1
|
Lu Y, Wu H, Luo Y, Xia W, Sun D, Chen R, Miao Z, Zhang W, Yu Y, Wen A. CircIRAK3 Promotes Neutrophil Extracellular Trap Formation by Improving the Stability of ELANE mRNA in Sepsis. Inflammation 2024:10.1007/s10753-024-02206-z. [PMID: 39707013 DOI: 10.1007/s10753-024-02206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Excessive formation of neutrophil extracellular traps (NETs) has been shown to exacerbate inflammatory injury and organ damage in patients with sepsis. Circular RNAs (circRNAs) abnormally expressed in immune cells of sepsis patients, and play an important role in the pathogenesis of dysregulated immune responses. However, the functions of circRNAs in NET formation during sepsis remain unknown. Here, we identified circIRAK3, a novel circRNA that was upregulated in peripheral blood neutrophils of sepsis patients. Combining clinical data, we revealed that elevated circIRAK3 was positively correlated with blood NET levels. Furthermore, knockdown and overexpression in differentiated HL-60 (dHL-60) neutrophil-like cells demonstrated that circIRAK3 promoted NET formation. In addition, we found that circIRAK3 promoted NET formation via positively regulating elastase expression in dHL-60 cells when treated with inflammatory stimuli. Mechanistically, circIRAK3 directly interacted with ELAVL1 to improve ELANE mRNA stability and consequently promote elastase protein expression. In summary, our study reveals that circIRAK3 promotes NET formation in sepsis by increasing ELANE mRNA levels.
Collapse
Affiliation(s)
- Yao Lu
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Huang Wu
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Yuanyuan Luo
- Department of Blood Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, NO 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Wenjun Xia
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Denglian Sun
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Ruichi Chen
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Zeqing Miao
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Weiwei Zhang
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Yang Yu
- Department of Blood Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, NO 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Aiqing Wen
- Department of Blood Transfusion, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, NO 10, Changjiang Branch Road, Daping District, Chongqing, 400042, China.
| |
Collapse
|
2
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
3
|
Wang L, Zhang C, Zhao J, Zhu Z, Wang J, Fan W, Jia W. Biomimetic Targeting Nanoadjuvants for Sonodynamic and Chronological Multi-Immunotherapy against Holistic Biofilm-Related Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308110. [PMID: 38088059 DOI: 10.1002/adma.202308110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Biofilm-related infections (BRIs) present significant challenges owing to drug resistance, adverse immune responses, and implant failure; however, current approaches inadequately cater to the diverse therapeutic requirements at different stages of infection. To address this issue, a multi-immunotherapy strategy in combination with sonodynamic therapy is proposed for the chronological treatment of BRIs. Macrophage membrane-decorated targeting sonosensitive nanoadjuvants are fabricated to load cytosine-phosphate-guanine oligodeoxynucleotide (CPG-ODN) or microRNA (miR)-21-5p. In the early stages of BRI (Stage I), CPG-ODN-loaded nanoadjuvants (CPG@HMPN@M) promote the formation of neutrophil extracellular traps to capture and neutralize detached microbes. During the late stage of infection (Stage II), CPG-ODNs redirect macrophage polarization into the M1 phase to combat infections via TLR9/Myd88/TRAF6 pathway. During these stages, CPG@HMPN@M generates singlet oxygen through sonodynamic processes, eradicating the biofilms under US irradiation. Once the BRIs are eliminated, miR-21-5p-loaded nanoadjuvants (miR@HMPN@M) are delivered to the lesions to suppress excessive inflammation and promote tissue integration by evoking macrophage M2 polarization during the repair phase (Stage III) through PTEN/PI3K/Akt pathway. This innovative approach aims to provide comprehensive treatment strategies for the chronological treatment of BRI by effectively eliminating infections, promoting tissue restoration, and implementing different immune regulations at different stages, thus demonstrating promising clinical value.
