1
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
2
|
Song J, Wang L, Wang L, Guo X, He Q, Cui C, Hu H, Zang N, Yang M, Yan F, Liang K, Wang C, Liu F, Sun Y, Sun Z, Lai H, Hou X, Chen L. Mesenchymal stromal cells ameliorate mitochondrial dysfunction in α cells and hyperglucagonemia in type 2 diabetes via SIRT1/FoxO3a signaling. Stem Cells Transl Med 2024; 13:776-790. [PMID: 38864709 PMCID: PMC11328933 DOI: 10.1093/stcltm/szae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
Dysregulation of α cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stromal cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α-cell mitochondrial dysfunction remains unclear. Here, human umbilical cord MSCs (hucMSCs) were used to treat 2 kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by Western blotting analysis. In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued the islet structure and decreased α- to β-cell ratio. Glucagon secretion from αTC1-6 cells was consistently inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion. Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.
Collapse
Affiliation(s)
- Jia Song
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Lingshu Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Liming Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Xinghong Guo
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Qin He
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chen Cui
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Huiqing Hu
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Nan Zang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Mengmeng Yang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Fei Yan
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Kai Liang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chuan Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Fuqiang Liu
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yujing Sun
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Zheng Sun
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Hong Lai
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| | - Xinguo Hou
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| | - Li Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| |
Collapse
|
3
|
Cai X, Cao J, Wang L, Zou J, Li R, Sun P, Ding X, Zhang B, Liu Z, Pei X, Yang J, Zhan Y, Liu N, Liu T, Liang R, Gao J, Wang S. Liraglutide Protects Pancreatic Islet From Ischemic Injury by Reducing Oxidative Stress and Activating Akt Signaling During Cold Preservation to Improve Islet Transplantation Outcomes. Transplantation 2024; 108:e156-e169. [PMID: 38578708 DOI: 10.1097/tp.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Islet transplantation is a promising therapy for patients with type 1 diabetes. However, ischemic injury to the donor islets during cold preservation leads to reduced islet quality and compromises transplant outcome. Several studies imply that liraglutide, a glucagon-like peptide-1 receptor agonist, has a positive effect on promoting islet survival, but its impact on islet cold-ischemic injury remains unexplored. Therefore, the aim of this study was to investigate whether liraglutide can improve islet transplantation efficacy by inhibiting cold-ischemic injury and to explore the underlying mechanisms. METHODS Liraglutide was applied in a mouse pancreas preservation model and a human islets cold-preservation model, and islet viability, function, oxidative stress levels were evaluated. Furthermore, islet transplantation was performed in a syngeneic mouse model and a human-to-nude mouse islet xenotransplantation model. RESULTS The supplementation of liraglutide in preservation solution improved islet viability, function, and reduced cell apoptosis. Liraglutide inhibited the oxidative stress of cold-preserved pancreas or islets through upregulating the antioxidant enzyme glutathione levels, inhibiting reactive oxygen species accumulation, and maintaining the mitochondrial membrane integrity, which is associated with the activation of Akt signaling. Furthermore, the addition of liraglutide during cold preservation of donor pancreas or donor islets significantly improved the subsequent transplant outcomes in both syngeneic mouse islet transplantation model and human-to-nude mouse islet xenotransplantation model. CONCLUSIONS Liraglutide protects islets from cold ischemia-related oxidative stress during preservation and hence improved islet transplantation outcomes, and this protective effect of liraglutide in islets is associated with the activation of Akt signaling.
Collapse
Affiliation(s)
- Xiangheng Cai
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Li
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Sun
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xuejie Ding
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xirui Pei
- First Clinical Department, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jiuxia Yang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Shusen Wang
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Tang J, Chen Y, Wang C, Xia Y, Yu T, Tang M, Meng K, Yin L, Yang Y, Shen L, Xing H, Mao X. The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics. MedComm (Beijing) 2024; 5:e663. [PMID: 39070181 PMCID: PMC11283587 DOI: 10.1002/mco2.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recruited by malignant tumor cells to the tumor microenvironment (TME) and play a crucial role in the initiation and progression of malignant tumors. This role encompasses immune evasion, promotion of angiogenesis, stimulation of cancer cell proliferation, correlation with cancer stem cells, multilineage differentiation within the TME, and development of treatment resistance. Simultaneously, extensive research is exploring the homing effect of MSCs and MSC-derived extracellular vesicles (MSCs-EVs) in tumors, aiming to design them as carriers for antitumor substances. These substances are targeted to deliver antitumor drugs to enhance drug efficacy while reducing drug toxicity. This paper provides a review of the supportive role of MSCs in tumor progression and the associated molecular mechanisms. Additionally, we summarize the latest therapeutic strategies involving engineered MSCs and MSCs-EVs in cancer treatment, including their utilization as carriers for gene therapeutic agents, chemotherapeutics, and oncolytic viruses. We also discuss the distribution and clearance of MSCs and MSCs-EVs upon entry into the body to elucidate the potential of targeted therapies based on MSCs and MSCs-EVs in cancer treatment, along with the challenges they face.
Collapse
Affiliation(s)
- Jian Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Yu Chen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Medical Affairs, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Chunhua Wang
- Department of Clinical LaboratoryXiangyang No. 1 People's HospitalHubei University of MedicineXiangyangHubei ProvinceChina
| | - Ying Xia
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Tingyu Yu
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Mengjun Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Kun Meng
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial MicrobiologyMinistry of EducationTianjin Key Laboratory of Industry MicrobiologyNational and Local United Engineering Lab of Metabolic Control Fermentation TechnologyChina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal ChemistryCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and ImmunityNational Clinical Research Center for Infectious DiseaseState Key Discipline of Infectious DiseaseShenzhen Third People's HospitalSecond Hospital Affiliated to Southern University of Science and TechnologyShenzhenChina
| | - Liang Shen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Hui Xing
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| | - Xiaogang Mao
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| |
Collapse
|
5
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
6
|
Błaszczyk R, Petniak A, Bogucki J, Kocki J, Wysokiński A, Głowniak A. Association between Resistant Arterial Hypertension, Type 2 Diabetes, and Selected microRNAs. J Clin Med 2024; 13:542. [PMID: 38256676 PMCID: PMC10816137 DOI: 10.3390/jcm13020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION In recent years, a very close relationship between miRNA and cardiovascular diseases has been found. RAH and T2DM are accompanied by a change in the microRNA expression spectrum. OBJECTIVES This study aimed to evaluate the clinical characteristics and expression of selected microRNAs in patients with idiopathic RAH and T2DM. PATIENTS AND METHODS A total of 115 patients with RAH were included in this study. Among them were 53 patients (46.09%) with T2DM. miRNA levels were determined using quantitative real-time polymerase chain reaction. The expression of the examined genes was calculated from the formula RQ = 2-ΔΔCT. RESULTS Analysis using the Mann-Whitney U test showed a statistically significant (p < 0.05) difference in the expression of MIR1-1 (p = 0.031) and MIR195 (p = 0.042) associated with the occurrence of T2DM in the subjects. The value of MIR1-1 gene expression was statistically significantly higher in patients with T2DM (median: 0.352; mean: 0.386; standard deviation: 0.923) compared to patients without T2DM (median: 0.147; mean: -0.02; standard deviation: 0.824). The value of MIR195 gene expression was statistically significantly higher in patients with T2DM (median: 0.389, mean: 0.442; standard deviation: 0.819) compared to patients without T2DM (median: -0.027; mean: 0.08; standard deviation: 0.942). CONCLUSIONS The values of MIR1-1 and MIR195 gene expression were statistically significantly higher in patients with RAH and T2DM compared to patients with RAH and without T2DM. Further studies are necessary to precisely clarify the roles of miRNAs in patients with RAH and T2DM. They should demonstrate the utility of these genetic markers in clinical practice.
