-wild-type spike antibodies, 75% and 55% of whom had neutralizing responses against wild-type and Delta variants respectively. A cellular response against wild-type S1, measured by interferon-γ-ELISpot assay, developed in 38% of KTRs. Cellular responses did not differ in KTRs with or without antibody responses. Conclusions SARS-CoV-2 mRNA vaccination in KTRs did not elicit a significant alloimmune response. About half of KTRs who develop anti-wild-type spike antibodies after two mRNA vaccine doses have neutralizing responses against the Delta variant. There was no association between anti-viral humoral and cellular responses.
Collapse
Affiliation(s)
- Ayman Al Jurdi
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Rodrigo B. Gassen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Thiago J. Borges
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Frank E. Hullekes
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Isadora T. Lape
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Orhan Efe
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Areej Alghamdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Poojan Patel
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - John Y. Choi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mostafa T. Mohammed
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Boston, MA, United States
- Clinical Pathology Department, Minia University, Minya, Egypt
| | - Brigid Bohan
- Histocompatibility Laboratory, Massachusetts General Hospital, Boston, MA, United States
| | - Vikram Pattanayak
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Camille N. Kotton
- Transplant and Immunocompromised Host Infectious Diseases Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jamil R. Azzi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Shen J, Guo L, Lei W, Liu S, Yan P, Liu H, Zhou J, Zhou Q, Liu F, Jiang T, Wang H, Wu J, Chen J, Wang R. Urinary donor-derived cell-free DNA as a non-invasive biomarker for BK polyomavirus-associated nephropathy. J Zhejiang Univ Sci B 2021; 22:917-928. [PMID: 34783222 DOI: 10.1631/jzus.b2100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BK polyomavirus-associated nephropathy (BKPyVAN) is a common cause of allograft failure. However, differentiation between BKPyVAN and type I T cell-mediated rejection (TCMR) is challenging when simian virus 40 (SV40) staining is negative, because of the similarities in histopathology. This study investigated whether donor-derived cell-free DNA (ddcfDNA) can be used to differentiate BKPyVAN. Target region capture sequencing was applied to detect the ddcfDNAs of 12 recipients with stable graft function, 22 with type I TCMR, 21 with proven BKPyVAN, and 5 with possible PyVAN. We found that urinary ddcfDNA levels were upregulated in recipients with graft injury, whereas plasma ddcfDNA levels were comparable for all groups. The median urinary concentrations and fractions of ddcfDNA in proven BKPyVAN recipients were significantly higher than those in type I TCMR recipients (10.4 vs. 6.1 ng/mL, P<0.001 and 68.4% vs. 55.3%, P=0.013, respectively). Urinary ddcfDNA fractions (not concentrations) were higher in the BKPyVAN-pure subgroup than in the BKPyVAN-rejection-like subgroup (81.30% vs. 56.64%, P=0.025). With a cut-off value of 7.81 ng/mL, urinary ddcfDNA concentrations distinguished proven BKPyVAN from type I TCMR (area under the curve (AUC)=0.848, 95% confidence interval (95% CI): 0.734 to 0.963). These findings suggest that urinary ddcfDNA is a non-invasive biomarker which can reliably differentiate BKPyVAN from type I TCMR.
