1
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Esposito A, Pepe S, Cerullo MS, Cortese K, Semini HT, Giovedì S, Guerrini R, Benfenati F, Falace A, Fassio A. ATP6V1A is required for synaptic rearrangements and plasticity in murine hippocampal neurons. Acta Physiol (Oxf) 2024; 240:e14186. [PMID: 38837572 DOI: 10.1111/apha.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
AIM Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.
Collapse
Affiliation(s)
| | - Sara Pepe
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Renzo Guerrini
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Antonio Falace
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Nakhaie M, Ghoreshi ZAS, Rukerd MRZ, Askarpour H, Arefinia N. Novel Mutations in the Non-Structure Protein 2 of SARS-CoV-2. Mediterr J Hematol Infect Dis 2023; 15:e2023059. [PMID: 38028396 PMCID: PMC10631707 DOI: 10.4084/mjhid.2023.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Mutation in the genome of SARS-CoV-2 may play a role in immune evasion, pathogenicity, and speed of its transmission. Our investigation aimed to evaluate the mutations that exist in the NSP2. Materials and Method RNA was extracted from nasopharyngeal swabs from 100 COVID-19 patients. RT-PCR was performed on all samples using NSP2-specific primers. Following gel electrophoresis, the bands were cut, purified, and sequenced using the Sanger method. After sequencing, 90 sequences could be used for further analysis. Bioinformatics analysis was conducted to investigate the effect of mutations on protein structure, stability, prediction of homology models, and phylogeny tree. Results The patients' mean age was 51.08. The results revealed that 8 of the 17 NSP2 mutations (R207C, T224I, G262V, T265I, K337D, N348S, G392D, and I431M) were missense. One deletion was also found in NSP2. Among NSP2 missense mutations studied, K337D and G392D increased structural stability while the others decreased it. The homology-designed models demonstrated that the homologies were comparable to the sequences of the Wuhan-HU-1 virus. Conclusion Our study suggested that the mutations K337D and G392D modulate the stability of NSP2, and tracking viral evolution should be implemented and vaccine development updated.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh-al-sadat Ghoreshi
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedyeh Askarpour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasir Arefinia
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Bio Environmental Health Hazard Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
4
|
Amore G, Calì E, Spanò M, Ceravolo G, Mangano GD, Scorrano G, Efthymiou S, Salpietro V, Houlden H, Di Rosa G. ATP6V1B2-related disorders featuring Lennox-Gastaut-syndrome: A case-based overview. Brain Dev 2023; 45:588-596. [PMID: 37633739 DOI: 10.1016/j.braindev.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND ATP6V1B2 (ATPase, H+ transporting, lysosomal VI subunit B, isoform 2) encodes for a subunit of a ubiquitous transmembrane lysosomal proton pump, implicated in the acidification of intracellular organelles and in several additional cellular functions. Variants in ATP6V1B2 have been related to a heterogeneous group of multisystemic disorders sometimes associated with variable neurological involvement. However, our knowledge of genotype-phenotype correlations and the neurological spectrum of ATP6V1B2-related disorders remain limited due to the few numbers of reported cases. CASE STUDY We hereby report the case of an 18-year-old male Sicilian patient affected by a global developmental delay, skeletal abnormalities, and epileptic encephalopathy featuring Lennox-Gastaut syndrome (LGS), in which exome sequencing led to the identification of a novel de novo variant in ATP6V1B2 (NM_001693.4: c.973G > C, p.Gly325Arg). CONCLUSIONS Our report provides new insights on the inclusion of developmental epileptic encephalopathies (DEEs) within the continuum group of ATP6V1B2-related disorders, expanding the phenotypic and molecular spectrum associated with these conditions.