Collapse
Affiliation(s)
- Lingtian Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ziyang Zhu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China
| | - Weitao Jia
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
4
|
Pehlivanoglu B, Aysal A, Agalar C, Egeli T, Ozbilgin M, Unek T, Unek IT, Oztop I, Aktas S, Sagol O. lncRNA XIST Interacts with Regulatory T Cells within the Tumor Microenvironment in Chronic Hepatitis B-Associated Hepatocellular Carcinoma. Turk Patoloji Derg 2024; 40:101-108. [PMID: 38265097 PMCID: PMC11131571 DOI: 10.5146/tjpath.2023.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Alterations in the expression of several long non-coding RNAs (lncRNAs) have been shown in chronic hepatitis B-associated hepatocellular carcinoma (CHB-HCC). Here, we aimed to investigate the association between the expression of inflammation-associated lncRNA X-inactive specific transcript (XIST) and the type of inflammatory cells within the tumor microenvironment. MATERIAL AND METHODS Twenty-one consecutive cirrhotic patients with CHB-HCC were included. XIST expression levels were investigated on formalin-fixed paraffin-embedded (FFPE) tumoral and peritumoral tissue samples by real-time polymerase chain reaction (RT-PCR). Immunohistochemical staining for CD3, CD4, CD8, CD25, CD163, CTLA4, and PD-1 were performed. The findings were statistically analyzed. RESULTS Of the 21 cases, 11 (52.4%) had tumoral and 10 (47.6%) had peritumoral XIST expression. No significant association was found between the degree of inflammation and XIST expression. The number of intratumoral CD3, CD4, CD8 and CD20 positive cells was higher in XIST-expressing tumors, albeit without statistical significance. Tumoral and peritumoral XIST expression tended to be more common in patients with tumoral and peritumoral CD4high inflammation. The number of intratumoral CD25 positive cells was significantly higher in XIST-expressing tumors (p=0.01). Tumoral XIST expression was significantly more common in intratumoral CD25high cases (p=0.04). Peritumoral XIST expression was also more common among patients with CD25high peritumoral inflammation, albeit without statistical significance (p=0.19). CONCLUSION lncRNA XIST is expressed in CHB-HCC and its expression is significantly associated with the inflammatory tumor microenvironment, particularly with the presence and number of CD25 (+) regulatory T cells. In vitro studies are needed to explore the detailed mechanism.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Anil Aysal
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Cihan Agalar
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tufan Egeli
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Mucahit Ozbilgin
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tarkan Unek
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilkay Tugba Unek
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilhan Oztop
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Safiye Aktas
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Basic Oncology, Dokuz Eylul University, Institute of Oncology, Izmir, Turkey
| | - Ozgul Sagol
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
5
|
Marques IS, Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, de Melo IG, Assis J, Pereira D, Medeiros R. Long Non-Coding RNAs: Bridging Cancer-Associated Thrombosis and Clinical Outcome of Ovarian Cancer Patients. Int J Mol Sci 2023; 25:140. [PMID: 38203310 PMCID: PMC10778953 DOI: 10.3390/ijms25010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) and venous thromboembolism (VTE) have a close relationship, in which tumour cells surpass the haemostatic system to drive cancer progression. Long non-coding RNAs (lncRNAs) have been implicated in VTE pathogenesis, yet their roles in cancer-associated thrombosis (CAT) and their prognostic value are unexplored. Understanding how these lncRNAs influence venous thrombogenesis and ovarian tumorigenesis may lead to the identification of valuable biomarkers for VTE and OC management. Thus, this study evaluated the impact of five lncRNAs, namely MALAT1, TUG1, NEAT1, XIST and MEG8, on a cohort of 40 OC patients. Patients who developed VTE after OC diagnosis had worse overall survival compared to their counterparts (log-rank test, p = 0.028). Elevated pre-chemotherapy MEG8 levels in peripheral blood cells (PBCs) predicted VTE after OC diagnosis (Mann-Whitney U test, p = 0.037; Χ2 test, p = 0.033). In opposition, its low levels were linked to a higher risk of OC progression (adjusted hazard ratio (aHR) = 3.00; p = 0.039). Furthermore, low pre-chemotherapy NEAT1 levels in PBCs were associated with a higher risk of death (aHR = 6.25; p = 0.008). As for the remaining lncRNAs, no significant association with VTE incidence, OC progression or related mortality was observed. Future investigation with external validation in larger cohorts is needed to dissect the implications of the evaluated lncRNAs in OC patients.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
6
|
Ge S, Hu J, Gao S, Ren J, Zhu G. LncRNA NEAT1: A novel regulator associated with the inflammatory response in acute respiratory distress syndrome. Gene 2023:147582. [PMID: 37353041 DOI: 10.1016/j.gene.2023.147582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening condition with an unfavorable prognosis. As the pathogenesis of ARDS remains unclear, we aimed to identify the core genes associated with ARDS and the mechanisms by which competing endogenous RNAs (ceRNAs) regulate the disease's progression. METHODS Three mRNA microarray datasets (GSE17355, GSE48787, and GSE130936), derived from the Gene Expression Omnibus (GEO) database, were selected. Common differentially expressed genes (DEGs) related to acute lung injury (ALI) were identified and subjected to enrichment analysis. Then, hub genes were figured out through the protein-protein interaction (PPI) network and functional analysis, and targeted miRNAs and lncRNAs were predicted. Finally, the ceRNA networks associated with ALI were constructed and validated experimentally. RESULTS A total of 155 upregulated and 93 downregulated DEGs were identified in the three datasets. The TNF signaling pathway and IL-17 signaling pathway were the most enriched pathways. Then, eleven DEGs enriched in the IL-17 signaling pathway were selected as the hub genes. Three miRNAs (mmu-mir-155-5p, mmu-mir-21a-5p, and mmu-mir-122-5p), which were located in the lung tissue and predicted to bind the hub genes at the same time, and two lncRNAs (Neat1 and Tug1), which have binding sites for the aforementioned miRNAs, were filtered. With qPCR verification, we identified a ceRNA network composed of NEAT1, miR-21-5p, MMP9, and CXCL5. NEAT1 knockdown promoted the migration and reduced the expression of pro-inflammatory factor and reactive oxygen species (ROS) in lung epithelial cells. We eventually confirmed that NEAT1/miR-21-5p/CXCL5/MMP9 played a pivotal role in regulating the inflammatory response in ALI. CONCLUSION The IL-17 signaling pathway is of great importance in the pathogenesis of ARDS. NEAT1/miR-21-5p is involved in the inflammation of ALI by regulating CXCL5 and MMP9.