Collapse
Affiliation(s)
- Robert Błaszczyk
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Andrzej Wysokiński
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| | - Andrzej Głowniak
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| |
Collapse
|
7
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
8
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Li L, Li J, Guan H, Oishi H, Takahashi S, Zhang C. Human umbilical cord mesenchymal stem cells in diabetes mellitus and its complications: applications and research advances. Int J Med Sci 2023; 20:1492-1507. [PMID: 37790847 PMCID: PMC10542192 DOI: 10.7150/ijms.87472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetes mellitus and its complications pose a major threat to global health and affect the quality of life and life expectancy of patients. Currently, the application of traditional therapeutic drugs for diabetes mellitus has great limitations and can only temporarily control blood glucose but not fundamentally cure it. Mesenchymal stem cells, as pluripotent stromal cells, have multidirectional differentiation potential, high self-renewal, immune regulation, and low immunogenicity, which provide a new idea and possible development direction for diabetes mellitus treatment. Regenerative medicine with mesenchymal stem cells treatment as the core treatment will become another treatment option for diabetes mellitus after traditional treatment. Recently, human umbilical cord mesenchymal stem cells have been widely used in basic and clinical research on diabetes mellitus and its complications because of their abundance, low ethical controversy, low risk of infection, and high proliferation and differentiation ability. This paper reviews the therapeutic role and mechanism of human umbilical cord mesenchymal stem cells in diabetes mellitus and its complications and highlights the challenges faced by the clinical application of human umbilical cord mesenchymal stem cells to provide a more theoretical basis for the application of human umbilical cord mesenchymal stem cells in diabetes mellitus patients.
Collapse
Affiliation(s)
- Luyao Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Jicui Li
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Haifei Guan
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate 24 School of Medical Sciences, Aichi 467-8601, Nagoya, Japan
| | - Satoru Takahashi
- Institute of Basic Medical Sciences and Laboratory Animal Resource Center, University of Tsukuba, Ibaraki 305-8575, Tsukuba, Japan
| | - Chuan Zhang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| |
Collapse
|
10
|
Lu Y, Huang R, Sun Z, Ou Y. A bovine milk-derived peptide ameliorates pancreatic β-cell dedifferentiation through PI3K/Akt/FOXO1 signaling in type 2 diabetes. Food Funct 2023; 14:8018-8029. [PMID: 37593938 DOI: 10.1039/d3fo01330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The lacto-ghrestatin derived nonapeptide (LGP9), a bioactive peptide derived from lacto-ghrestatin in bovine milk with the sequence of LIVTQTMKG, was investigated to determine its effects on islet β-cell dedifferentiation and associated mechanisms in type 2 diabetes mellitus (T2DM). On the animal level, type-2-diabetic (T2D) mice were generated by high-fat-diet (HFD) and streptozocin (STZ). LGP9 was given to T2D mice for four weeks at doses of 1 mg kg-1, 3 mg kg-1, and 9 mg kg-1. A variety of techniques (immunohistochemistry, western blot, QPCR, and ELISA) were employed to evaluate the impact of LGP9 on the diabetic injury. On the cellular level, the pancreatic cell lines, Rin-m5f cells and Min6 cells, were treated with high-glucose (HG) and high-glucose-high-lipid (HG/PA), respectively. The cell models were established to investigate the mechanism of LGP9 treatment on the islet β-cell dedifferentiation. For the mechanism study, the PI3K/Akt/FOXO1 pathway was investigated by inhibiting FOXO1 with its inhibitor and siRNA. Results showed that LGP9 improved the β-cell dedifferentiation, prevented the EMT process, and upregulated the PI3K/Akt/FOXO1 signaling in the pancreas of T2D mice. In addition, LGP9 promoted the structural and functional recovery of pancreatic islets and shielded the liver tissue in T2D mice. From the cellular level data, LGP9 prevented β-cell dedifferentiation and EMT occurrence. To a certain extent, the inhibition of FOXO1 restored PI3K/Akt/FOXO1 pathway activation and prevented β-cell dedifferentiation. In conclusion, these findings suggest that LGP9 ameliorated pancreatic β-cell dedifferentiation via PI3k/Akt/FOXO1 signaling in vivo and in vitro.
Collapse
Affiliation(s)
- Yunbiao Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Rongrong Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhongkan Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Liu N, Li R, Cao J, Song X, Ma W, Liu T, Wang L, Zou J, Zhang B, Liu Z, Liang R, Zheng R, Wang S. The inhibition of FKBP5 protects β-cell survival under inflammation stress via AKT/FOXO1 signaling. Cell Death Discov 2023; 9:247. [PMID: 37452039 PMCID: PMC10349081 DOI: 10.1038/s41420-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The FK506-binding protein 51 (FKBP51, encoded by FKBP5 gene) has emerged as a critical regulator of mammalian endocrine stress responses and as a potential pharmacological target for metabolic disorders, including type 2 diabetes (T2D). However, in β cells, which secrete the only glucose-lowering hormone-insulin, the expression and function of FKBP5 has not been documented. Here, using human pancreatic tissue and primary human islets, we demonstrated the abundant expression of FKBP5 in β cells, which displayed an responsive induction upon acute inflammatory stress mimicked by in vitro treatment with a cocktail of inflammatory cytokines (IL-1β, IFN-γ, and TNF-α). To explore its function, siRNAs targeting FKBP5 and pharmacological inhibitor SAFit2 were applied both in clonal NIT-1 cells and primary human/mice islets. We found that FKBP5 inhibition promoted β-cell survival, improved insulin secretion, and upregulated β-cell functional gene expressions (MAFA and NKX6.1) in acute-inflammation stressed β cells. In primary human and mice islets, which constitutively suffer from inflammation stress during isolation and culture, FKBP5 inhibition also presented decent performance in improving islet function, in accordance with its protective effect against inflammation. Molecular studies found that FKBP5 is an important regulator for FOXO1 phosphorylation at Serine 256, and silencing of FOXO1 abrogated the protective effect of FKBP5 inhibition, suggesting that it is the key downstream effector of FKBP5 in β cells. At last, in situ detection of FKBP5 protein expression on human and mice pancreases revealed a reduction of FKBP5 expression in β cells in human T2D patients, as well as T2D mice model (db/db), which may indicate a FKBP5-inhibition-mediated pro-survival mechanism against the complex stresses in T2D milieus.