Collapse
Affiliation(s)
- Greta Amore
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Via C. Valeria 1, 98125 Messina, Italy
| | - Elisa Calì
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Maria Spanò
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Via C. Valeria 1, 98125 Messina, Italy
| | - Giorgia Ceravolo
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Unit of Emergency Pediatrics, Department of Human Pathology and Evolutive Age "Gaetano Barresi", University of Messina, Via C. Valeria 1, 98125 Messina, Italy
| | - Giuseppe Donato Mangano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Human Anatomy Section, Via del Vespro 129, 90127 Palermo, Italy
| | - Giovanna Scorrano
- Department of Pediatrics "G. D'Annunzio", University of Chieti-Pescara, Chieti, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Department of Pediatrics, University of L'Aquila, 67100 L'Aquila, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Via C. Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
5
|
Rousseau J, Tene Tadoum SB, Lavertu Jolin M, Nguyen TTM, Ajeawung NF, Flenniken AM, Nutter LMJ, Vukobradovic I, Rossignol E, Campeau PM. The ATP6V1B2 DDOD/DOORS-Associated p.Arg506* Variant Causes Hyperactivity and Seizures in Mice. Genes (Basel) 2023; 14:1538. [PMID: 37628590 PMCID: PMC10454733 DOI: 10.3390/genes14081538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The vacuolar H+-ATPase is a multisubunit enzyme which plays an essential role in the acidification and functions of lysosomes, endosomes, and synaptic vesicles. Many genes encoding subunits of V-ATPases, namely ATP6V0C, ATP6V1A, ATP6V0A1, and ATP6V1B2, have been associated with neurodevelopmental disorders and epilepsy. The autosomal dominant ATP6V1B2 p.Arg506* variant can cause both congenital deafness with onychodystrophy, autosomal dominant (DDOD) and deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures syndromes (DOORS). Some but not all individuals with this truncating variant have intellectual disability and/or epilepsy, suggesting incomplete penetrance and/or variable expressivity. To further explore the impact of the p.Arg506* variant in neurodevelopment and epilepsy, we generated Atp6v1b2emR506* mutant mice and performed standardized phenotyping using the International Mouse Phenotyping Consortium (IMPC) pipeline. In addition, we assessed the EEG profile and seizure susceptibility of Atp6v1b2emR506* mice. Behavioral tests revealed that the mice present locomotor hyperactivity and show less anxiety-associated behaviors. Moreover, EEG analyses indicate that Atp6v1b2emR506* mutant mice have interictal epileptic activity and that both heterozygous (like patients) and homozygous mice have reduced seizure thresholds to pentylenetetrazol. Our results confirm that variants in ATP6V1B2 can cause seizures and that the Atp6v1b2emR506* heterozygous mouse model is a valuable tool to further explore the pathophysiology and potential treatments for vacuolar ATPases-associated epilepsy and disorders.
Collapse
Affiliation(s)
- Justine Rousseau
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Samuel Boris Tene Tadoum
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Marisol Lavertu Jolin
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Thi Tuyet Mai Nguyen
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Norbert Fonya Ajeawung
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Ann M. Flenniken
- Lunenfeld-Tanenbaum Research Institute, The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada
| | - Lauryl M. J. Nutter
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada
| | - Igor Vukobradovic
- Lunenfeld-Tanenbaum Research Institute, The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada
| | - Elsa Rossignol
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Philippe M. Campeau
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| |
Collapse
|
6
|
Kushwaha B, Srivastava N, Kumar MS, Kumar R. Protein-protein networks analysis of differentially expressed genes unveils the key phenomenon of biological process with respect to reproduction in endangered catfish, C. Magur. Gene 2023; 860:147235. [PMID: 36731619 DOI: 10.1016/j.gene.2023.147235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Clarias magur (magur) is an important freshwater catfish with high potential in the aquaculture sector in its geographical ranges of distribution. One of the impediments to realise its full aquaculture potential is the lack of understanding key genes involved in its reproduction pathways. Nonetheless, very limited information is available on brain and gonads, with respect to reproduction related issues of magur at molecular level. The present study was aimed at understanding the interaction of the brain-gonad system by analysing differentially expressed genes (DEG) in brains and gonads of male and female magur using a protein-protein network interaction study. In brief, 641, 541, 225 and 245 DEGs, respectively, in ovary, testis and female brain and male-brain of magur were used as input in String database 11.0 and Cytoscape v 3.8.0 plug-in Network Analyzer for PPI network construction followed by network superimposition, network merging and analysis. A total of 13 key genes in female brain & ovary and 12 key genes in male brain & testis were obtained based on the network topological parameter betweenness centrality and nodes degree. Among them, cyp19a1b and amh genes in male brain-testis and Tp53 and exo1 genes in female brain-ovary were identified as hub genes having a high level of interaction and expression with other key genes in the network. Further, functional annotation study of these genes revealed their active involvement in important pathways related to reproduction. This is the first report exploring the interaction of brain and gonads in the regulation of magur reproduction through a protein-protein interaction network. The 25 key genes identified in the combined network are involved in various pathways, like neuropeptide signalling pathway, oxytocin receptor-mediated signalling pathway, corticotrophin-releasing factor receptor signalling pathway and reproduction process, which could lead to a better understanding of the magur reproductive system.
Collapse
Affiliation(s)
- Basdeo Kushwaha
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India.