Collapse
Affiliation(s)
- Shanhui Ge
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiaxin Hu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shijuan Gao
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University
| | - Jianwei Ren
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guangfa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Gao C, Xu YJ, Meng ZX, Gu S, Zhang L, Zheng L. BMSC-Derived Exosomes Carrying lncRNA-ZFAS1 Alleviate Pulmonary Ischemia/Reperfusion Injury by UPF1-Mediated mRNA Decay of FOXD1. Mol Neurobiol 2023; 60:2379-2396. [PMID: 36652050 DOI: 10.1007/s12035-022-03129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exert protective effects against pulmonary ischemia/reperfusion (I/R) injury; however, the potential mechanism involved in their protective ability remains unclear. Thus, this study aimed to explore the function and underlying mechanism of BMSC-derived exosomal lncRNA-ZFAS1 in pulmonary I/R injury. Pulmonary I/R injury models were established in mice and hypoxia/reoxygenation (H/R)-exposed primary mouse lung microvascular endothelial cells (LMECs). Exosomes were extracted from BMSCs. Target molecule expression was assessed by qRT-PCR and Western blotting. Pathological changes in the lungs, pulmonary edema, apoptosis, pro-inflammatory cytokine levels, SOD, MPO activities, and MDA level were measured. The proliferation, apoptosis, and migration of LMECs were detected by CCK-8, EdU staining, flow cytometry, and scratch assay. Dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assays were performed to validate the molecular interaction. In the mouse model of pulmonary I/R injury, BMSC-Exos treatment relieved lung pathological injury, reduced lung W/D weight ratio, and restrained apoptosis and inflammation, whereas exosomal ZFAS1 silencing abolished these beneficial effects. In addition, the proliferation, migration inhibition, apoptosis, and inflammation in H/R-exposed LMECs were repressed by BMSC-derived exosomal ZFAS1. Mechanistically, ZFAS1 contributed to FOXD1 mRNA decay via interaction with UPF1, thereby leading to Gal-3 inactivation. Furthermore, FOXD1 depletion strengthened the weakened protective effect of ZFAS1-silenced BMSC-Exos on pulmonary I/R injury. ZFAS1 delivered by BMSC-Exos results in FOXD1 mRNA decay and subsequent Gal-3 inactivation via direct interaction with UPF1, thereby attenuating pulmonary I/R injury.
Collapse
Affiliation(s)
- Cao Gao
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Yan-Jie Xu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Zhi-Xiu Meng
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Shuang Gu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Long Noncoding RNA: A Novel Insight into the Pathogenesis of Acute Lung Injury. J Clin Med 2023; 12:jcm12020604. [PMID: 36675533 PMCID: PMC9861694 DOI: 10.3390/jcm12020604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), represent an acute stage of lung inflammation where the alveolar epithelium loses its functionality. ALI has a devastating impact on the population as it not only has a high rate of incidence, but also has high rates of morbidity and mortality. Due to the involvement of multiple factors, the pathogenesis of ALI is complex and is not fully understood yet. Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts longer than 200 nucleotides. Growing evidence has shown that lncRNAs have a decisive role in the pathogenesis of ALI. LncRNAs can either promote or hinder the development of ALI in various cell types in the lungs. Mechanistically, current studies have found that lncRNAs play crucial roles in the pathogenesis of ALI via the regulation of small RNAs (e.g., microRNAs) or downstream proteins. Undoubtedly, lncRNAs not only have the potential to reveal the underlying mechanisms of ALI pathogenesis but also serve as diagnostic and therapeutic targets for the therapy of ALI.