Collapse
Affiliation(s)
- Na Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Li
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, People's Republic of China
| | - Xinyao Song
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Wenmiao Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
12
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
13
|
Sabet Sarvestani F, Tamaddon AM, Yaghoobi R, Geramizadeh B, Abolmaali SS, Kaviani M, Keshtkar S, Pakbaz S, Azarpira N. Indirect co-culture of islet cells in 3D biocompatible collagen/laminin scaffold with angiomiRs transfected mesenchymal stem cells. Cell Biochem Funct 2023; 41:296-308. [PMID: 36815688 DOI: 10.1002/cbf.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Diabetes is an autoimmune disease in which the pancreatic islets produce insufficient insulin. One of the treatment strategies is islet isolation, which may damage these cells as they lack vasculature. Biocompatible scaffolds are one of the efficient techniques for dealing with this issue. The current study is aimed to determine the effect of transfected BM-MSCS with angiomiR-126 and -210 on the survival and functionality of islets loaded into a 3D scaffold via laminin (LMN). AngiomiRs/Poly Ethylenimine polyplexes were transfected into bone marrow-mesenchymal stem cells (BM-MSCs), followed by 3-day indirect co-culturing with islets laden in collagen (Col)-based hydrogel scaffolds containing LMN. Islet proliferation and viability were significantly increased in LMN-containing scaffolds, particularly in the miRNA-126 treated group. Insulin gene expression was superior in Col scaffolds, especially, in the BM-MSCs/miRNA-126 treated group. VEGF was upregulated in the LMN-containing scaffolds in both miRNA-treated groups, specifically in the miRNA-210, leading to VEGF secretion. MiRNAs' target genes showed no downregulation in LMN-free scaffolds; while a drastic downregulation was seen in the LMN-containing scaffolds. The highest insulin secretion was recorded in the Oxidized dextran (Odex)/ColLMN+ group with miRNA-126. LMN-containing biocompatible scaffolds, once combined with angiomiRs and their downstream effectors, promote islets survival and restore function, leading to enhanced angiogenesis and glycemic status.
Collapse
Affiliation(s)
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran, Shiraz, Iran
| | - Ramin Yaghoobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Song J, Liu J, Cui C, Hu H, Zang N, Yang M, Yang J, Zou Y, Li J, Wang L, He Q, Guo X, Zhao R, Yan F, Liu F, Hou X, Sun Z, Chen L. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy. J Cachexia Sarcopenia Muscle 2023; 14:915-929. [PMID: 36708027 PMCID: PMC10067482 DOI: 10.1002/jcsm.13177] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/21/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diabetes and obesity are associated with muscle atrophy that reduces life quality and lacks effective treatment. Mesenchymal stromal cell (MSC)-based therapy can ameliorate high fat-diet (HFD) and immobilization (IM)-induced muscle atrophy in mice. However, the effect of MSCs on muscle atrophy in type 2 diabetes mellitus (T2DM) and the potential mechanism is unclear. Here, we evaluated the efficacy and explored molecular mechanisms of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (MSC-EXO) on diabetes- and obesity-induced muscle atrophy. METHODS Diabetic db/db mice, mice fed with high-fat diet (HFD), mice with hindlimb immobilization (IM), and C2C12 myotubes were used to explore the effect of hucMSCs or MSC-EXO in alleviating muscle atrophy. Grip strength test and treadmill running were used to measure skeletal muscle strength and performance. Body composition, muscle weight, and muscle fibre cross-sectional area (CSA) was used to evaluate muscle mass. RNA-seq analysis of tibialis anterior (TA) muscle and Western blot analysis of muscle atrophy signalling, including MuRF1 and Atrogin 1, were performed to investigate the underlying mechanisms. RESULTS hucMSCs increased grip strength (P = 0.0256 in db/db mice, P = 0.012 in HFD mice, P = 0.0097 in IM mice), running endurance (P = 0.0154 in HFD mice, P = 0.0006 in IM mice), and muscle mass (P = 0.0004 in db/db mice, P = 0.0076 in HFD mice, P = 0.0144 in IM mice) in all models tested, with elevated CSA of muscle fibres (P < 0.0001 in db/db mice and HFD mice, P = 0.0088 in IM mice) and reduced Atrogin1 (P = 0.0459 in db/db mice, P = 0.0088 in HFD mice, P = 0.0016 in IM mice) and MuRF1 expression (P = 0.0004 in db/db mice, P = 0.0077 in HFD mice, P = 0.0451 in IM mice). MSC-EXO replicated all these hucMSC-mediated changes (P = 0.0103 for grip strength, P = 0.013 for muscle mass, P < 0.0001 for CSA of muscle fibres, P = 0.0171 for Atrogin1 expression, and P = 0.006 for MuRF1 expression). RNA-seq revealed that hucMSCs activated the AMPK/ULK1 signalling and enhanced autophagy. Knockdown of AMPK or inhibition of autophagy with 3-methyladenine (3-MA) diminished the beneficial anti-atrophy effects of hucMSCs or MSC-EXO. CONCLUSIONS Our results suggest that human umbilical cord mesenchymal stromal cells mitigate diabetes- and obesity-induced muscle atrophy via enhancing AMPK/ULK1-mediated autophagy through exosomes, with implications of applying hucMSCs or hucMSC-derived exosomes to treat muscle atrophy.