| | - Neha Srivastava
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| | - Murali S Kumar
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| | - Ravindra Kumar
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
7
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
8
|
Veltra D, Tilemis FN, Marinakis NM, Svingou M, Mitrakos A, Kosma K, Tsoutsou I, Makrythanasis P, Theodorou V, Katsalouli M, Vorgia P, Niotakis G, Vartzelis G, Dinopoulos A, Evangeliou A, Mouskou S, Korona A, Mastroyianni S, Papavasiliou A, Tzetis M, Pons R, Traeger-Synodinos J, Sofocleous C. Combined exome analysis and exome depth assessment achieve a high diagnostic yield in an epilepsy case series, revealing significant genomic heterogeneity and novel mechanisms. Expert Rev Mol Diagn 2023; 23:85-103. [PMID: 36714946 DOI: 10.1080/14737159.2023.2173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Genetics of epilepsy are highly heterogeneous and complex. Lesions detected involve genes encoding various types of channels, transcription factors, and other proteins implicated in numerous cellular processes, such as synaptogenesis. Consequently, a wide spectrum of clinical presentations and overlapping phenotypes hinders differential diagnosis and highlights the need for molecular investigations toward delineation of underlying mechanisms and final diagnosis. Characterization of defects may also contribute valuable data on genetic landscapes and networks implicated in epileptogenesis. METHODS This study reports on genetic findings from exome sequencing (ES) data of 107 patients with variable types of seizures, with or without additional symptoms, in the context of neurodevelopmental disorders. RESULTS Multidisciplinary evaluation of ES, including ancillary detection of copy number variants (CNVs) with the ExomeDepth tool, supported a definite diagnosis in 59.8% of the patients, reflecting one of the highest diagnostic yields in epilepsy. CONCLUSION Emerging advances of next-generation technologies and 'in silico' analysis tools offer the possibility to simultaneously detect several types of variations. Wide assessment of variable findings, specifically those found to be novel and least expected, reflects the ever-evolving genetic landscape of seizure development, potentially beneficial for increased opportunities for trial recruitment and enrollment, and optimized, even personalized, medical management.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece.,Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece.,Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Maria Svingou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Anastasios Mitrakos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Irene Tsoutsou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece.,Department of Genetic Medicine and Development, Medical School, University of Geneva, Geneva, Switzerland.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Virginia Theodorou
- Pediatric Neurology Department, St. Sophia's Children's Hospital, Athens, Greece
| | - Marina Katsalouli
- Pediatric Neurology Department, St. Sophia's Children's Hospital, Athens, Greece
| | - Pelagia Vorgia
- Agrifood and Life Sciences Institute, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Georgios Niotakis
- Pediatric Neurology Department, Venizelion Hospital, Heraklion, Greece
| | - Georgios Vartzelis
- Second Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | - Argirios Dinopoulos
- Forth Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, General Hospital of Athens Attikon, Athens, Greece
| | - Athanasios Evangeliou
- Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Stella Mouskou
- Pediatric Neurology Department, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | - Anastasia Korona
- Pediatric Neurology Department, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | - Sotiria Mastroyianni
- Pediatric Neurology Department, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Maria Tzetis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Roser Pons
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| |
Collapse
|
9
|
Veltra D, Kosma K, Papavasiliou A, Tilemis FN, Traeger-Synodinos J, Sofocleous C. A novel pathogenic ATP6V1B2 variant: Widening the genotypic spectrum of the epileptic neurodevelopmental phenotype. Am J Med Genet A 2022; 188:3563-3566. [PMID: 36135319 DOI: 10.1002/ajmg.a.62971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
ATP6V1B2 pathogenic variants are linked with variable phenotypes, such as dominant deafness-onychodystrophy syndrome (DDOD), autosomal dominant Zimmermann-Laband syndrome type 2 (ZLS2), and some cases of DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [ID], and seizures). Epilepsy was first linked to ATP6V1B2, when the p.(Glu374Gln) missense variant was detected in a patient with ID and seizures, but without characteristic features of DDOD or ZLS2 syndromes. We herein report a novel pathogenic ATP6V1B2:p.Glu374Gly variant detected in an adult patient with ID and myoclonic-atonic seizures. The (re)occurrence of different variants affecting the same highly conserved hydrophilic glutamic acid on position 374 of the V-proton ATPase subunit B, indicates a potential novel pathogenic hotspot and a critical role for the specific residue in the development of epilepsy. ATP6V1B2 gene defects should be considered when analyzing patients with epilepsy, even in the absence of most cardinal features of DDOD, DOORS, or ZLS such as deafness, onychodystrophy, and osteodystrophy.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece
| | | | - Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece.,Research University Institute for the Study of Genetic and Malignant Disease of Childhood, "St. Sophia's" Children's Hospital, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece.,Research University Institute for the Study of Genetic and Malignant Disease of Childhood, "St. Sophia's" Children's Hospital, Athens, Greece
| |
Collapse
|
10
|
Fu Y, Zhou Y, Zhang YL, Zhao B, Zhang XL, Zhang WT, Lu YJ, Lu A, Zhang J, Zhang J. Loss of neurodevelopmental-associated miR-592 impairs neurogenesis and causes social interaction deficits. Cell Death Dis 2022; 13:292. [PMID: 35365601 PMCID: PMC8976077 DOI: 10.1038/s41419-022-04721-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022]
Abstract
microRNA-592 (miR-592) has been linked to neurogenesis, but the influence of miR-592 knockout in vivo remains unknown. Here, we report that miR-592 knockout represses IPC-to-mature neuron transition, impairs motor coordination and reduces social interaction. Combining the RNA-seq and tandem mass tagging-based quantitative proteomics analysis (TMT protein quantification) and luciferase reporter assays, we identified MeCP2 as the direct targetgene of miR-592 in the mouse cortex. In Tg(MECP2) mice, lipofection of miR-592 efficiently reduced MECP2 expression in the brains of Tg(MECP2) mice at E14.5. Furthermore, treatment with miR-592 partially ameliorated the autism-like phenotypes observed in adult Tg(MECP2) mice. The findings demonstrate that miR-592 might play a novel role in treating the neurodevelopmental-associated disorder.