Collapse
|
9
|
Bonneau S, Landry C, Bégin S, Adam D, Villeneuve L, Clavet-Lanthier MÉ, Dasilva A, Charles E, Dumont BL, Neagoe PE, Brochiero E, Menaouar A, Nasir B, Stevens LM, Ferraro P, Noiseux N, Sirois MG. Correlation between Neutrophil Extracellular Traps (NETs) Expression and Primary Graft Dysfunction Following Human Lung Transplantation. Cells 2022; 11:3420. [PMID: 36359815 PMCID: PMC9656095 DOI: 10.3390/cells11213420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2023] Open
Abstract
Primary graft dysfunction (PGD) is characterized by alveolar epithelial and vascular endothelial damage and inflammation, lung edema and hypoxemia. Up to one-third of recipients develop the most severe form of PGD (Grade 3; PGD3). Animal studies suggest that neutrophils contribute to the inflammatory process through neutrophil extracellular traps (NETs) release (NETosis). NETs are composed of DNA filaments decorated with granular proteins contributing to vascular occlusion associated with PGD. The main objective was to correlate NETosis in PGD3 (n = 9) versus non-PGD3 (n = 27) recipients in an exploratory study. Clinical data and blood samples were collected from donors and recipients pre-, intra- and postoperatively (up to 72 h). Inflammatory inducers of NETs' release (IL-8, IL-6 and C-reactive protein [CRP]) and components (myeloperoxidase [MPO], MPO-DNA complexes and cell-free DNA [cfDNA]) were quantified by ELISA. When available, histology, immunohistochemistry and immunofluorescence techniques were performed on lung biopsies from donor grafts collected during the surgery to evaluate the presence of activated neutrophils and NETs. Lung biopsies from donor grafts collected during transplantation presented various degrees of vascular occlusion including neutrophils undergoing NETosis. Additionally, in recipients intra- and postoperatively, circulating inflammatory (IL-6, IL-8) and NETosis biomarkers (MPO-DNA, MPO, cfDNA) were up to 4-fold higher in PGD3 recipients compared to non-PGD3 (p = 0.041 to 0.001). In summary, perioperative elevation of NETosis biomarkers is associated with PGD3 following human lung transplantation and these biomarkers might serve to identify recipients at risk of PGD3 and initiate preventive therapies.
Collapse
Affiliation(s)
- Steven Bonneau
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Caroline Landry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Stéphanie Bégin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Louis Villeneuve
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
| | | | - Ariane Dasilva
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Elcha Charles
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Benjamin L. Dumont
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Paul-Eduard Neagoe
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Ahmed Menaouar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
| | - Basil Nasir
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Louis-Mathieu Stevens
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Pasquale Ferraro
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Nicolas Noiseux
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis St, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Martin G. Sirois
- Research Center—Montreal Heart Institute, 5000 Belanger St., Montreal, QC H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Blvd Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
10
|
Predicting the Immune Microenvironment and Prognosis with a NETosis-Related lncRNA Signature in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3191474. [PMID: 36147630 PMCID: PMC9485711 DOI: 10.1155/2022/3191474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Background. The mechanistic aspects of the involvement of long noncoding RNAs (lncRNAs) in NETosis, the process of neutrophil extracellular trap (NET) formation in head and neck squamous cell carcinoma (HNSCC), lack comprehensive elucidation. The involvement of these molecules in the immune microenvironment and plausible HNSCC prognosis remain to see the light of the day. The plausible functioning of NETosis-related lncRNAs with their plausible prognostic impact in HNSCC was probed in this work. Methods. The scrutiny of lncRNAs linked to NETosis entailed the probing of twenty-four genes associated with the process employing Pearson’s correlation analysis on HNSCC patients’ RNA sequencing data from The Cancer Genome Atlas (TCGA) database. The application of univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses yielded a NETosis-related lncRNA signature that was subjected to probing for its suitability in prognosis employing survival and nomogram analyses. Results. The NETosis-related lncRNA signature inclusive of five lncRNAs facilitated patients to be segregated as high-risk and low-risk groups with the former documenting a poor prognosis. Regression unearthed that the risk score was an independent factor for prognosis. The receiver operating characteristic (ROC) or receiver operating characteristic curve analysis documented a one-year area under time-dependent ROC curve (AUC) value of 0.711 that is corroborative of the accuracy of this signature. Additional probing documented an evident enriching of immune-linked pathways in the low-risk patients, while the high-risk patients documented an immunologically “cold” profile as per the infiltration of immune cells. We verified lncRNA expression from our NETosis-related lncRNA signature in vitro, which reflects the reliability of our model to a certain extent. Moreover, we also verified the function of the lncRNA. We found that LINC00426 contributes to the innate immune cGAS-STING signaling pathway, which explain to some extent the role of our prognostic model in predicting “hot” and “cold” tumors. Conclusions. The plausible prognostic relevance of the NETosis-related lncRNA signature (with five lncRNAs) emerges that is suggestive of its promise in targeting HNSCC.
Collapse
|
11
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Noncoding RNAs as novel immunotherapeutic tools against cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:135-161. [PMID: 35305717 DOI: 10.1016/bs.apcsb.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunotherapy is implemented as an important treatment strategy in various malignancies. In cancer, immunotherapy is employed for successful killing of tumor cells with high specificity and greater efficacy, with minimum side effects. Despite various available strategies, cellular immunotherapy including innate (NK cells, macrophages, dendritic cells) and adaptive (B cells and T cells) immune cells plays a critical role in tumor microenvironment. Since past few years, many drugs targeting immune checkpoint proteins including CTLA-4 and PD-1/PD-L1 have been investigated as immunotherapy approach against cancer but complete effectiveness still remains a question, as diverse mechanisms involved in tumorigenesis may result in the development of cancer cell resistance. Number of evidences have highlighted the significant role of non-coding RNAs (ncRNAs) in regulating multiple stages of cancer initiation, progression & immunity. ncRNAs comprises 98% human transcriptome and are basically considered as dark genome. Among ncRNAs, miRNAs and lncRNAs have been extensively studied in regulating diverse processes of cancer tumorigenesis. Upregulation of oncogenic and downregulation of tumor suppressive miRNAs/lncRNAs has been reported to facilitate the cancer progression and invasiveness. This chapter summarizes how an interplay between ncRNAs and immune cells in cancer pathogenesis can be therapeutically targeted to improve current treatment regimen. Strategies should be employed to improve the efficacy and reduce off-target effects of ncRNA based immunotherapy. Henceforth, combination of ncRNAs and available immunotherapy can be argued to enhance the efficacy of existing immunotherapeutic approaches against cancer to improve patient's survival.