Collapse
Affiliation(s)
- Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jidong Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jinquan Li
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinghong Guo
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China.,Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, China
| | - Zheng Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, China.,Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, China
| |
Collapse
|
15
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
16
|
Gao S, Zhang Y, Liang K, Bi R, Du Y. Mesenchymal Stem Cells (MSCs): A Novel Therapy for Type 2 Diabetes. Stem Cells Int 2022; 2022:8637493. [PMID: 36045953 PMCID: PMC9424025 DOI: 10.1155/2022/8637493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Although plenty of drugs are currently available for type 2 diabetes mellitus (T2DM), a subset of patients still failed to restore normoglycemia. Recent studies proved that symptoms of T2DM patients who are unresponsive to conventional medications could be relieved with mesenchymal stem/stromal cell (MSC) therapy. However, the lack of systematic summary and analysis for animal and clinical studies of T2DM has limited the establishment of standard guidelines in anti-T2DM MSC therapy. Besides, the therapeutic mechanisms of MSCs to combat T2DM have not been thoroughly understood. In this review, we present an overview of the current status of MSC therapy in treating T2DM for both animal studies and clinical studies. Potential mechanisms of MSC-based intervention on multiple pathological processes of T2DM, such as β-cell exhaustion, hepatic dysfunction, insulin resistance, and systemic inflammation, are also delineated. Moreover, we highlight the importance of understanding the pharmacokinetics (PK) of transplanted cells and discuss the hurdles in MSC-based T2DM therapy toward future clinical applications.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Bi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Zhang W, Ling Q, Wang B, Wang K, Pang J, Lu J, Bi Y, Zhu D. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes. Stem Cell Res Ther 2022; 13:406. [PMID: 35941696 PMCID: PMC9358877 DOI: 10.1186/s13287-022-02974-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs) in type 1 diabetes (T1D) has been demonstrated in both preclinical and clinical studies. MSCs that have been used in research on T1D are derived from various tissue sources, with bone marrow (BM) and umbilical cord (UC) tissues being the most commonly used. However, the influence of tissue origin on the functional properties and therapeutic effects of MSCs in T1D remains unclear. This study aimed to compare the therapeutic efficacy of UC-MSCs and BM-MSCs in a mouse model of T1D as well as in patients with T1D. Methods In non-obese diabetic (NOD) mice, the development of diabetes was accelerated by streptozotocin injections. Thereafter, diabetic mice were randomized and treated intravenously with UC-MSCs, BM-MSCs or phosphate-buffered saline as a control. Blood glucose and serum insulin were measured longitudinally after transplantation. At 14 days post-transplantation, pancreatic tissues were collected to assess insulitis and the β-cell mass. Flow cytometry was performed to evaluate the composition of T lymphocytes in the spleen and pancreatic lymph nodes of the NOD mice. In our retrospective study of patients with T1D, 28 recipients who received insulin therapy alone or a single transplantation of UC-MSCs or BM-MSCs were enrolled. The glycaemic control and β-cell function of the patients during the first year of follow-up were compared. Results In NOD mice, UC-MSC and BM-MSC transplantation showed similar effects on decreasing blood glucose levels and preserving β cells. The regulation of islet autoimmunity was examined, and no significant difference between UC-MSCs and BM-MSCs was observed in the attenuation of insulitis, the decrease in T helper 17 cells or the increase in regulatory T cells. In patients with T1D, MSC transplantation markedly lowered haemoglobin A1c (HbA1c) levels and reduced insulin doses compared to conventional insulin therapy. However, the therapeutic effects were comparable between UC-MSCs and BM-MSCs, and they also exerted similar effects on the endogenous β-cell function in the patients. Conclusion In conclusion, both UC-MSCs and BM-MSCs exhibited comparable therapeutic effects on improving glycaemic control and preserving β-cell function in T1D. Considering their abundance and higher cell yields, UC-MSCs appear to be more promising than BM-MSCs in clinical applications. Trial registration NCT02763423. Registered on May 5, 2016—Retrospectively registered, https://www.clinicaltrials.gov/.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Ling
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Clinical Stem Cell Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Kai Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jianbo Pang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Lu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
18
|
Thamm K, Möbus K, Towers R, Baertschi S, Wetzel R, Wobus M, Segeletz S. A chemically defined biomimetic surface for enhanced isolation efficiency of high-quality human mesenchymal stromal cells under xenogeneic/serum-free conditions. Cytotherapy 2022; 24:1049-1059. [PMID: 35931601 DOI: 10.1016/j.jcyt.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are one of the most frequently used cell types in regenerative medicine and cell therapy. Generating sufficient cell numbers for MSC-based therapies is constrained by (i) their low abundance in tissues of origin, which imposes the need for significant ex vivo cell expansion; (ii) donor-specific characteristics, including MSC frequency/quality, that decline with disease state and increasing age; and (iii) cellular senescence, which is promoted by extensive cell expansion and results in decreased therapeutic functionality. The final yield of a manufacturing process is therefore primarily determined by the applied isolation procedure and its efficiency in isolating therapeutically active cells from donor tissue. To date, MSCs are predominantly isolated using media supplemented with either serum or its derivatives, which poses safety and consistency issues. METHODS To overcome these limitations while enabling robust MSC production with constant high yield and quality, the authors developed a chemically defined biomimetic surface coating called isoMATRIX (denovoMATRIX GmbH, Dresden, Germany) and tested its performance during isolation of MSCs. RESULTS The isoMATRIX facilitates the isolation of significantly higher numbers of MSCs in xenogeneic (xeno)/serum-free and chemically defined conditions. The isolated cells display a smaller cell size and higher proliferation rate than those derived from a serum-containing isolation procedure and a strong immunomodulatory capacity. The high proliferation rates can be maintained up to 5 passages after isolation and cells even benefit from a switch towards a proliferation-specific MSC matrix (myMATRIX MSC) (denovoMATRIX GmbH, Dresden, Germany). CONCLUSION In sum, isoMATRIX promotes enhanced xeno/serum-free and chemically defined isolation of human MSCs and supports consistent and reliable cell performance for improved stem cell-based therapies.
Collapse
Affiliation(s)
| | - Kristin Möbus
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | - Russell Towers
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | | | | | - Manja Wobus
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | | |
Collapse
|
19
|
Pan Y, Gu Z, Lyu Y, Yang Y, Chung M, Pan X, Cai S. Link between senescence and cell fate: Senescence-associated secretory phenotype (SASP) and its effects on stem cell fate transition. Rejuvenation Res 2022; 25:160-172. [PMID: 35658548 DOI: 10.1089/rej.2022.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Senescence is a form of durable cell cycle arrest elicited in response to a wide range of stimuli. Senescent cells remain metabolically active and secrete a variety of factors collectively termed senescence-associated secretory phenotype (SASP). SASP is highly pleiotropic and can impact numerous biological processes in which it has both beneficial and deleterious roles. The underlying mechanisms by which SASP exerts its pleiotropic influence remain largely unknown. SASP serves as an environmental factor, which regulates stem cell differentiation and alters its routine. The latter can potentially be accomplished through dedifferentiation, transdifferentiation, or reprogramming. Behavioral changes that cells undergo when exposed to SASP are involved in several senescence-associated physiological and pathological phenomena. These findings provide clues for identifying possible interventions to reduce the deleterious effects without interfering in the beneficial outcomes. Here, we discuss the multifaced effects of SASP and the changes occurring in cellular states upon exposure to SASP factors.