Collapse
Affiliation(s)
- Yu Fu
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Yang Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yuan-Lin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Bo Zhao
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Xing-Liao Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Wan-Ting Zhang
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Yi-Jun Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Aiping Lu
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Jun Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
- Research Centre for Translational Medicine at East Hospital, School of Medicine, Tongji University, 200010, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200092, Shanghai, China.
| | - Jing Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200092, Shanghai, China.
| |
Collapse
|
11
|
Li Y, Xiong J, Zhang Y, Xu L, Liu J, Cai T. Case Report: Exome Sequencing Identified Variants in Three Candidate Genes From Two Families With Hearing Loss, Onychodystrophy, and Epilepsy. Front Genet 2021; 12:728020. [PMID: 34912366 PMCID: PMC8667665 DOI: 10.3389/fgene.2021.728020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
A cohort of 542 individuals in 166 families with congenital hearing loss was recruited for whole-exome sequencing analysis. Here, we report the identification of three variants in five affected individuals in two unrelated families. In family 1, a nonsense mutation (c.1516C>T, p.R506*) in the ATP6V1B2 gene, a known causal allele for dominant deafness-onychodystrophy (DDOD), was identified in the mother and son with DDOD. However, a novel heterozygous variant (c.1590T>G, p.D530E) in TJP2, a known causal gene for hearing-loss, was also detected in the patients. In family 2, the same mutation (c.1516C>T, p.R506*) of ATP6V1B2 was detected from the father and daughter with DDOD. Furthermore, a novel heterozygous variant (c.733A>G, p.M245V) in the KIF11 gene was identified from the spouse with sensorineural hearing-loss and epilepsy. Notably, genotype-phenotype analysis of KIF11-associated disorders revealed that the p.M245V and two reported hearing-loss-associated variants (p.S235C and p.H244Y) are all mapped to a single β-sheet (Ser235∼M245) in the kinesin motor domain. Together, this is the first demonstration that ATP6V1B2-caused DDOD is an autosomal dominant genetic disease, compared to previous cases with de novo mutation. Our findings expand the variant spectrum of hearing-loss-associated genes and provide new insights on understanding of hearing-loss candidate genes ATP6V1B2, TJP2, and KIF11.
Collapse
Affiliation(s)
- Yuan Li
- China-Japan Friendship Hospital, Beijing, China
| | - Jianjun Xiong
- College of Basic Medical Science, Jiujiang University, Jiujiang, China.,Angen Gene Medicine Technology, Beijing, China.,Experimental Medicine Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yi Zhang
- Angen Gene Medicine Technology, Beijing, China
| | - Lin Xu
- College of Basic Medical Science, Jiujiang University, Jiujiang, China
| | - Jianyun Liu
- College of Basic Medical Science, Jiujiang University, Jiujiang, China
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Huang S, Zhao G, Wu J, Li K, Wang Q, Fu Y, Zhang H, Bi Q, Li X, Wang W, Guo C, Zhang D, Wu L, Li X, Xu H, Han M, Wang X, Lei C, Qiu X, Li Y, Li J, Dai P, Yuan Y. Gene4HL: An Integrated Genetic Database for Hearing Loss. Front Genet 2021; 12:773009. [PMID: 34733322 PMCID: PMC8558372 DOI: 10.3389/fgene.2021.773009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hearing loss (HL) is one of the most common disabilities in the world. In industrialized countries, HL occurs in 1–2/1,000 newborns, and approximately 60% of HL is caused by genetic factors. Next generation sequencing (NGS) has been widely used to identify many candidate genes and variants in patients with HL, but the data are scattered in multitudinous studies. It is a challenge for scientists, clinicians, and biologists to easily obtain and analyze HL genes and variant data from these studies. Thus, we developed a one-stop database of HL-related genes and variants, Gene4HL (http://www.genemed.tech/gene4hl/), making it easy to catalog, search, browse and analyze the genetic data. Gene4HL integrates the detailed genetic and clinical data of 326 HL-related genes from 1,608 published studies, along with 62 popular genetic data sources to provide comprehensive knowledge of candidate genes and variants associated with HL. Additionally, Gene4HL supports the users to analyze their own genetic engineering network data, performs comprehensive annotation, and prioritizes candidate genes and variations using custom parameters. Thus, Gene4HL can help users explain the function of HL genes and the clinical significance of variants by correlating the genotypes and phenotypes in humans.