Collapse
|
13
|
Roy RK, Yadav R, Sharma U, Kaushal Wasson M, Sharma A, Tanwar P, Jain A, Prakash H. Impact of non-coding RNAs on cancer directed immune therapies: Now then and forever. Int J Cancer 2022; 151:981-992. [PMID: 35489027 DOI: 10.1002/ijc.34060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence demonstrates that the host genome's epigenetic modifications are essential for living organisms to adapt to extreme conditions. DNA methylation, covalent modifications of histone, and inter-association of non-coding RNAs facilitate the cellular manifestation of epigenetic changes in the genome. Out of various factors involved in the epigenetic programming of the host, non-coding RNAs (ncRNAs) such as microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA, snoRNA and piRNA are new generation non-coding molecules that influence a variety of cellular processes like immunity, cellular differentiation, and tumor development. During tumor development, temporal changes in miRNA/LncRNA rheostat influence sterile inflammatory responses accompanied by the changes in the carcinogenic signaling in the host. At the cellular level, this is manifested by the up-regulation of Inflammasome and inflammatory pathways, which promotes cancer-related inflammation. Given this, we discuss the potential of lncRNAs, miRNAs, circular RNA, snoRNA and piRNA in regulating inflammation and tumor development in the host. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | |
Collapse
|
14
|
Salehi S, Afzali S, Shahi A, Amirzargar AA, Mansoori Y. Potential Roles of Long Noncoding RNAs as Therapeutic Targets in Organ Transplantation. Front Immunol 2022; 13:835746. [PMID: 35359941 PMCID: PMC8962195 DOI: 10.3389/fimmu.2022.835746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Organ transplantation is the most preferred treatment option for end-stage organ diseases; however, allograft rejection is the major hurdle in successful long-term transplant survival. In spite of developing better HLA matching and more effective immunosuppressive regimen, one-year graft survival has been increased by nearly 90% and the incidence of acute rejection by one-year post-transplantation has been decreased by 12.2% in the last decades, chronic allograft rejection has remained as one of the major obstacles to the long-lasting survival of the transplanted allograft. Therefore, seemingly preventing the allograft rejection and inducing immunological tolerance against transplanted allografts is one of the primary goals in transplantation research to enable long-lasting graft survival. Various mechanisms such as long noncoding RNAs (lncRNAs) have been proposed that induce immune tolerance by modulating the gene expression and regulating innate and adaptive immune responses during transplantation. Besides, because of involvement in regulating epigenetic, transcriptional, and post-translational mechanisms, lncRNAs could affect allograft status. Therefore, these molecules could be considered as the potential targets for prediction, prognosis, diagnosis, and treatment of graft rejection. It is suggested that the noninvasive predictive biomarkers hold promise to overcome the current limitations of conventional tissue biopsy in the diagnosis of rejection. Hence, this review aims to provide a comprehensive overview of lncRNAs and their function to facilitate diagnosis, prognosis, and prediction of the risk of graft rejection, and the suggestive therapeutic choices after transplantation.
Collapse
Affiliation(s)
- Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
15
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
16
|
Jia X, Huang J, Wu B, Yang M, Xu W. A Competitive Endogenous RNA Network Based on Differentially Expressed lncRNA in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Front Genet 2021; 12:745715. [PMID: 34917127 PMCID: PMC8669720 DOI: 10.3389/fgene.2021.745715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Non-coding RNAs have remarkable roles in acute lung injury (ALI) initiation. Nevertheless, the significance of long non-coding RNAs (lncRNAs) in ALI is still unknown. Herein, we purposed to identify potential key genes in ALI and create a competitive endogenous RNA (ceRNA) modulatory network to uncover possible molecular mechanisms that affect lung injury. We generated a lipopolysaccharide-triggered ALI mouse model, whose lung tissue was subjected to RNA sequencing, and then we conducted bioinformatics analysis to select genes showing differential expression (DE) and to build a lncRNA-miRNA (microRNA)- mRNA (messenger RNA) modulatory network. Besides, GO along with KEGG assessments were conducted to identify major biological processes and pathways, respectively, involved in ALI. Then, RT-qPCR assay was employed to verify levels of major RNAs. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and the hub genes were obtained with the Molecular Complex Detection plugin. Finally, a key ceRNA subnetwork was built from major genes and their docking sites. Overall, a total of 8,610 lncRNAs were identified in the normal and LPS groups. Based on the 308 DE lncRNAs [p-value < 0.05, |log2 (fold change) | > 1] and 3,357 DE mRNAs [p-value < 0.05, |log2 (fold change) | > 1], lncRNA-miRNA and miRNA-mRNA pairs were predicted using miRanda. The lncRNA-miRNA-mRNA network was created from 175 lncRNAs, 22 miRNAs, and 209 mRNAs in ALI. The RT-qPCR data keep in step with the RNA sequencing data. GO along with KEGG analyses illustrated that DE mRNAs in this network were mainly bound up with the inflammatory response, developmental process, cell differentiation, cell proliferation, apoptosis, and the NF-kappa B, PI3K-Akt, HIF-1, MAPK, Jak-STAT, and Notch signaling pathways. A PPI network on the basis of the 209 genes was established, and three hub genes (Nkx2-1, Tbx2, and Atf5) were obtained from the network. Additionally, a lncRNA-miRNA-hub gene subnetwork was built from 15 lncRNAs, 3 miRNAs, and 3 mRNAs. Herein, novel ideas are presented to expand our knowledge on the regulation mechanisms of lncRNA-related ceRNAs in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Xianxian Jia