Collapse
Affiliation(s)
- Yu Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Zhenzhen Gu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yansi Lyu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yi Yang
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Manhon Chung
- Shanghai Jiao Tong University School of Medicine, 56694, Shanghai, China;
| | - Xiaohua Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Sa Cai
- Shenzhen University, 47890, 3688 Nanhai Avenue, Nanshan District, Shenzhen, Shenzhen, China, 518060;
| |
Collapse
|
20
|
Shao H, Zhang Y, Liu Y, Yang Y, Tang X, Li J, Jia C. Establishment and Verification of a Gene Signature for Diagnosing Type 2 Diabetics by WGCNA, LASSO Analysis, and In Vitro Experiments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4446342. [PMID: 35655479 PMCID: PMC9152403 DOI: 10.1155/2022/4446342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Objective The incidence and prevalence of type 2 diabetes are increasing with age. Nevertheless, there is lack of sensitive diagnostic tools and effective therapeutic regimens. We aimed to establish and verify a practical and valid diagnostic tool for this disease. Methods WGCNA was presented on the expression profiling of type 2 diabetic and normal islets in combined GSE25724 and GSE38642 datasets. By LASSO Cox regression analyses, a gene signature was constructed based on the genes in diabetes-related modules. ROC curves were plotted for assessing the diagnostic efficacy. Correlations between the genes and immune cell infiltration and pathways were analyzed. BST2 and BTBD1 expression was verified in glucotoxicity-induced and normal islet β cells. The influence of BST2 on β cell dysfunction was investigated under si-BST2 transfection. Results Totally, 14 coexpression modules were constructed, and red and cyan modules displayed the correlations to diabetes. The LASSO gene signature (BST2, BTBD1, IFIT1, IFIT3, and RTP4) was developed. The AUCs in the combined datasets and GSE20966 dataset were separately 0.914 and 0.910, confirming the excellent performance in diagnosing type 2 diabetes. Each gene in the model was distinctly correlated to immune cell infiltration and key signaling pathways (TGF-β and P53, etc.). The abnormal expression of BST2 and BTBD1 was confirmed in glucotoxicity-induced β cells. BST2 knockdown ameliorated β cell dysfunction and altered the activation of TGF-β and P53 pathways. Conclusion Our findings propose a gene signature with high efficacy to diagnose type 2 diabetes, which could assist and improve early diagnosis and therapy.
Collapse
Affiliation(s)
- Huaming Shao
- Laboratory Medicine, The Huikang Hospital of Qingdao University Medical Group, Qingdao, 266520 Shandong, China
| | - Yong Zhang
- Department of Orthopedics, The Huikang Hospital of Qingdao University Medical Group, Qingdao, 266520 Shandong, China
| | - Yishuai Liu
- Laboratory Medicine, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong, China
| | - Yan Yang
- Laboratory Medicine, The Huikang Hospital of Qingdao University Medical Group, Qingdao, 266520 Shandong, China
| | - Xiaozhu Tang
- Laboratory Medicine, The Huikang Hospital of Qingdao University Medical Group, Qingdao, 266520 Shandong, China
| | - Jiajia Li
- Laboratory Medicine, The Huikang Hospital of Qingdao University Medical Group, Qingdao, 266520 Shandong, China
| | - Changxin Jia
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong, China
| |
Collapse
|
21
|
Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, Hu X, Menshikov M, Shestakova M, Parfyonova Y. Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life (Basel) 2022; 12:life12050688. [PMID: 35629356 PMCID: PMC9146836 DOI: 10.3390/life12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.
Collapse
Affiliation(s)
- Margarita Agareva
- Institute of Fine Chemical Technologies Named after M.V. Lomonosov, 119571 Moscow, Russia;
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Correspondence:
| | - Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Sklyanik
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Ekaterina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Elizaveta Ratner
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Marina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
22
|
Wei T, Wei R, Hong T. Regeneration of β cells from cell phenotype conversion among the pancreatic endocrine cells. Chronic Dis Transl Med 2022; 8:1-4. [PMID: 35620156 PMCID: PMC9128562 DOI: 10.1002/cdt3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tianjiao Wei
- Department of Endocrinology and Metabolism Peking University Third Hospital Beijing 100191 China
| | - Rui Wei
- Department of Endocrinology and Metabolism Peking University Third Hospital Beijing 100191 China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism Peking University Third Hospital Beijing 100191 China
| |
Collapse
|
23
|
Liang R, Liu N, Cao J, Liu T, Sun P, Cai X, Zhang L, Liu Y, Zou J, Wang L, Ding X, Zhang B, Shen Z, Yoshida S, Dou J, Wang S. HIF-1α/FOXO1 axis regulated autophagy is protective for β cell survival under hypoxia in human islets. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166356. [PMID: 35124169 DOI: 10.1016/j.bbadis.2022.166356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/18/2023]
Abstract
β cells suffer from hypoxia due to the rapid metabolic rate to supply insulin production. Mechanistic study of β cell survival under hypoxia may shed light on the β cell mass loss in type 2 diabetes mellitus (T2DM). Here, we found that the expressions of LC3 and p62/SQSTM1, two key autophagy regulators, were significantly higher in β cells than that in non-β endocrine cells in both non-diabetic and T2DM pancreases, and the autophagy process was accelerated upon Cobalt Chloride (CoCl2) treatment in ex vivo cultured primary human islets. Meanwhile, CoCl2 induced the upregulation of FOXO1 in human islets, where HIF-1α played a key role. CoCl2 treatment caused the increase of β cell apoptosis, yet inhibiting autophagy by Chloroquine or by FOXO1 knockdown further aggravated apoptosis, suggesting that FOXO1-regulated autophagy is protective for β cell survival under hypoxia. Immunofluorescence staining showed that LC3 and p62/SQSTM1 expressions were significantly decreased in T2DM patients and negatively correlated with HbA1c, indicating that the autophagy capacity of β cells is impaired along with the progression of the disease. Our study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM. BRIEF SUMMARY: Our study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM.