Collapse
Affiliation(s)
- Shasha Huang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Jie Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Qiuquan Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ying Fu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Honglei Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qingling Bi
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xiaohong Li
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Weiqian Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chang Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Dejun Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lihua Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xiaoge Li
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Huiyan Xu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Mingyu Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin Wang
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Chen Lei
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Xiaofang Qiu
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Yang Li
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yongyi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
13
|
Jung HY, Kim W, Hahn KR, Kang MS, Kwon HJ, Choi JH, Yoon YS, Kim DW, Yoo DY, Won MH, Hwang IK. Changes in the expression of the B subunit of vacuolar H +-ATPase, in the hippocampus, following transient forebrain ischemia in gerbils. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1482-1487. [PMID: 35317120 PMCID: PMC8917849 DOI: 10.22038/ijbms.2021.59275.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/13/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Vacuolar H+-ATPase is a highly conserved enzyme that plays an important role in maintaining an acidic environment for lysosomal function and accumulating neurotransmitters in synaptic vesicles. In the present study, we investigated the time-dependent changes in the expression of vacuolar H+-ATPase V1B2 (ATP6V1B2), a major neuronal subtype of vacuolar H+-ATPase located in the hippocampus, after 5 min of transient forebrain ischemia in gerbils. We also examined the pH and lactate levels in the hippocampus after ischemia to elucidate the correlation between ATP6V1B2 expression and acidosis. MATERIALS AND METHODS Transient forebrain ischemia was induced by occlusion of both common carotid arteries for 5 min and animals were sacrificed at various time points after ischemia for immunohistochemical staining of ATP6V1B2 and measurements of pH and lactate levels in the hippocampus. RESULTS ATP6V1B2 immunoreactivity was found to be transiently increased in the hippocampal CA1 region and dentate gyrus 12-24 hr after ischemia when the pH and lactate levels were decreased. In addition, ATP6V1B2 immunoreactivity significantly increased in the hippocampal CA3 and dentate gyrus, regions relatively resistant to ischemic damage, 4 days after ischemia, when the NeuN-positive, mature neuron numbers were significantly decreased in the hippocampal CA1 region. CONCLUSION These results suggest that ATP6V1B2 expression is transiently increased in the hippocampus following ischemia, which may be intended to compensate for ischemia-related dysfunction of ATP6V1B2 in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, ,Seoul 08826, South Korea
| | - Woosuk Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea,Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, South Korea
| | - Hyun Jung Kwon
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Dae Won Kim
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341
| | | | - Moo-Ho Won
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, ,Corresponding author: In Koo Hwang. Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea. Tel: +82 2 8801271;
| |
Collapse
|
14
|
Qiu S, Zhao W, Gao X, Li D, Wang W, Gao B, Han W, Yang S, Dai P, Cao P, Yuan Y. Syndromic Deafness Gene ATP6V1B2 Controls Degeneration of Spiral Ganglion Neurons Through Modulating Proton Flux. Front Cell Dev Biol 2021; 9:742714. [PMID: 34746137 PMCID: PMC8568048 DOI: 10.3389/fcell.2021.742714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
ATP6V1B2 encodes the V1B2 subunit in V-ATPase, a proton pump responsible for the acidification of lysosomes. Mutations in this gene cause DDOD syndrome, DOORS syndrome, and Zimmermann-Laband syndrome, which share overlapping feature of congenital sensorineural deafness, onychodystrophy, and different extents of intellectual disability without or with epilepsy. However, the underlying mechanisms remain unclear. To investigate the pathological role of mutant ATP6V1B2 in the auditory system, we evaluated auditory brainstem response, distortion product otoacoustic emissions, in a transgenic line of mice carrying c.1516 C > T (p.Arg506∗) in Atp6v1b2, Atp6v1b2 Arg506*/Arg506* . To explore the pathogenic mechanism of neurodegeneration in the auditory pathway, immunostaining, western blotting, and RNAscope analyses were performed in Atp6v1b2Arg506*/Arg506* mice. The Atp6v1b2Arg506*/Arg506* mice showed hidden hearing loss (HHL) at early stages and developed late-onset hearing loss. We observed increased transcription of Atp6v1b1 in hair cells of Atp6v1b2Arg506*/Arg506* mice and inferred that Atp6v1b1 compensated for the Atp6v1b2 dysfunction by increasing its own transcription level. Genetic compensation in hair cells explains the milder hearing impairment in Atp6v1b2Arg506*/Arg506* mice. Apoptosis activated by lysosomal dysfunction and the subsequent blockade of autophagic flux induced the degeneration of spiral ganglion neurons and further impaired the hearing. Intraperitoneal administration of the apoptosis inhibitor, BIP-V5, improved both phenotypical and pathological outcomes in two live mutant mice. Based on the pathogenesis underlying hearing loss in Atp6v1b2-related syndromes, systemic drug administration to inhibit apoptosis might be an option for restoring the function of spiral ganglion neurons and promoting hearing, which provides a direction for future treatment.