Collapse
Affiliation(s)
- Jia Shen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Luying Guo
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Wenhua Lei
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Shuaihui Liu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Pengpeng Yan
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Haitao Liu
- AlloDx (Shanghai) Biotech., Co., Ltd., Shanghai 201100, China
| | - Jingyi Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Feng Liu
- AlloDx (Shanghai) Biotech., Co., Ltd., Shanghai 201100, China
| | - Tingya Jiang
- AlloDx (Shanghai) Biotech., Co., Ltd., Shanghai 201100, China
| | - Huiping Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China.,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China.,Zhejiang University Institute of Nephrology, Hangzhou 310003, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China. .,National Key Clinical Department of Kidney Diseases, Hangzhou 310003, China. .,Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou 310003, China. .,Zhejiang University Institute of Nephrology, Hangzhou 310003, China. .,Organ Donation and Coordination Office, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
10
|
Connor KL, O'Sullivan ED, Marson LP, Wigmore SJ, Harrison EM. The Future Role of Machine Learning in Clinical Transplantation. Transplantation 2021; 105:723-735. [PMID: 32826798 DOI: 10.1097/tp.0000000000003424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of artificial intelligence and machine learning (ML) has revolutionized our daily lives and will soon be instrumental in healthcare delivery. The rise of ML is due to multiple factors: increasing access to massive datasets, exponential increases in processing power, and key algorithmic developments that allow ML models to tackle increasingly challenging questions. Progressively more transplantation research is exploring the potential utility of ML models throughout the patient journey, although this has not yet widely transitioned into the clinical domain. In this review, we explore common approaches used in ML in solid organ clinical transplantation and consider opportunities for ML to help clinicians and patients. We discuss ways in which ML can aid leverage of large complex datasets, generate cutting-edge prediction models, perform clinical image analysis, discover novel markers in molecular data, and fuse datasets to generate novel insights in modern transplantation practice. We focus on key areas in transplantation in which ML is driving progress, explore the future potential roles of ML, and discuss the challenges and limitations of these powerful tools.
Collapse
Affiliation(s)
- Katie L Connor
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Eoin D O'Sullivan
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna P Marson
- Edinburgh Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Wigmore
- Edinburgh Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ewen M Harrison
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Lidak T, Baloghova N, Korinek V, Sedlacek R, Balounova J, Kasparek P, Cermak L. CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase during Spermatogenesis and T Cell Activation. Int J Mol Sci 2021; 22:5394. [PMID: 34065512 PMCID: PMC8161014 DOI: 10.3390/ijms22105394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an "ancient" RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.
Collapse
Affiliation(s)
- Tomas Lidak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Nikol Baloghova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| | - Vladimir Korinek
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| |
Collapse
|
12
|
El Fekih R, Hurley J, Tadigotla V, Alghamdi A, Srivastava A, Coticchia C, Choi J, Allos H, Yatim K, Alhaddad J, Eskandari S, Chu P, Mihali AB, Lape IT, Lima Filho MP, Aoyama BT, Chandraker A, Safa K, Markmann JF, Riella LV, Formica RN, Skog J, Azzi JR. Discovery and Validation of a Urinary Exosome mRNA Signature for the Diagnosis of Human Kidney Transplant Rejection. J Am Soc Nephrol 2021; 32:994-1004. [PMID: 33658284 PMCID: PMC8017553 DOI: 10.1681/asn.2020060850] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/26/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Developing a noninvasive clinical test to accurately diagnose kidney allograft rejection is critical to improve allograft outcomes. Urinary exosomes, tiny vesicles released into the urine that carry parent cells' proteins and nucleic acids, reflect the biologic function of the parent cells within the kidney, including immune cells. Their stability in urine makes them a potentially powerful tool for liquid biopsy and a noninvasive diagnostic biomarker for kidney-transplant rejection. METHODS Using 192 of 220 urine samples with matched biopsy samples from 175 patients who underwent a clinically indicated kidney-transplant biopsy, we isolated urinary exosomal mRNAs and developed rejection signatures on the basis of differential gene expression. We used crossvalidation to assess the performance of the signatures on multiple data subsets. RESULTS An exosomal mRNA signature discriminated between biopsy samples from patients with all-cause rejection and those with no rejection, yielding an area under the curve (AUC) of 0.93 (95% CI, 0.87 to 0.98), which is significantly better than the current standard of care (increase in eGFR AUC of 0.57; 95% CI, 0.49 to 0.65). The exosome-based signature's negative predictive value was 93.3% and its positive predictive value was 86.2%. Using the same approach, we identified an additional gene signature that discriminated patients with T cell-mediated rejection from those with antibody-mediated rejection (with an AUC of 0.87; 95% CI, 0.76 to 0.97). This signature's negative predictive value was 90.6% and its positive predictive value was 77.8%. CONCLUSIONS Our findings show that mRNA signatures derived from urinary exosomes represent a powerful and noninvasive tool to screen for kidney allograft rejection. This finding has the potential to assist clinicians in therapeutic decision making.
