1
|
Ding J, Liu H, Zhang X, Zhao N, Peng Y, Shi J, Chen J, Chi X, Li L, Zhang M, Liu WY, Zhang L, Ouyang J, Yuan Q, Liao M, Tan Y, Li M, Xu Z, Tang W, Xie C, Li Y, Pan Q, Xu Y, Cai SY, Byrne CD, Targher G, Ouyang X, Zhang L, Jiang Z, Zheng MH, Sun F, Chai J. Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population. Sci Transl Med 2024; 16:eadh9940. [PMID: 39504356 DOI: 10.1126/scitranslmed.adh9940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/07/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a common health care burden worldwide. The high heterogeneity of NAFLD remains elusive and impairs outcomes of clinical diagnosis and pharmacotherapy. Several NAFLD classifications have been proposed on the basis of clinical, genetic, alcoholic, or serum metabolic analyses. Yet, accurately predicting the progression of NAFLD to cirrhosis or hepatocellular carcinoma (HCC) in patients remains a challenge. Here, on the basis of a Chinese cohort of patients, we classified NAFLD into three distinct molecular subtypes (NAFLD-mSI, NAFLD-mSII, and NAFLD-mSIII) using integrative multiomics including whole-genome sequencing (WGS), proteomics, phosphoproteomics, lipidomics, and metabolomics across a broad range of liver, blood, and urine specimens. We found that NAFLD-mSI had higher expression of CYP1A2 and CYP3A4, which alleviate hepatic steatosis through mediating free fatty acid/bile acid-mTOR-FXR/PPARα signaling. NAFLD-mSII displayed an elevated risk of liver cirrhosis along with increased hepatic infiltration of M1 and M2 macrophages because of lipid-triggered hepatic CCL2 and CRP production. NAFLD-mSIII exhibited a potential risk for HCC development by increased transcription of CEBPB- and ERCC3-regulated oncogenes because of activation of the EGF-EGFR/CHKA/PI3K-PDK1-AKT cascade. Next, we validated the existence of these three NAFLD molecular subtypes in an external cohort comprising 92 patients with NAFLD across three different Chinese hospitals. These findings may aid in understanding the molecular features underlying NAFLD heterogeneity, thereby facilitating clinical diagnosis and treatment strategies with the aim of preventing the development of liver cirrhosis and HCC.
Collapse
Affiliation(s)
- Jingjing Ding
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huaizheng Liu
- Department of Emergency, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Nan Zhao
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Peng
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junping Shi
- Department of Infectious Diseases and Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoling Chi
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ling Li
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mengni Zhang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liangjun Zhang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiafeng Ouyang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qian Yuan
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmacy, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Min Liao
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ya Tan
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mingqiao Li
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ziqian Xu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wan Tang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuanming Xie
- Institute of Hepatobiliary Surgery, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Li
- Department of Clinical Laboratory, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Qiong Pan
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Xu
- School of Clinical Medicine and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella 37024, Italy
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Liqun Zhang
- Department of Clinical Laboratory, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Zhongyong Jiang
- Department of Medical Laboratory, Cheng du Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou 325000, China
| | - Fengjun Sun
- Department of Pharmacy, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jin Chai
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Cholestatic Liver Diseases Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
- Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
2
|
Ramakrishnan K, Vishwakarma R, Dev RR, Raju R, Rehman N. Etiologically Significant microRNAs in Hepatitis B Virus-Induced Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:280-290. [PMID: 38818956 DOI: 10.1089/omi.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hepatitis B virus (HBV) infection has been causally linked to hepatocellular carcinoma (HCC) in more than 50% cases. MicroRNAs (miRNAs) play cross-cutting mechanistic roles in the complex interplay between viral pathogenesis, host survival, and clinical outcomes. The present study set out to identify etiologically significant human miRNAs associated with HBV infection in liver-related pathologies leading to HCC. In diverse tissue types, we assembled 573 miRNAs differentially expressed in HBV-associated liver pathologies, HBV infection, fibrosis, cirrhosis, acute on chronic liver failure, and HCC. Importantly, 43 human differentially expressed miRNAs (hDEmiRs) were regulated in serum/plasma and liver tissue of patients with HBV-positive conditions. However, only two hDEmiRs, hsa-miR-21-5p and hsa-miR-143-3p, were regulated across all disease conditions. To shortlist the functional miRNAs in HBV-induced HCC pathogenesis, a reverse bioinformatics analysis was performed using eight GEO datasets and the TCGA database containing the list of differentially regulated mRNAs in HCC. A comparative study using these data with the identified targets of hDEmiRs, a set of unidirectionally regulated hDEmiRs with the potential to modulate mRNAs in HCC, were found. Moreover, our study identified five miRNAs; hsa-miR-98-5p, hsa-miR-193b-3p, hsa-miR-142-5p, hsa-miR-522-5p, and hsa-miR-370-3p targeting PIGC, KNTC1, CSTF2, SLC41A2, and RAB17, respectively, in HCC. These hDEmiRs and their targets could be pivotal in HBV infection and subsequent liver pathologies modulating HCC clinical progression. HBV infection is the largest contributor to HCC, and the present study comprises the first of its kind compendium of hDEmiRs related to HBV-related pathologies.