Collapse
Affiliation(s)
- Shiwei Qiu
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
- The Institute of Audiology and Balance Science, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Weihao Zhao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
- Department of Otolaryngology General Hospital of Tibet Military Region, Lhasa, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weiqian Wang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Bo Gao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Weiju Han
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Shiming Yang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China
| | - Yongyi Yuan
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| |
Collapse
|
15
|
Zheng YX, Wang L, Kong WS, Chen H, Wang XN, Meng Q, Zhang HN, Guo SJ, Jiang HW, Tao SC. Nsp2 has the potential to be a drug target revealed by global identification of SARS-CoV-2 Nsp2-interacting proteins. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1134-1141. [PMID: 34159380 DOI: 10.1093/abbs/gmab088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health threat since December 2019, and there is still no highly effective drug to control the pandemic. To facilitate drug target identification for drug development, studies on molecular mechanisms, such as SARS-CoV-2 protein interactions, are urgently needed. In this study, we focused on Nsp2, a non-structural protein with largely unknown function and mechanism. The interactome of Nsp2 was revealed through the combination of affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), and 84 proteins of high-confidence were identified. Gene ontology analysis demonstrated that Nsp2-interacting proteins are involved in several biological processes such as endosome transport and translation. Network analysis generated two clusters, including ribosome assembly and vesicular transport. Bio-layer interferometry (BLI) assay confirmed the bindings between Nsp2- and 4-interacting proteins, i.e. STAU2 (Staufen2), HNRNPLL, ATP6V1B2, and RAP1GDS1 (SmgGDS), which were randomly selected from the list of 84 proteins. Our findings provide insights into the Nsp2-host interplay and indicate that Nsp2 may play important roles in SARS-CoV-2 infection and serve as a potential drug target for anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Yun-Xiao Zheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Sha Kong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Ning Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingfeng Meng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Genetic architecture and phenotypic landscape of deafness and onychodystrophy syndromes. Hum Genet 2021; 141:821-838. [PMID: 34232384 DOI: 10.1007/s00439-021-02310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Deafness and onychodystrophy syndromes are a group of phenotypically overlapping syndromes, which include DDOD syndrome (dominant deafness-onychodystrophy), DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation and seizures) and Zimmermann-Laband syndrome (gingival hypertrophy, coarse facial features, hypoplasia or aplasia of nails and terminal phalanges, intellectual disability, and hypertrichosis). Pathogenic variants in four genes, ATP6V1B2, TBC1D24, KCNH1 and KCNN3, have been shown to be associated with deafness and onychodystrophy syndromes. ATP6V1B2 encodes a component of the vacuolar H+-ATPase (V-ATPase) and TBC1D24 belongs to GTPase-activating protein, which are all involved in the regulation of membrane trafficking. The overlapping clinical phenotype of TBC1D24- and ATP6V1B2- related diseases and their function with GTPases or ATPases activity indicate that they may have some physiological link. Variants in genes encoding potassium channels KCNH1 or KCNN3, underlying human Zimmermann-Laband syndrome, have only recently been recognized. Although further analysis will be needed, these findings will help to elucidate an understanding of the pathogenesis of these disorders better and will aid in the development of potential therapeutic approaches. In this review, we summarize the latest developments of clinical features and molecular basis that have been reported to be associated with deafness and onychodystrophy disorders and highlight the challenges that may arise in the differential diagnosis.
Collapse
|
17
|
Gao X, Dai P, Yuan YY. Correspondence on "DOORS syndrome and a recurrent truncating ATP6V1B2 variant" by Beauregard-Lacroix et al. Genet Med 2021; 23:1578-1579. [PMID: 33941883 DOI: 10.1038/s41436-021-01167-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Xue Gao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China.,Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China. .,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China. .,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China.
| | - Yong-Yi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China. .,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China. .,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China.
| |
Collapse
|
18
|
Gao X, Qiu SW, Wang WQ, Kang DY, Su N, Dai P, Yuan YY. Generation of a gene corrected human isogenic iPSC line (CPGHi002-A-1) from a DDOD patient with heterozygous c.1516 C>T mutation in the ATP6V1B2 gene. Stem Cell Res 2021; 53:102271. [PMID: 33714068 DOI: 10.1016/j.scr.2021.102271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
Dominant deafness-onychodystrophy (DDOD) syndrome is a rare autosomal dominant disorder caused by mutations in ATP6V1B2 gene. We previously generated an induced pluripotent stem cell (iPSC) line (CPGHi002-A) from a DDOD patient with a heterozygous c.1516 C>T mutation in the ATP6V1B2 gene. Here we genetically corrected the c.1516 C>T mutation in the ATP6V1B2 gene using CRISPR/Cas9 technology to generate an isogenic control, CPGHi002-A-1. The characterization of CPGHi002-A-1 demonstrates normal karyotype, pluripotent state, and potential to differentiate in vitro towards endoderm, mesoderm, and ectoderm.