Collapse
Affiliation(s)
- Rania El Fekih
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - James Hurley
- Exosome Diagnostics, a Bio-Techne brand, Waltham, Massachusetts
| | | | - Areej Alghamdi
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand Srivastava
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - John Choi
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hazim Allos
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karim Yatim
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juliano Alhaddad
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Siawosh Eskandari
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philip Chu
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Albana B. Mihali
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isadora T. Lape
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mauricio P. Lima Filho
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bruno T. Aoyama
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil Chandraker
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kassem Safa
- Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James F. Markmann
- Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leonardo V. Riella
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Johan Skog
- Exosome Diagnostics, a Bio-Techne brand, Waltham, Massachusetts
| | - Jamil R. Azzi
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Van Loon E, Naesens M. Blood transcriptomics as non-invasive marker for kidney transplant rejection. Nephrol Ther 2021; 17S:S78-S82. [PMID: 33910703 DOI: 10.1016/j.nephro.2020.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
In the last decade, a plenitude of potential molecular peripheral blood biomarkers has been developed. In assessing the utility of these markers for clinical practice, it is important to evaluate their diagnostic performance in different clinical scenarios. The higher probability of diagnosing rejection in indication compared to protocol biopsies illustrates that kidney functional parameters (estimated glomerular filtration rate evolution, proteinuria) are inherently already non-invasive biomarkers for rejection, with evident clinical utility. However, by definition, graft functional assessment will miss subclinical rejection. In this paper, we review how some of the most promising peripheral blood molecular biomarkers, like blood transcriptomic markers and donor-derived cell-free DNA measurement, perform in relation to graft functional evaluation. Since the definition of graft dysfunction is relatively arbitrary, we propose using a standardized clinical model for non-invasive diagnosis of allograft rejection, as benchmark and for integration with novel molecular biomarkers.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology, Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology, Renal Transplantation, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology, Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology, Renal Transplantation, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review summarises recent developments in monitoring and immunosuppressive management in kidney transplantation. RECENT FINDINGS Long-term kidney allograft outcomes have not changed substantially mainly as a result of acute and chronic antibody-mediated rejection. Several groups have recently attempted to determine peripheral molecular fingerprints of ongoing rejection. But while this research is promising, it is not generalised for further spreading among different cohorts. Measurements of donor-derived cell-free DNA levels in recent studies have revealed better predictive values for antibody-mediated rejection. The Molecular Microscope Diagnostic System for assessing kidney graft biopsies has been gradually introduced within clinical practice, especially in complicated cases aimed at improving histological diagnostics. Molecular studies on accommodation in ABO-incompatible transplantation have shown increased complement regulation and lower expression of epithelial transporters and class 1 metallothioneins. Additionally, in clinical studies of sensitised patients, imlifidase has been shown to enable transplantation across significant immunological barriers, while the co-stimulation blockade has been tested to prevent donor specific antibodies development. In low-risk patients, everolimus/tacrolimus-based regimens have also proven their antiviral effects in large clinical trials. SUMMARY Recent developments in non-invasive monitoring have paved the way for the introduction of future larger clinical trials with multiple patient cohorts.
Collapse
|
15
|
A Practical Guide to the Clinical Implementation of Biomarkers for Subclinical Rejection Following Kidney Transplantation. Transplantation 2020; 104:700-707. [PMID: 31815910 DOI: 10.1097/tp.0000000000003064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noninvasive biomarkers are needed to monitor stable patients following kidney transplantation (KT), as subclinical rejection, currently detectable only with invasive surveillance biopsies, can lead to chronic rejection and graft loss. Several biomarkers have recently been developed to detect rejection in KT recipients, using different technologies as well as varying clinical monitoring strategies defined as "context of use (COU)." The various metrics utilized to evaluate the performance of each biomarker can also vary, depending on their intended COU. As the use of molecular biomarkers in transplantation represents a new era in patient management, it is important for clinicians to better understand the process by which the incremental value of each biomarkers is evaluated to determine its potential role in clinical practice. This process includes but is not limited to an assessment of clinical validity and utility, but to define these, the clinician must first appreciate the trajectory of a biomarker from bench to bedside as well as the regulatory and other requirements needed to navigate this course successfully. This overview summarizes this process, providing a framework that can be used by clinicians as a practical guide in general, and more specifically in the context of subclinical rejection following KT. In addition, we have reviewed available as well as promising biomarkers for this purpose in terms of the clinical need, COU, assessment of biomarker performance relevant to both the need and COU, assessment of biomarker benefits and risks relevant to the COU, and the evidentiary criteria of the biomarker relevant to the COU compared with the current standard of care. We also provide an insight into the path required to make biomarkers commercially available once they have been developed and validated so that they used by clinicians outside the research context in every day clinical practice.