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhui Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Zhang J, Chen C, Zhang S, Chen J, Wu L, Chen Z. LncRNA XIST restrains the activation of Müller cells and inflammation in diabetic retinopathy via stabilizing SIRT1. Autoimmunity 2021; 54:504-513. [PMID: 34498499 DOI: 10.1080/08916934.2021.1969551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies have provided strong evidence that lncRNAs play a functional regulatory role in diabetic retinopathy (DR). The purpose of this study was to investigate the effect of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) in DR. METHODS A DR mouse model was established by intraperitoneal injection of streptozotocin (STZ), and then the mouse retinal Müller cells (mMCs) were isolated from retina tissues of mice. Human retinal Müller cell line (HMCs) and mMCs and were treated with high glucose (HG) to simulate an in vitro DR model. XIST expression was detected by qRT-PCR. Next, XIST overexpression was performed in mMCs and HMCs to examine its effect on the activation of Müller cells and production of pro-inflammatory cytokines. Subsequently, the interaction between XIST and SIRT1 was verified, and the ubiquitination level of SIRT1 as well as the stability of SIRT1 protein were assessed. RESULTS XIST was down-regulated in retinal tissues of DR mice and HG-induced HMCs. Overexpression of XIST inhibited HG-induced activation of mMCs and HMCs, and reduced the production of pro-inflammatory cytokines. XIST promoted SIRT1 expression via interacting with SIRT1 and inhibiting the ubiquitination of SIRT1. Furthermore, SIRT1 silencing partly abrogated the effect of XIST overexpression on the activation of mMCs and HMCs as well as the production of pro-inflammatory cytokines induced by HG. CONCLUSION We concluded that XIST restrained the activation of Müller cells and the production of pro-inflammatory cytokines via stabilizing SIRT1.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Chengwei Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Sifang Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Jiawei Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Liang Wu
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Zhenguo Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| |
Collapse
|
18
|
Song X, Li L, Zhao Y, Song Y. Down-regulation of long non-coding RNA XIST aggravates sepsis-induced lung injury by regulating miR-16-5p. Hum Cell 2021; 34:1335-1345. [PMID: 33978928 PMCID: PMC8114023 DOI: 10.1007/s13577-021-00542-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
This study aims to explain the role and related mechanisms of long non-coding RNA (lncRNA) X inactive specific transcript (XIST) in sepsis-induced acute lung injury (ALI). The in vivo septic models and in vitro septic model were established. In animal models, the lung injury of the rats was evaluated after XIST was overexpressed. In cell models, the effects of XIST and microRNA (miR)-16-5p on ALI was detected by MTT assay, Western blot and ELISA. The interaction between XIST and miR-16-5p was investigated by bioinformatics analysis, dual-luciferase reporter assay, RIP assay and RNA pull-down assay. We found that XIST expression was down-regulated in lung tissues of septic rats and lipopolysaccharide-stimulated cells, while the expression of miR-16-5p was up-regulated. Down-regulation of XIST significantly promoted pulmonary edema, increased the levels of TNF-α, IL-1β and malondialdehyde, inhibited the cell viability and decreased the level of superoxide dismutase. Mechanistically, it was confirmed that XIST could sponge miR-16-5p, and thus repress its expression, and the transfection of miR-16-5p mimics could reverse the effects of XIST over-expression in the cell model. Collectively, it is concluded that XIST reduces sepsis-induced ALI via regulating miR-16-5p.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Medical College of Henan University, Weiwu Road No. 7, Zhengzhou, 450003 Henan Province China
| | - Linyu Li
- Department of Scientific Research, Sanquan College of Xinxiang Medical University, Xinxiang, 453003 China
| | - Yaying Zhao
- Department of Disinfection Supply Center, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Medical College of Henan University, Zhengzhou, 450003 China
| | - Yucheng Song
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Medical College of Henan University, Weiwu Road No. 7, Zhengzhou, 450003 Henan Province China
| |
Collapse
|
19
|
Lu F, Hong Y, Liu L, Wei N, Lin Y, He J, Shao Y. Long noncoding RNAs: A potential target in sepsis-induced cellular disorder. Exp Cell Res 2021; 406:112756. [PMID: 34384779 DOI: 10.1016/j.yexcr.2021.112756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Sepsis, an inflammation-related clinical syndrome, is characterized by disrupted immune homeostasis accompanied by infection and multiple organ dysfunction as determined by the Sequential Organ Failure Assessment (SOFA). Substantial evidence has recently suggested that lncRNAs orchestrate various biological processes in diseases, and lncRNAs play special roles in the diagnosis and management of sepsis. To date, very few reviews have provided clear and comprehensive clues to demonstrate the roles of lncRNAs in the pathogenesis of sepsis. Based on previously published studies, in this review, we summarize the different functions of lncRNAs in sepsis-induced cellular disorders and sepsis-induced organ failure to show the potential roles of lncRNAs in the diagnosis and management of sepsis. We further depict the function of some lncRNAs known to be pivotal regulators in the pathogenesis of sepsis to discuss the underlying molecular events. Additionally, we list and discuss several hotspots in research on lncRNAs, which may be conducive to future lncRNA-targeted therapeutic approaches for sepsis treatment.