Collapse
Affiliation(s)
- Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Tengli Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Peng Sun
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Xiangheng Cai
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, PR China
| | - Yaojuan Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Jiaqi Zou
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Le Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Xuejie Ding
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Boya Zhang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Zhongyang Shen
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, PR China.
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China; School of Medicine, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
24
|
Wang L, Wang X, Liang R, Wang S, Cao J. A Comparison of Mesenchymal Stem Cells from Human Adipose Tissues by Resection and by Liposuction. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Le Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University
| | - Xingqiang Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University
| |
Collapse
|
25
|
Kim M, Jang J. Construction of 3D hierarchical tissue platforms for modeling diabetes. APL Bioeng 2021; 5:041506. [PMID: 34703970 PMCID: PMC8530538 DOI: 10.1063/5.0055128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most serious systemic diseases worldwide, and the majority of DM patients face severe complications. However, many of underlying disease mechanisms related to these complications are difficult to understand with the use of currently available animal models. With the urgent need to fundamentally understand DM pathology, a variety of 3D biomimetic platforms have been generated by the convergence of biofabrication and tissue engineering strategies for the potent drug screening platform of pre-clinical research. Here, we suggest key requirements for the fabrication of physiomimetic tissue models in terms of recapitulating the cellular organization, creating native 3D microenvironmental niches for targeted tissue using biomaterials, and applying biofabrication technologies to implement tissue-specific geometries. We also provide an overview of various in vitro DM models, from a cellular level to complex living systems, which have been developed using various bioengineering approaches. Moreover, we aim to discuss the roadblocks facing in vitro tissue models and end with an outlook for future DM research.
Collapse
Affiliation(s)
- Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jinah Jang
- Author to whom correspondence should be addressed:
| |
Collapse
|
26
|
Zhang LS, Yu Y, Yu H, Han ZC. Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World J Stem Cells 2021; 13:1058-1071. [PMID: 34567425 PMCID: PMC8422925 DOI: 10.4252/wjsc.v13.i8.1058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
Collapse
Affiliation(s)
- Lei-Sheng Zhang
- Qianfoshan Hospital & The First Affiliated Hospital, Shandong First Medical University, Jinan 250014, Shandong Province, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
| | - Yi Yu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin 300071, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| | - Zhong-Chao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| |
Collapse
|
27
|
Siehler J, Blöchinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 2021; 20:920-940. [PMID: 34376833 DOI: 10.1038/s41573-021-00262-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is a metabolic disorder that affects more than 460 million people worldwide. Type 1 diabetes (T1D) is caused by autoimmune destruction of β-cells, whereas type 2 diabetes (T2D) is caused by a hostile metabolic environment that leads to β-cell exhaustion and dysfunction. Currently, first-line medications treat the symptomatic insulin resistance and hyperglycaemia, but do not prevent the progressive decline of β-cell mass and function. Thus, advanced therapies need to be developed that either protect or regenerate endogenous β-cell mass early in disease progression or replace lost β-cells with stem cell-derived β-like cells or engineered islet-like clusters. In this Review, we discuss the state of the art of stem cell differentiation and islet engineering, reflect on current and future challenges in the area and highlight the potential for cell replacement therapies, disease modelling and drug development using these cells. These efforts in stem cell and regenerative medicine will lay the foundations for future biomedical breakthroughs and potentially curative treatments for diabetes.
Collapse
Affiliation(s)
- Johanna Siehler
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.,Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anna Karolina Blöchinger
- Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Meier
- Technical University of Munich, Medical Faculty, Munich, Germany.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany. .,Technical University of Munich, Medical Faculty, Munich, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
28
|
Abstract
Mesenchymal stem cells (MSCs), a kind of multipotent stem cells with self-renewal ability and multi-differentiation ability, have become the “practical stem cells” for the treatment of diseases. MSCs have immunomodulatory properties and can be used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and Crohn’s disease. MSCs also can be used in cancer and aging. At present, many clinical experiments are using MSCs. MSCs can reduce the occurrence of inflammation and apoptosis of tissue cells, and promote the proliferation of endogenous tissue and organ cells, so as to achieve the effect of repairing tissue and organs. MSCs presumably also play an important role in Corona Virus Disease 2019 (COVID-19) infection.
Collapse
|
29
|
Li B, Cheng Y, Yin Y, Xue J, Yu S, Gao J, Liu J, Zang L, Mu Y. Reversion of early- and late-stage β-cell dedifferentiation by human umbilical cord-derived mesenchymal stem cells in type 2 diabetic mice. Cytotherapy 2021; 23:510-520. [PMID: 33736932 DOI: 10.1016/j.jcyt.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS The authors aimed to observe β-cell dedifferentiation in type 2 diabetes mellitus (T2DM) and investigate the reversal effect of umbilical cord-derived mesenchymal stem cells (UC-MSCs) on early- and late-stage β-cell dedifferentiation. METHODS In high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM mice, the authors examined the predominant role of β-cell dedifferentiation over apoptosis in the development of T2DM and observed the reversion of β-cell dedifferentiation by UC-MSCs. Next, the authors used db/db mice to observe the progress of β-cell dedifferentiation from early to late stage, after which UC-MSC infusions of the same amount were performed in the early and late stages of dedifferentiation. Improvement in metabolic indices and restoration of β-cell dedifferentiation markers were examined. RESULTS In HFD/STZ-induced T2DM mice, the proportion of β-cell dedifferentiation was much greater than that of apoptosis, demonstrating that β-cell dedifferentiation was the predominant contributor to T2DM. UC-MSC infusions significantly improved glucose homeostasis and reversed β-cell dedifferentiation. In db/db mice, UC-MSC infusions in the early stage significantly improved glucose homeostasis and reversed β-cell dedifferentiation. In the late stage, UC-MSC infusions mildly improved glucose homeostasis and partially reversed β-cell dedifferentiation. Combining with other studies, the authors found that the reversal effect of UC-MSCs on β-cell dedifferentiation relied on the simultaneous relief of glucose and lipid metabolic disorders. CONCLUSIONS UC-MSC therapy is a promising strategy for reversing β-cell dedifferentiation in T2DM, and the reversal effect is greater in the early stage than in the late stage of β-cell dedifferentiation.