Collapse
|
16
|
Shen J, Guo L, Yan P, Zhou J, Zhou Q, Lei W, Liu H, Liu G, Lv J, Liu F, Huang H, Dong W, Shu L, Wang H, Wu J, Chen J, Wang R. Prognostic value of the donor-derived cell-free DNA assay in acute renal rejection therapy: A prospective cohort study. Clin Transplant 2020; 34:e14053. [PMID: 32735352 DOI: 10.1111/ctr.14053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Donor-derived cell-free DNA (dd-cfDNA) is a promising biomarker for monitoring allograft status. However, whether dd-cfDNA can reflect real-time anti-rejection treatment effects remains unclear. We prospectively recruited 28 patients with acute renal rejection, including 5 with ABMR, 12 with type IA or type IB rejection, and 11 with type IIA or IIB rejection. dd-cfDNA levels in peripheral blood were measured using human single nucleotide polymorphism (SNP) locus capture hybridization. The percentage of dd-cfDNA (dd-cfDNA%) declined significantly from 2.566 ± 0.549% to 0.773 ± 0.116% (P < .001) after anti-rejection therapy. The dd-cfDNA% decreased steadily over the course of 3 days with daily methylprednisolone injections, but no significant difference in the dd-cfDNA% was observed between the end of anti-rejection therapy and 2 weeks later. Changes in the dd-cfDNA% (∆dd-cfDNA%) demonstrated a positive correlation with estimated glomerular filtration rates at 1 month (ρ = 2.570, P = .022), 3 months (ρ = 3.210, P = .027), and 6 months (ρ = 2.860, P = .019) after therapy. Thus, the dd-cfDNA assay shows prognostic capabilities in therapy outcome and allograft recovery; however, its ability is inhibited by methylprednisolone regardless of the types of rejection. Additionally, a reassessment of frequency intervals for testing is required.
Collapse
Affiliation(s)
- Jia Shen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Luying Guo
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Pengpeng Yan
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Jingyi Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Wenhua Lei
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Haitao Liu
- AlloDx (Shanghai) biotech., Co., Ltd, Shanghai, China
| | - Guangjun Liu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Junhao Lv
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Feng Liu
- AlloDx (Shanghai) biotech., Co., Ltd, Shanghai, China
| | - Hongfeng Huang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Wenzhao Dong
- AlloDx (Shanghai) biotech., Co., Ltd, Shanghai, China
| | - Liping Shu
- AlloDx (Shanghai) biotech., Co., Ltd, Shanghai, China
| | - Huiping Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, China.,Zhejiang University Institute of Nephrology, Hangzhou, China.,Organ Donation and Coordination Office, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Zhao S, Liang T, Zhang C, Shi D, Jiang W, Su C, Hou G. IL-27 Rα + cells promoted allorejection via enhancing STAT1/3/5 phosphorylation. J Cell Mol Med 2020; 24:10756-10767. [PMID: 32761753 PMCID: PMC7521268 DOI: 10.1111/jcmm.15700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, emerging evidence strongly suggested that the activation of interleukin-27 Receptor α (IL-27Rα) could modulate different inflammatory diseases. However, whether IL-27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL-27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL-27Rα/IL-27 expression was detected, and IL-27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL-27 (rIL-27) stimulation. Finally, IFN-γ/ IL-10 in graft/serum from model mice was detected. Results showed higher IL-27Rα/IL-27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL-27Rα+ spleen cells accelerated allograft rejection in vivo. rIL-27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL-27 could be almost totally blocked by JAK/ STAT inhibitor and anti-IL-27 p28 Ab. Finally, higher IL-27Rα+ IFN-γ+ cells and lower IL-27Rα+ IL-10+ cells within allografts, and high IFN-γ/low IL-10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL-27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up-regulating IFN-γ via enhancing STAT pathway. Blocking IL-27 pathway may favour to prevent allorejection, and IL-27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.