Collapse
Affiliation(s)
- Xue Gao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, 28 Fuxing Road, Beijing 100853, China; Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# Xin Wai Da Jie, Beijing 100088, China
| | - Shi-Wei Qiu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, 28 Fuxing Road, Beijing 100853, China
| | - Wei-Qian Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, 28 Fuxing Road, Beijing 100853, China
| | - Dong-Yang Kang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, 28 Fuxing Road, Beijing 100853, China
| | - Ning Su
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, 28 Fuxing Road, Beijing 100853, China
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, 28 Fuxing Road, Beijing 100853, China.
| | - Yong-Yi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
19
|
Li S, Zhou Y, Yang C, Fan S, Huang L, Zhou T, Wang Q, Zhao R, Tang C, Tao M, Liu S. Comparative analyses of hypothalamus transcriptomes reveal fertility-, growth-, and immune-related genes and signal pathways in different ploidy cyprinid fish. Genomics 2021; 113:595-605. [PMID: 33485949 DOI: 10.1016/j.ygeno.2021.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
Triploid crucian carp (TCC) is obtained by hybridization of female diploid red crucian carp (Carassius auratus red var., RCC) and male allotetraploid hybrids. In this study, high-throughput sequencing was used to conduct the transcriptome analysis of the female hypothalamus of diploid RCC, diploid common carp (Cyprinus carpio L., CC) and TCC. The key functional expression genes of the hypothalamus were obtained through functional gene annotation and differential gene expression screening. A total of 71.56 G data and 47,572 genes were obtained through sequencing and genome mapping, respectively. The Fuzzy Analysis Clustering assigned the differentially expressed genes (DEGs) into eight groups, two of which, overdominance expression (6005, 12.62%) and underdominance expression (3849, 8.09%) in TCC were further studied. KEGG enrichment analysis showed that the DEGs in overdominance were mainly enriched in four pathways. The expression of several fertility-related genes was lower levels in TCC, whereas the expression of several growth-related genes and immune-related genes was higher levels in TCC. Besides, 15 DEGs were verified by quantitative real-time PCR (qPCR). The present study can provide a reference for breeding sterility, fast-growth, and disease-resistant varieties by distant hybridization.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Siyu Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Lu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Tian Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Qiubei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China.
| |
Collapse
|
20
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Molecular Mechanisms and Biological Functions of Autophagy for Genetics of Hearing Impairment. Genes (Basel) 2020; 11:genes11111331. [PMID: 33187328 PMCID: PMC7697636 DOI: 10.3390/genes11111331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
The etiology of hearing impairment following cochlear damage can be caused by many factors, including congenital or acquired onset, ototoxic drugs, noise exposure, and aging. Regardless of the many different etiologies, a common pathologic change is auditory cell death. It may be difficult to explain hearing impairment only from the aspect of cell death including apoptosis, necrosis, or necroptosis because the level of hearing loss varies widely. Therefore, we focused on autophagy as an intracellular phenomenon functionally competing with cell death. Autophagy is a dynamic lysosomal degradation and recycling system in the eukaryotic cell, mandatory for controlling the balance between cell survival and cell death induced by cellular stress, and maintaining homeostasis of postmitotic cells, including hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear. Autophagy is considered a candidate for the auditory cell fate decision factor, whereas autophagy deficiency could be one of major causes of hearing impairment. In this paper, we review the molecular mechanisms and biologic functions of autophagy in the auditory system and discuss the latest research concerning autophagy-related genes and sensorineural hearing loss to gain insight into the role of autophagic mechanisms in inner-ear disorders.
Collapse
|
22
|
Establishment of human induced pluripotent stem cell line (CPGHi002-A) from a 10-month-old female patient with DDOD syndrome carrying a heterozygous c.1516 C > T mutation in ATP6V1B2. Stem Cell Res 2020; 48:101986. [DOI: 10.1016/j.scr.2020.101986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
|
23
|
Beauregard-Lacroix E, Pacheco-Cuellar G, Ajeawung NF, Tardif J, Dieterich K, Dabir T, Vind-Kezunovic D, White SM, Zadori D, Castiglioni C, Tranebjærg L, Tørring PM, Blair E, Wisniewska M, Camurri MV, van Bever Y, Molidperee S, Taylor J, Dionne-Laporte A, Sisodiya SM, Hennekam RCM, Campeau PM. DOORS syndrome and a recurrent truncating ATP6V1B2 variant. Genet Med 2020; 23:149-154. [PMID: 32873933 DOI: 10.1038/s41436-020-00950-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. METHODS Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. RESULTS We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. CONCLUSION We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions.