Collapse
Affiliation(s)
- Bing Li
- Department of Endocrinology, First Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Yu Cheng
- Department of Endocrinology, First Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Yaqi Yin
- Department of Endocrinology, First Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Jing Xue
- Department of Endocrinology, First Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Songyan Yu
- Department of Endocrinology, First Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Jieqing Gao
- Department of Endocrinology, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, People's Liberation Army General Hospital, Beijing, China
| | - Li Zang
- Department of Endocrinology, First Medical Center of People's Liberation Army General Hospital, Beijing, China.
| | - Yiming Mu
- Department of Endocrinology, First Medical Center of People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
30
|
Liu T, Sun P, Zou J, Wang L, Wang G, Liu N, Liu Y, Ding X, Zhang B, Liang R, Wang S, Shen Z. Increased frequency of β cells with abnormal NKX6.1 expression in type 2 diabetes but not in subjects with higher risk for type 2 diabetes. BMC Endocr Disord 2021; 21:47. [PMID: 33711989 PMCID: PMC7955633 DOI: 10.1186/s12902-021-00708-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND NKX6.1 is a transcription factor for insulin, as well as a marker for β cell maturity. Abnormal NKX6.1 expression in β cells, such as translocation from the nucleus to cytoplasm or lost expression, has been shown as a marker for β cell dedifferentiation. METHODS We obtained pancreatic sections from organ donors and immunofluorescence staining with NKX6.1 and insulin was performed to characterize NKX6.1 expression in subjects with or without type 2 diabetes mellitus (T2DM). RESULTS Our results showed that cells with insulin expression but no nucleic NKX6.1 expression (NKX6.1Nuc-Ins+), and cells with cytoplasmic NKX6.1 expression but no insulin expression (NKX6.1cytIns-) were significantly increased in T2DM subjects and positively correlated with glycated hemoglobin (HbA1c), indicating the elevated β cell dedifferentiation with NKX6.1 inactivation in T2DM. To investigate whether β cell dedifferentiation has initiated in subjects with higher risks for T2DM, we next analyzed the association between β-cell dedifferentiation level in ND subjects with different ages, body mass index, and HbA1c. The results showed the absolute number and percentage of dedifferentiated β cells with NKX6.1 inactivation did not significantly change in subjects with advanced aging, obesity, or modest hyperglycemia, indicating that the β cell dedifferentiation might mainly occur after T2DM was diagnosed. CONCLUSION Our results suggested that NKX6.1 expression in β cells was changed in type 2 diabetic subjects, evidenced by significantly increased NKX6.1Nuc-Ins+ and NKX6.1cytIns- cells. This abnormality did not occur more frequently in subjects with a higher risk for T2DM, suggesting that β cell dedifferentiation might be secondary to the pathological changes in T2DM.
Collapse
Affiliation(s)
- Tengli Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Building A, Fukang Road 24#, Nankai area, Tianjin City, 300192, China
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Peng Sun
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Jiaqi Zou
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Le Wang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Guanqiao Wang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Yaojuan Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Xuejie Ding
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Boya Zhang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Rui Liang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Building A, Fukang Road 24#, Nankai area, Tianjin City, 300192, China.
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China.
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Zhongyang Shen
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, 300384, China
| |
Collapse
|
31
|
Chen J, Zheng CX, Jin Y, Hu CH. Mesenchymal stromal cell-mediated immune regulation: A promising remedy in the therapy of type 2 diabetes mellitus. STEM CELLS (DAYTON, OHIO) 2021; 39:838-852. [PMID: 33621403 DOI: 10.1002/stem.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, People's Republic of China
| |
Collapse
|
32
|
Human Dental Pulp-Derived Mesenchymal Stem Cell Potential to Differentiate into Smooth Muscle-Like Cells In Vitro. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8858412. [PMID: 33553433 PMCID: PMC7846403 DOI: 10.1155/2021/8858412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that mesenchymal stem cells (MSCs) derived from various tissue sources can be differentiated into smooth muscle-like cells (SMLCs) in vitro. In this paper, dental pulp-derived mesenchymal stem cells (DPSCs) were evaluated for their differentiation ability towards smooth muscle-like cells (SMLCs) under the effect of widely used cytokines (TGF-β1 and PDGF-BB) with special focus on different culturing environments. For this purpose, both the commercially used culturing plates (Norm-c) and 0.1% gelatin-precoated (Gel-c) plates were used. Isolated cells displayed plastic adherence, pluripotency and cell surface marker profiling, and adipogenic and osteogenic differentiation potential with lineage specific marker expression. Differentiated cells induced under different culturing plates showed successful differentiation into SMLCs by positively expressing smooth muscle cell (SMC) specific markers both at the mRNA and protein levels. Gelatin coating could substantially enhance DPSC differentiation potential than Norm-c-induced cells. However, the absence of mature marker MHY-11 by immunostaining results from all treatment groups further indicated the development of immature and synthetic SMLCs. Finally, it was concluded that DPSC differentiation ability into SMLCs can be enhanced under cytokine treatment as well as by altering the cellular niche by precoating the culturing plates with suitable substrates. However, to get fully functional, contractile, and mature SMLCs, still many different cytokine cocktail combinations and more suitable coating substrates will be needed.
Collapse
|
33
|
Kh S, Haider KH. Stem Cells: A Renewable Source of Pancreatic β-Cells and Future for Diabetes Treatment. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Huang Q, Huang Y, Liu J. Mesenchymal Stem Cells: An Excellent Candidate for the Treatment of Diabetes Mellitus. Int J Endocrinol 2021; 2021:9938658. [PMID: 34135959 PMCID: PMC8178013 DOI: 10.1155/2021/9938658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells (ASCs) known for repairing damaged cells, exerting anti-inflammatory responses and producing immunoregulatory effects that can be significantly induced into insulin-producing cells (IPCs), providing an inexhaustible supply of functional β cells for cell replacement therapy and disease modeling for diabetes. MSC therapy may be the most promising strategy for diabetes mellitus because of these significant merits. In this paper, we focused on MSC therapy for diabetes.
Collapse
Affiliation(s)
- Qiulan Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanting Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Hu Y, Li Q, Zhang L, Zhong L, Gu M, He B, Qu Q, Lao Y, Gu K, Zheng B, Yang H. Serum miR-195-5p Exhibits Clinical Significance in the Diagnosis of Essential Hypertension with Type 2 Diabetes Mellitus by Targeting DRD1. Clinics (Sao Paulo) 2021; 76:e2502. [PMID: 34495077 PMCID: PMC8382152 DOI: 10.6061/clinics/2021/e2502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3'-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3'-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3'-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.