Collapse
Affiliation(s)
- Shanshan Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dai Shi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Jiang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Su
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci 2020; 21:ijms21155404. [PMID: 32751357 PMCID: PMC7432796 DOI: 10.3390/ijms21155404] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
New biomarkers of early and late graft dysfunction are needed in renal transplant to improve management of complications and prolong graft survival. A wide range of potential diagnostic and prognostic biomarkers, measured in different biological fluids (serum, plasma, urine) and in renal tissues, have been proposed for post-transplant delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction (CAD). This review investigates old and new potential biomarkers for each of these clinical domains, seeking to underline their limits and strengths. OMICs technology has allowed identifying many candidate biomarkers, providing diagnostic and prognostic information at very early stages of pathological processes, such as AR. Donor-derived cell-free DNA (ddcfDNA) and extracellular vesicles (EVs) are further promising tools. Although most of these biomarkers still need to be validated in multiple independent cohorts and standardized, they are paving the way for substantial advances, such as the possibility of accurately predicting risk of DGF before graft is implanted, of making a “molecular” diagnosis of subclinical rejection even before histological lesions develop, or of dissecting etiology of CAD. Identification of “immunoquiescent” or even tolerant patients to guide minimization of immunosuppressive therapy is another area of active research. The parallel progress in imaging techniques, bioinformatics, and artificial intelligence (AI) is helping to fully exploit the wealth of information provided by biomarkers, leading to improved disease nosology of old entities such as transplant glomerulopathy. Prospective studies are needed to assess whether introduction of these new sets of biomarkers into clinical practice could actually reduce the need for renal biopsy, integrate traditional tools, and ultimately improve graft survival compared to current management.
Collapse
|
19
|
Rush DN. Subclinical Rejection: a Universally Held Concept? CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Thongprayoon C, Vaitla P, Craici IM, Leeaphorn N, Hansrivijit P, Salim SA, Bathini T, Cabeza Rivera FH, Cheungpasitporn W. The Use of Donor-Derived Cell-Free DNA for Assessment of Allograft Rejection and Injury Status. J Clin Med 2020; 9:E1480. [PMID: 32423115 PMCID: PMC7290747 DOI: 10.3390/jcm9051480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Patient monitoring after kidney transplantation (KT) for early detection of allograft rejection remains key in preventing allograft loss. Serum creatinine has poor predictive value to detect ongoing active rejection as its increase is not sensitive, nor specific for acute renal allograft rejection. Diagnosis of acute rejection requires allograft biopsy and histological assessment, which can be logistically challenging in some cases and carries inherent risk for complications related to procedure. Donor-derived cell-free DNA (dd-cfDNA), DNA of donor origin in the blood of KT recipient arising from cells undergoing injury and death, has been examined as a potential surrogate marker for allograft rejection. A rise in dd-cfDNA levels precedes changes in serum creatinine allows early detections and use as a screening tool for allograft rejection. In addition, when used in conjunction with donor-specific antibodies (DSA), it increases the pre-biopsy probability of antibody-mediated rejection (ABMR) aiding the decision-making process. Advancements in noninvasive biomarker assays such as dd-cfDNA may offer the opportunity to improve and expand the spectrum of available diagnostic tools to monitor and detect risk for rejection and positively impact outcomes for KT recipients. In this this article, we discussed the evolution of dd-cfDNA assays and recent evidence of assessment of allograft rejection and injury status of KT by the use of dd-cfDNA.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (I.M.C.)
| | - Pradeep Vaitla
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| | - Iasmina M. Craici
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (I.M.C.)
| | - Napat Leeaphorn
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke’s Health System, Kansas City, MO 64111, USA;
| | - Panupong Hansrivijit
- Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA 17105, USA;
| | - Sohail Abdul Salim
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Franco H. Cabeza Rivera
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (P.V.); (S.A.S.); (F.H.C.R.)