Collapse
Affiliation(s)
- Eliane Beauregard-Lacroix
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Guillermo Pacheco-Cuellar
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Norbert F Ajeawung
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Jessica Tardif
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Klaus Dieterich
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Tabib Dabir
- Department of Genetic Medicine, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Dina Vind-Kezunovic
- Department of Dermatology, Copenhagen University Hospital Bispebjerg, Copenhagen, NV, Denmark
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Denes Zadori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | | - Lisbeth Tranebjærg
- The Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Ed Blair
- Oxford Regional Genetics Service, Oxford University Hospitals, Oxford, UK
| | - Marzena Wisniewska
- Department of Medical Genetics, Poznañ University of Medical Sciences, Poznañ, Poland
| | - Maria Vittoria Camurri
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sirinart Molidperee
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Juliet Taylor
- Genetic Health Service New Zealand-Northern Hub, Auckland, New Zealand
| | - Alexandre Dionne-Laporte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| | - Raoul C M Hennekam
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Philippe M Campeau
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada.
| |
Collapse
|
24
|
Zádori D, Szalárdy L, Reisz Z, Kovacs GG, Maszlag-Török R, Ajeawung NF, Vécsei L, Campeau PM, Klivényi P. Clinicopathological Relationships in an Aged Case of DOORS Syndrome With a p.Arg506X Mutation in the ATP6V1B2 Gene. Front Neurol 2020; 11:767. [PMID: 32849222 PMCID: PMC7427051 DOI: 10.3389/fneur.2020.00767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
DOORS [deafness, onychodystrophy, osteodystrophy, intellectual disability (mental retardation), and seizures] syndrome can be caused by mutations in the TBC1D24 and ATP6V1B2 genes, both of which are involved in endolysosomal function. Because of its extreme rarity, to date, no detailed neuropathological assessment has been performed to establish clinicopathological relationships and, thereby, understand better the neurobiology of this disease in aged cases. Accordingly, the aim of the current study was to highlight the clinicopathological characteristics of a novel case with a presumable de novo mutation in the ATP6V1B2 gene from a neuropathological point of view. This Caucasian male patient, who died at the age of 72 years, presented all the typical cardinal signs of DOORS syndrome. In addition, behavioral alterations, pyramidal signs, and Parkinsonism were observed. The p.R506X pathogenic mutation identified in the ATP6V1B2 gene was responsible for the clinical phenotype. The detailed neuropathological assessment revealed a limbic-predominant tauopathy in the forms of argyrophilic grain disease, primary age-related tauopathy, and age-related tau-astrogliopathy. In summary, we present the first detailed clinicopathological report of a patient with DOORS syndrome harboring a pathogenic mutation in the ATP6V1B2 gene. The demonstrated tauopathy may be considered as a consequence of lysosomal and/or mitochondrial dysfunction, similar to that found in Niemann-Pick type C disease, which is another lysosomal disorder characterized by premature neurodegenerative disorder.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Zita Reisz
- Department of Pathology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Rita Maszlag-Török
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Norbert F Ajeawung
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Jung HY, Kim W, Hahn KR, Kwon HJ, Nam SM, Chung JY, Yoon YS, Kim DW, Yoo DY, Hwang IK. Effects of Pyridoxine Deficiency on Hippocampal Function and Its Possible Association with V-Type Proton ATPase Subunit B2 and Heat Shock Cognate Protein 70. Cells 2020; 9:cells9051067. [PMID: 32344819 PMCID: PMC7290376 DOI: 10.3390/cells9051067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pyridoxine, one of the vitamin B6 vitamers, plays a crucial role in amino acid metabolism and synthesis of monoamines as a cofactor. In the present study, we observed the effects of pyridoxine deficiency on novel object recognition memory. In addition, we examined the levels of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenethylamine (DA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid and the number of proliferating cells and neuroblasts in the hippocampus. We also examined the effects of pyridoxine deficiency on protein profiles applying a proteomic study. Five-week-old mice fed pyridoxine-deficient diets for 8 weeks and showed a significant decrease in the serum and brain (cerebral cortex, hippocampus, and thalamus) levels of pyridoxal 5′-phosphate, a catalytically active form of vitamin-B6, and decline in 5-HT and DA levels in the hippocampus compared to controls fed a normal chow. In addition, pyridoxine deficiency significantly decreased Ki67-positive proliferating cells and differentiated neuroblasts in the dentate gyrus compared to controls. A proteomic study demonstrated that a total of 41 spots were increased or decreased more than two-fold. Among the detected proteins, V-type proton ATPase subunit B2 (ATP6V1B2) and heat shock cognate protein 70 (HSC70) showed coverage and matching peptide scores. Validation by Western blot analysis showed that ATP6V1B2 and HSC70 levels were significantly decreased and increased, respectively, in pyridoxine-deficient mice compared to controls. These results suggest that pyridoxine is an important element of novel object recognition memory, monoamine levels, and hippocampal neurogenesis. Pyridoxine deficiency causes cognitive impairments and reduction in 5-HT and DA levels, which may be associated with a reduction of ATP6V1B2 and elevation of HSC70 levels in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea;
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (D.Y.Y.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
- Correspondence: (D.Y.Y.); (I.K.H.)
| |
Collapse
|