Collapse
Affiliation(s)
- Yueyan Hu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qian Li
- Transfusion Medicine Research Department, Yunnan Kunming Blood Center, Kunming, 650500, China
| | - Leisheng Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Joint laboratory of Tianjin University and Health-Biotech, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China
| | - Lianmei Zhong
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Man Gu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bo He
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qiu Qu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yaling Lao
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Kunli Gu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, 650091, China
- Corresponding authors. E-mails: /
| | - Hongju Yang
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Corresponding authors. E-mails: /
| |
Collapse
|
36
|
Liang R, Liu N, Wang G, Sun P, Liu Y, Zou J, Wang L, Ding X, Zhang B, Shen Z, Liu T, Wang S. Cytohistologic analyses of β cell dedifferentiation induced by inflammation in human islets. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211014416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
β cell dedifferentiation is a key mechanism for β cell dysfunction in type 2 diabetes mellitus (T2DM). Although it has been indicated in previous studies that β cell dedifferentiation could be induced by inflammation, the cytohistologic analyses of inflammation-induced β cell dedifferentiation in human islets is lacking. The present study aims to cytohistologically characterize the β cell dedifferentiation of human islets treated by proinflammatory cytokines Interleukin-1β/Tuman necrosis factor-α/Interferon-γ (IL-1β/TNF-α/IFN-γ), which is a frequently-used method to mimic the islet inflammation in previous studies. The loss of cytosolic FOXO1 expression, the loss of nucleic NKX6.1 expression, and the gain of ALDH1A3 expression in β cells are proclaimed as marking events for β cell dedifferentiation. Taking advantages of islets from organ donors and the immunofluorescence staining methods, the present study visualized the β cell dedifferentiation events marked by different markers, and quantified the frequency of each event as well. We successfully captured and described the characteristics of the differentiating/differentiated β cells. We found that dedifferentiated β cells were increased in the cytokines treated islets, evidenced by the increase of β cells with FOXO1 translocated to the nucleus (INS+FOXOnuc), β cells with NKX6.1 exported from the nucleus (INS+NKX6.1cyt), and β cells loss of NKX6.1 expression (INS+NKX6.1-), and β cells with dual expression of insulin and progenitor marker ALDH1A3. Consistently, we found that proinflammatory cytokines IL-1β/TNF-α/IFN-γ treatment reduced the mRNA expression of key β cell markers, but elevated the expression of progenitor marker genes. This study gives the most direct evidence for inflammation-induced β cell dedifferentiation in human islets, and supports the concept that anti-inflammation treatments may facilitate alleviating the β cell dedifferentiation in human T2DM islets.
Collapse
Affiliation(s)
- Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Guanqiao Wang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Peng Sun
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Yaojuan Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jiaqi Zou
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Le Wang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Xuejie Ding
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Boya Zhang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Zhongyang Shen
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Tengli Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
37
|
Hou H, Zhang L, Duan L, Liu Y, Han Z, Li Z, Cao X. Spatio-Temporal Metabolokinetics and Efficacy of Human Placenta-Derived Mesenchymal Stem/Stromal Cells on Mice with Refractory Crohn's-like Enterocutaneous Fistula. Stem Cell Rev Rep 2020; 16:1292-1304. [PMID: 33011925 DOI: 10.1007/s12015-020-10053-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
Crohn's disease (CD) with externally fistulizing openings indicates the aggressive and relapsing manifestation and results in undesirable long-term outcomes of patients. MSC-based approach combined with multidisciplinary strategy has mandated a redefinition of the administration and management of numerous recurrent and refractory diseases whereas the spatio-temporal evaluation of the metabolokinetics and efficacy of MSCs on intractable CD with enterocutaneous fistula (EF) are largely inaccessible and dauntingly complex. Herein, we primitively established dual-fluorescence expressing placenta-derived MSCs (DF-MSCs) and explored their multidimensional attributes, including cytomorphology, immunophenotying, multilineage differentiation and long-term proliferation, together with the recognition of bifluorescence intensity (BLI). Then, with the aid of in vivo living imaging, clinicopathological or inflammatory cytokine examinations and in vitro analyses, we systematically and meticulously dissected the metabolokinetics and curative effect of MSCs on mice with refractory Crohn's-like EF (EF mice), together with revealing the underlying mechanism including reactive oxygen species (ROS) and neovascularization. Strikingly, the DF-MSCs exhibited stabilized BLI and biological properties. The spatio-temporal distribution and therapeutic process of MSCs in EF mice were intuitively delineated. Meanwhile, our data indicated the curative mechanisms of DF-MSCs by simultaneously downregulating ROS and accelerating neovascularization. Collectively, we systematically illuminated the spatio-temporal biofunction and mechanism of DF-MSCs on EF mice. Our findings have supplied new references for safety and effectiveness assessments as well as the establishment of guidelines for optimal administrations of MSC-based cytotherapy in preclinical studies, which collectively indicates the prospect of P-MSC administration in clinical trials during a wide spectrum of disease remodeling including the fistulizing CD. Graphical abstract.
Collapse
Affiliation(s)
- Huixing Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Leisheng Zhang
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China.
| | - Liyun Duan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yuanyuan Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China
| | - Zongjin Li
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
38
|
Wang L, Zhang L, Liang X, Zou J, Liu N, Liu T, Wang G, Ding X, Liu Y, Zhang B, Liang R, Wang S. Adipose Tissue-Derived Stem Cells from Type 2 Diabetics Reveal Conservative Alterations in Multidimensional Characteristics. Int J Stem Cells 2020; 13:268-278. [PMID: 32587133 PMCID: PMC7378902 DOI: 10.15283/ijsc20028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives Adipose tissue-derived mesenchymal stem cells (ASCs) are recognized as an advantaged source for the prevention and treatment of diverse diseases including type 2 diabetes mellitus (T2DM). However, alterations in characteristics of ASCs from the aforementioned T2DM patients are still obscure, which also hinder the rigorous and systematic illumination of progression and pathogenesis. Methods and Results In this study, we originally isolated peripancreatic adipose tissue-derived mesenchymal stem cells from both human type 2 diabetic and non-diabetic donors (T2DM-ASCs, ND-ASCs) with the parental consent, respectively. We noticed that T2DM-ASCs exhibited indistinguishable immunophenotype, cell vitality, chondrogenic differentiation and stemness as ND-ASCs. Simultaneously, there’s merely alterations in migration and immunoregulatory capacities in T2DM-ASCs. However, differing from ND-ASCs, T2DM-ASCs exhibited deficiency in adipogenic and osteogenic differentiation, and in particular, the delayed cell cycle and different cytokine expression spectrum. Conclusions The conservative alterations of T2DM-ASCs in multifaceted characteristics indicated the possibility of autologous application of ASCs for cell-based T2DM treatment in the future.
Collapse
Affiliation(s)
- Le Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,NHC Key Laboratory for Critical Care Medicine, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Leisheng Zhang
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, China
| | - Xue Liang
- NHC Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Jiaqi Zou
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,NHC Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Tengli Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Guanqiao Wang
- NHC Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Xuejie Ding
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,NHC Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Yaojuan Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Boya Zhang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,NHC Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| |
Collapse
|