| |
Collapse
|
21
|
Trailin A, Hruba P, Viklicky O. Molecular Assessment of Kidney Allografts: Are We Closer to a Daily Routine? Physiol Res 2020; 69:215-226. [PMID: 32199018 DOI: 10.33549/physiolres.934278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidney allograft pathology assessment has been traditionally based on clinical and histological criteria. Despite improvements in Banff histological classification, the diagnostics in particular cases is problematic reflecting a complex pathogenesis of graft injuries. With the advent of molecular techniques, polymerase-chain reaction, oligo- and microarray technologies allowed to study molecular phenotypes of graft injuries, especially acute and chronic rejections. Moreover, development of the molecular microscope diagnostic system (MMDx) to assess kidney graft biopsies, represents the first clinical application of a microarray-based method in transplantation. Whether MMDx may replace conventional pathology is the subject of ongoing research, however this platform is particularly useful in complex histological findings and may help clinicians to guide the therapy.
Collapse
Affiliation(s)
- A Trailin
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
22
|
IL-27Rα: A Novel Molecular Imaging Marker for Allograft Rejection. Int J Mol Sci 2020; 21:ijms21041315. [PMID: 32075272 PMCID: PMC7072931 DOI: 10.3390/ijms21041315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasively monitoring allogeneic graft rejection with a specific marker is of great importance for prognosis of patients. Recently, data revealed that IL-27Rα was up-regulated in alloreactive CD4+ T cells and participated in inflammatory diseases. Here, we evaluated whether IL-27Rα could be used in monitoring allogeneic graft rejection both in vitro and in vivo. Allogeneic (C57BL/6 donor to BALB/c recipient) and syngeneic (BALB/c both as donor and recipient) skin grafted mouse models were established. The expression of IL-27Rα in grafts was detected. The radio-probe, 125I-anti-IL-27Rα mAb, was prepared. Dynamic whole-body phosphor-autoradiography, ex vivo biodistribution and immunofluorescence staining were performed. The results showed that the highest expression of IL-27Rα was detected in allogeneic grafts on day 10 post transplantation (top period of allorejection). 125I-anti-IL-27Rα mAb was successfully prepared with higher specificity and affinity. Whole-body phosphor-autoradiography showed higher radioactivity accumulation in allogeneic grafts than syngeneic grafts on day 10. The uptake of 125I-anti-IL-27Rα mAb in allogeneic grafts could be almost totally blocked by pre-injection with excess unlabeled anti-IL-27Rα mAb. Interestingly, we found that 125I-anti-IL-27Rα mAb accumulated in allogeneic grafts, along with weaker inflammation earlier on day 6. The high uptake of 125I-anti-IL-27Rα mAb was correlated with the higher infiltrated IL-27Rα positive cells (CD3+/CD68+) in allogeneic grafts. In conclusion, IL-27Rα may be a novel molecular imaging marker to predict allorejection.
Collapse
|
23
|
Moore JB, Merchant ML, Uchida S. Circular RNAs as diagnostic tool for renal transplant patients with acute rejection. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S302. [PMID: 32016021 PMCID: PMC6976506 DOI: 10.21037/atm.2019.11.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/25/2019] [Indexed: 11/16/2023]
Affiliation(s)
- Joseph B. Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Michael L. Merchant
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shizuka Uchida
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| |
Collapse
|
24
|
Van Loon E, Gazut S, Yazdani S, Lerut E, de Loor H, Coemans M, Noël LH, Thorrez L, Van Lommel L, Schuit F, Sprangers B, Kuypers D, Essig M, Gwinner W, Anglicheau D, Marquet P, Naesens M. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: A multicentre, prospective study. EBioMedicine 2019; 46:463-472. [PMID: 31378695 PMCID: PMC6710906 DOI: 10.1016/j.ebiom.2019.07.