Collapse
Affiliation(s)
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| |
Collapse
|
3
|
Takahashi K, Kwok JC, Sato Y, Aguirre GD, Miyadera K. Molecular characterization of MAP9 in the photoreceptor sensory cilia as a modifier in canine RPGRIP1-associated cone-rod dystrophy. Front Cell Neurosci 2023; 17:1226603. [PMID: 37650070 PMCID: PMC10464610 DOI: 10.3389/fncel.2023.1226603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Photoreceptors possess a highly specialized primary cilium containing expanded ciliary membrane discs called the outer segment. The photoreceptor cilium is essential for the maintenance of the outer segment, and pathogenic variants in more than 50 cilia-related genes have been identified as causing non-syndromic inherited retinal diseases in patients. The retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) is a structural protein localized to the photoreceptor cilium and biallelic RPGRIP1 variants have been associated with non-syndromic human inherited retinal diseases. In a canine cone-rod dystrophy model, a naturally occurring 44-bp exonic insertion in RPGRIP1 (RPGRIP1ins44/ins44) is the primary disease locus while an additional homozygous variant in MAP9 (microtubule associated protein 9) (MAP9aff/aff) acts as a modifier associated with early disease onset. MAP9 was originally identified as a microtubule-binding protein stabilizing microtubule structure during both mitosis and interphase in human cell lines. However, the roles of MAP9 in primary cilia, including photoreceptor neurosensory cilia, have not been well understood. Hence, we characterized the pathogenic phenotypes associated with homozygous MAP9 variant, and investigated the molecular function of MAP9 in primary cilia using the RPGRIP1-associated oligogenic canine cone-rod dystrophy model as well as cultured cells. Both functionally and structurally, the RPGRIP1ins44/ins44 MAP9aff/aff retina exhibited progressive cone photoreceptor degeneration starting earlier than the retina affected by RPGRIP1ins44/ins44 alone. Based on immunostaining of canine retinal sections and cultured cells, we found that MAP9 is prominently localized in the basal body of primary cilia and played an important role in maintaining the structure of ciliary microtubule axoneme. These findings suggest that the affected MAP9, together with mutant RPGRIP1, is deprived of critical roles in cilia organization and maintenance resulting in altered cilia structure and function giving rise to early onset and accelerated disease progression in the RPGRIP1ins44/ins44 MAP9aff/aff double homozygote cone-rod dystrophy canine model.