Collapse
Affiliation(s)
- Furong Lu
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuan Hong
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Lizhen Liu
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Ning Wei
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yao Lin
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China
| | - Junbing He
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China.
| | - Yiming Shao
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
20
|
Li C, Liu JH, Su J, Lin WJ, Zhao JQ, Zhang ZH, Wu Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway : XIST promotes ALI via miR-132-3p/MAPK14 axis. Mol Cell Biochem 2021; 476:4217-4229. [PMID: 34346000 PMCID: PMC8330477 DOI: 10.1007/s11010-021-04234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is a fatal inflammatory response syndrome. LncRNA XIST (XIST) is a lung cancer-related gene and participates in pneumonia. However, whether XIST participates in lipopolysaccharides (LPS)-induced ALI remains unclear. LPS-induced inflammation model was constructed in vitro, then cell viability, cytokines, cell apoptosis, protein, and mRNA expressions were individually detected by cell counting kit-8, enzyme-linked immunosorbent assay and flow cytometry, Western blot, and qRT-PCR. A dual-luciferase reporter assay confirmed the relationships among XIST, miR-132-3p, and MAPK14. Furthermore, inflammation and conditions after knockdown of XIST were assessed by hematoxylin and eosin staining, lung wet-to-dry weight ratio, PaO2/FiO2 ratio, and malondialdehyde (MDA) contents using LPS-induced in vivo model. Our findings indicated that the LPS challenge decreased cell viability, increased cell apoptosis, and caused secretions of pro-inflammatory cytokines. Noticeably, LPS significantly upregulated XIST, MAPK14, and downregulated miR-132-3p. Mechanistically, XIST acted as a molecular sponge to suppress miR-132-3p, and MAPK14 was identified as a target of miR-132-3p. Functional analyses demonstrated that XIST silencing remarkably increased cell survival and alleviated cell death and lung injury through decreasing TNF-α, IL-1β, IL-6, accumulation of inflammatory cells, alveolar hemorrhage, MDA release, and increased PaO2/FiO2 ratio, as well as upregulating Bcl-2, and downregulating Bax, MAPK14, and p-extracellular signal-regulated kinases ½. In contrast, inhibition of the miR-132-3p antagonized the effects of XIST silencing. In conclusion, inhibition of XIST exhibited a protective role in LPS-induced ALI through modulating the miR-132-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Chen Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jing Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Wei-Jia Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
21
|
Zaki A, Ali MS, Hadda V, Ali SM, Chopra A, Fatma T. Long non-coding RNA (lncRNA): A potential therapeutic target in acute lung injury. Genes Dis 2021; 9:1258-1268. [PMID: 35873025 PMCID: PMC9293716 DOI: 10.1016/j.gendis.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/26/2022] Open
Abstract
Acute Lung Injury (ALI) and its severe form Acute Respiratory Distress Syndrome (ARDS) are the major cause of ICU death worldwide. ALI/ARDS is characterized by severe hypoxemia and inflammation that leads to poor lung compliance. Despite many advances in understanding and management, ALI/ARDS is still causing significant morbidity and mortality. Long non-coding RNA (lncRNA) is a fast-growing topic in lung inflammation and injury. lncRNA is a class of non-coding RNA having a length of more than 200 nucleotides. It has been a center of research for understanding the pathophysiology of various diseases in the past few years. Multiple studies have shown that lncRNAs are abundant in acute lung injury/injuries in mouse models and cell lines. By targeting these long non-coding RNAs, many investigators have demonstrated the alleviation of ALI in various mouse models. Therefore, lncRNAs show great promise as a therapeutic target in ALI. This review provides the current state of knowledge about the relationship between lncRNAs in various biological processes in acute lung injury and its use as a potential therapeutic target.