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Antibody-mediated rejection, a leading cause of renal allograft graft failure, is diagnosed by histological assessment of invasive allograft biopsies. Accurate non-invasive biomarkers are not available. Methods In the multicentre, prospective BIOMARGIN study, blood samples were prospectively collected at time of renal allograft biopsies between June 2011 and August 2016 and analyzed in three phases. The discovery and derivation phases of the study (N = 117 and N = 183 respectively) followed a case-control design and included whole genome transcriptomics and targeted mRNA expression analysis to construct and lock a multigene model. The primary end point was the diagnostic accuracy of the locked multigene assay for antibody-mediated rejection in a third validation cohort of serially collected blood samples (N = 387). This trial is registered with ClinicalTrials.gov, number NCT02832661. Findings We identified and locked an 8-gene assay (CXCL10, FCGR1A, FCGR1B, GBP1, GBP4, IL15, KLRC1, TIMP1) in blood samples from the discovery and derivation phases for discrimination between cases with (N = 49) and without (N = 134) antibody-mediated rejection. In the validation cohort, this 8-gene assay discriminated between cases with (N = 41) and without antibody-mediated rejection (N = 346) with good diagnostic accuracy (ROC AUC 79·9%; 95% CI 72·6 to 87·2, p < 0·0001). The diagnostic accuracy of the 8-gene assay was retained both at time of stable graft function and of graft dysfunction, within the first year and also later after transplantation. The 8-gene assay is correlated with microvascular inflammation and transplant glomerulopathy, but not with the histological lesions of T-cell mediated rejection. Interpretation We identified and validated a novel 8-gene expression assay that can be used for non-invasive diagnosis of antibody-mediated rejection. Funding The Seventh Framework Programme (FP7) of the European Commission.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Leuven, Belgium; University Hospitals Leuven, Department of Nephrology and Renal Transplantation, Leuven, Belgium
| | - Stéphane Gazut
- CEA, LIST, Laboratory for Data Analysis and Systems' Intelligence, Gif-sur-Yvette, France
| | - Saleh Yazdani
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Leuven, Belgium
| | - Evelyne Lerut
- University Hospitals Leuven, Department of Morphology and Molecular Pathology, Leuven, Belgium
| | - Henriette de Loor
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Leuven, Belgium
| | - Laure-Hélène Noël
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, France
| | - Lieven Thorrez
- KU Leuven Department of Development and Regeneration, campus KULAK, Kortrijk, Belgium
| | - Leentje Van Lommel
- KU Leuven Gene Expression Unit, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Frans Schuit
- KU Leuven Gene Expression Unit, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Leuven, Belgium; University Hospitals Leuven, Department of Nephrology and Renal Transplantation, Leuven, Belgium; KU Leuven Laboratory of Molecular Immunology, Rega Institute, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Leuven, Belgium; University Hospitals Leuven, Department of Nephrology and Renal Transplantation, Leuven, Belgium
| | - Marie Essig
- CHU Limoges, Department of Nephrology, Dialysis and Transplantation, Univ. Limoges, U850 INSERM, Limoges, France
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Dany Anglicheau
- Paris Descartes, Sorbonne Paris Cité University, INSERM U1151, Paris, France; Department of Nephrology and Kidney Transplantation, RTRS Centaure, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Marquet
- CHU Limoges, Univ. Limoges, U850 INSERM, Limoges, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Leuven, Belgium; University Hospitals Leuven, Department of Nephrology and Renal Transplantation, Leuven, Belgium.
| |
Collapse
|
25
|
Kozakowski N. Non-invasive screening for sub-clinical antibody-mediated rejection as a new tool for indication of kidney allograft biopsy. EBioMedicine 2019; 46:13-14. [PMID: 31353292 PMCID: PMC6710980 DOI: 10.1016/j.ebiom.2019.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Affiliation(s)
- Nicolas Kozakowski
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Sorbonne Université, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1155, Paris, France.
| |
Collapse
|
26
|
Friedewald J, Abecassis M, Kurian S. Gene expression biomarkers for kidney transplant rejection - The entire landscape. EBioMedicine 2019; 42:41. [PMID: 30910482 PMCID: PMC6491954 DOI: 10.1016/j.ebiom.2019.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- John Friedewald
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Michael Abecassis
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
27
|
Viklicky O. Are we ready to implement non-invasive tests to detect allograft rejection in a daily praxis? EBioMedicine 2019; 41:28-29. [PMID: 30850351 PMCID: PMC6444118 DOI: 10.1016/j.ebiom.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 02/03/2023] Open
Affiliation(s)
- Ondrej Viklicky
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|