Collapse
|
22
|
Integrative Analysis of Prognostic Biomarkers for Acute Rejection in Kidney Transplant Recipients. Transplantation 2021; 105:1225-1237. [PMID: 33148975 DOI: 10.1097/tp.0000000000003516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Noninvasive biomarkers may predict adverse events such as acute rejection after kidney transplantation and may be preferable to existing methods because of superior accuracy and convenience. It is uncertain how these biomarkers, often derived from a single study, perform across different cohorts of recipients. METHODS Using a cross-validation framework that evaluates the performance of biomarkers, the aim of this study was to devise an integrated gene signature set that predicts acute rejection in kidney transplant recipients. Inclusion criteria were publicly available datasets of gene signatures that reported acute rejection episodes after kidney transplantation. We tested the predictive probability for acute rejection using gene signatures within individual datasets and validated the set using other datasets. Eight eligible studies of 1454 participants, with a total of 512 acute rejections episodes were included. RESULTS All sets of gene signatures had good positive and negative predictive values (79%-96%) for acute rejection within their own cohorts, but the predictability reduced to <50% when tested in other independent datasets. By integrating signature sets with high specificity scores across all studies, a set of 150 genes (included CXCL6, CXCL11, OLFM4, and PSG9) which are known to be associated with immune responses, had reasonable predictive values (varied between 69% and 90%). CONCLUSIONS A set of gene signatures for acute rejection derived from a specific cohort of kidney transplant recipients do not appear to provide adequate prediction in an independent cohort of transplant recipients. However, the integration of gene signature sets with high specificity scores may improve the prediction performance of these markers.
Collapse
|
23
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
24
|
Long non-coding RNA review and implications in acute lung inflammation. Life Sci 2021; 269:119044. [PMID: 33454366 PMCID: PMC7808900 DOI: 10.1016/j.lfs.2021.119044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Acute lung inflammatory diseases severely affect the patients' recovery and outcomes worldwide. Unregulated acute inflammatory response is fundamentally central to acute lung inflammation including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). To limit the potentially deleterious effects of acute lung inflammation, complex transcriptional and posttranscriptional regulatory networks have been explored, which often involves long noncoding RNAs (lncRNA). LncRNAs are RNAs that longer than 200 nucleotides, functioning as scaffolds or decoys in the cytoplasm or nucleus. By now, lncRNAs have been found to join in all major cellular processes including cell proliferation, metabolism, stress response or death. Extensive advance over the last decade furthermore indicated a fundamental role of lncRNAs in acute lung inflammation. This article reviews and summarizes the current knowledge on lncRNA in acute lung inflammatory response.
Collapse
|
25
|
Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:231. [PMID: 33148302 PMCID: PMC7641842 DOI: 10.1186/s13046-020-01727-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of endogenous, non-protein coding RNAs that are highly linked to various cellular functions and pathological process. Emerging evidence indicates that lncRNAs participate in crosstalk between tumor and stroma, and reprogramming of tumor immune microenvironment (TIME). TIME possesses distinct populations of myeloid cells and lymphocytes to influence the immune escape of cancer, the response to immunotherapy, and the survival of patients. However, hitherto, a comprehensive review aiming at relationship between lncRNAs and TIME is missing. In this review, we focus on the functional roles and molecular mechanisms of lncRNAs within the TIME. Furthermore, we discussed the potential immunotherapeutic strategies based on lncRNAs and their limitations.
Collapse
|
26
|
Zhan Y, Zhang L, Yu S, Wen J, Liu Y, Zhang X. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:136. [PMID: 32677984 PMCID: PMC7364562 DOI: 10.1186/s13046-020-01624-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Accumulating evidence have highlighted the importance of long noncoding RNAs (lncRNAs) in multiple cancers development and progression. Cancer susceptibility candidate 9 (CASC9) is a novel long non-coding RNA and plays important regulatory role in diverse biological processes of cancers. However, the clinical significance and molecular mechanism of CASC9 in bladder cancer is still unknown. METHODS Comprehensive lncRNAs profiling analysis were conducted to identify lncRNAs profile alterations and uncover valuable lncRNA candidates for bladder cancer. The expression level of CASC9 was determined in a total of 106 patients with bladder cancer. Loss-of-function experiments were performed to identify the functions of CASC9 in tumor growth and metastasis of bladder cancer in vitro and in vivo. Bioinformatics analysis and further experiments were performed to explore the molecular mechanisms underlying the functions of CASC9. RESULTS This study found that CASC9 expression was markedly upregulated in bladder cancer and related to histological grade, TNM stage and prognosis. Knockdown of CASC9 inhibited tumor growth and metastasis of bladder cancer in vitro and in vivo. Mechanistically, we found that CASC9 functions as a miRNA sponge to positively regulate FZD6 expression and subsequently activates Wnt/β-catenin signaling pathway, thus playing an oncogenic role in bladder cancer pathogenesis. CONCLUSION In summary, lncRNA CASC9 plays a critical regulatory role in bladder cancer. The CASC9/miR-497-5p/ FZD6 axis provides insights for regulatory mechanism of bladder cancer, and new strategies for clinical practice.
Collapse
Affiliation(s)
- Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Lianghao Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Shuanbao Yu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Yuchen Liu
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|