Collapse
Affiliation(s)
| | | | | | | | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
5
|
Bao X, Chen Y, Lou X, Du J, Li H, Liu N, Tang Z, Hua J, Guo W, Liu SB. Comprehensive analysis of ERCC3 prognosis value and ceRNA network in AML. Clin Transl Oncol 2023; 25:1053-1066. [PMID: 36472749 DOI: 10.1007/s12094-022-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy with high molecular and clinical heterogeneity, and is the most common type of acute leukemia in adults. Due to limited treatment options, AML is prone to relapse and has a poor prognosis. Excision repair cross-complementing 3 (ERCC3) is an important member of nucleotide excision repair (NER) that is overexpressed in types of solid cancers and potentially regarded as a prognostic factor. However, its role in AML remains unclear. The purpose of this study was to explore ERCC3 expression and functions in AML. METHODS The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) were used to test the accuracy of ERCC3 expression levels for AML diagnosis. Using online databases and R packages, we also explored the signaling pathway, epigenetic regulation, infiltration of immune cells, clinical prognostic value, and ceRNA network in AML. RESULTS Our results revealed that ERCC3 expression was increased in AML and that high ERCC3 expression had good value for disease-free survival and overall survival in AML patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that ERCC3 and co-expressed genes were mainly involved in chemical carcinogenesis/reactive oxygen species, ubiquitin-mediated protein degradation and oxidative phosphorylation. In addition, almost all the m6A-related coding genes (except GF2BP1) were positively associated with ERCC3 expression. We also constructed a ceRNA regulatory network containing ERCC3 in AML and identified 6 pairs of ceRNA networks, indicating that ERCC3 expression is regulated by a noncoding RNA system. CONCLUSION This study demonstrated that ERCC3 was overexpressed in AML and that high ERCC3 expression can be considered a biomarker conducive to allo-HSCT in AML patients.
Collapse
Affiliation(s)
- Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao Chen
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Xiao Lou
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Nian Liu
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Jingsheng Hua
- Department of Hematology, Taizhou Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000, China.
| | - Weiqiang Guo
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China.
- School of Chemistry and Life Science, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
6
|
Liu YR, Wang JQ, Li XF, Chen H, Xia Q, Li J. Identification and preliminary validation of synovial tissue-specific genes and their-mediated biological mechanisms in rheumatoid arthritis. Int Immunopharmacol 2023; 117:109997. [PMID: 36940554 DOI: 10.1016/j.intimp.2023.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. It is well known that the formation of positive feedback between synovial hyperplasia and inflammatory infiltration is intimately associated with the occurrence and development of RA. However, the exact mechanisms still remain unknown, making the early diagnosis and therapy of RA difficult. This study was designed to identify prospective diagnostic and therapeutic biomarkers, as well as their-mediated biological mechanisms in RA. METHODS Three microarray datasets (GSE36700, GSE77298 and GSE153015) and two RNA-sequencing datasets (GSE89408 and GSE112656) of synovial tissues, as well as three other microarray datasets (GSE101193, GSE134087 and GSE94519) of peripheral blood were downloaded for integrated analysis. The differently expressed genes (DEGs) were identified by "limma" package of R software. Then, weight gene co-expression analysis and gene set enrichment analysis were performed to investigate synovial tissue-specific genes and their-mediated biological mechanisms in RA. The expression of candidate genes and their diagnostic value for RA were verified by quantitative real-time PCR and receiver operating characteristic (ROC) curve, respectively. Relevant biological mechanisms were explored through cell proliferation and colony formation assay. The suggestive anti-RA compounds were discovered by CMap analysis. RESULTS We identified a total of 266 DEGs, which were mainly enriched in cellular proliferation and migration, infection and inflammatory immune signaling pathways. Bioinformatics analysis and molecular validation revealed 5 synovial tissue-specific genes, which exhibited excellent diagnostic value for RA. The infiltration level of immune cells in RA synovial tissue was significantly higher than that in control individuals. Moreover, preliminary molecular experiments suggested that these characteristic genes may be responsible for the high proliferation potential of RA fibroblast-like synoviocytes (FLSs). Finally, 8 small molecular compounds with anti-RA potential were obtained. CONCLUSIONS We have proposed 5 potential diagnostic and therapeutic biomarkers (CDK1, TTK, HMMR, DLGAP5, and SKA3) in synovial tissues that may contribute to the pathogenesis of RA. These findings may shed light on the early diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China
| | - Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Proteomic profiling reveals neuronal ion channel dysregulation and cellular responses to DNA damage-induced cell cycle arrest and senescence in human neuroblastoma SH-SY5Y cells exposed to cypermethrin. Neurotoxicology 2022; 93:71-83. [PMID: 36063984 DOI: 10.1016/j.neuro.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Cypermethrin (CYP), a synthetic pyrethroid of class II, is widely used as a pesticide worldwide. The primary target of cypermethrin is a voltage-gated sodium channel. The neurotoxicity of CYP has been extensively studied in terms of affecting neuronal development, increasing cellular oxidative stress, and apoptosis. However, little is known about how it affects the expression of channel proteins involved in synaptic transmission, as well as the effects of cypermethrin on DNA damage and cell cycle processes. We found that the ligand and voltage-gated calcium channels and proteins involved in synaptic transmission including NMDA 1 receptor subunit, alpha 1A-voltage-dependent calcium channel, synaptotagmin-17, and synaptojanin-2 were downregulated in CYP-treated cells. After 48h of CYP exposure, cell viability was reduced with flattened and enlarged morphology. The levels of 23 proteins regulating cell cycle processes were altered in CYP-treated cells, according to a proteomic study. The cell cycle analysis showed elevated G0/G1 cell cycle arrest and DNA fragmentation at the sub-G0 stage after CYP exposure. CYP treatment also increased senescence-associated β-galactosidase positive cells, DNA damage, and apoptotic markers. Taken together, the current study showed that cypermethrin exposure caused DNA damage and hastened cellular senescence and apoptosis via disrupting cell cycle regulation. In addition, despite its primary target sodium channel, CYP might cause synaptic dysfunction via the downregulation of synaptic proteins and dysregulation of synapse-associated ion channels.
Collapse
|
8
|
Lamare FA, Khongsti S, Marthong L, Ghosh S, Chenkual S, Dkhar H, Maitra A, Ghosh S. Genome-wide DNA methylation profiling of stomach cancer in the ethnic population of Mizoram, North East India. Genomics 2022; 114:110478. [PMID: 36064073 DOI: 10.1016/j.ygeno.2022.110478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Stomach cancer is the fifth most common cancer in terms of prevalence and incidence and the fourth leading cause of mortality in men and women worldwide. It is well-established that aberrant DNA methylation in cells can lead to carcinogenesis. The primary objective of our study was to investigate the aberrant DNA methylation status of genes associated with stomach cancer with a particular reference to the ethnic population of Mizoram, North East India. The site-level analysis identified 2883 CpG sites differentially methylated, representing ~922 genes. Out of which 476 Differentially Methylated Positions (DMPs) were promoter-associated, 452 DMPs were hypermethylated, and 24 were hypomethylated. The region-level analysis identified 462 Differentially Methylated Regions (DMRs) corresponding to ~320 genes, of which ~281 genes were hypermethylated and ~ 40 genes were hypomethylated. TCGA analysis showed that some of the genes had been previously implicated in other cancers including stomach cancer. Five hypermethylated genes were selected as candidate genes for further investigations and they have shown to be novel and could serve as candidate hypermethylation biomarkers for stomach cancer in this particular ethnic group.
Collapse
Affiliation(s)
- F A Lamare
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Khongsti
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - L Marthong
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Ghosh
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | | | - H Dkhar
- Nazareth Hospital, Shillong, India
| | - A Maitra
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - S Ghosh
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India.
| |
Collapse
|
9
|
Albaradei S, Albaradei A, Alsaedi A, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data. Front Mol Biosci 2022; 9:913602. [PMID: 35936793 PMCID: PMC9353773 DOI: 10.3389/fmolb.2022.913602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medical field. Here we propose a computational framework that takes the gene expression profile of any primary cancer sample and predicts whether patients' samples are primary (localized) or metastasized to the brain, bone, lung, or liver based on deep learning architecture. Specifically, we first constructed an AutoEncoder framework to learn the non-linear relationship between genes, and then DeepLIFT was applied to calculate genes' importance scores. Next, to mine the top essential genes that can distinguish the primary and metastasized tumors, we iteratively added ten top-ranked genes based upon their importance score to train a DNN model. Then we trained a final multi-class DNN that uses the output from the previous part as an input and predicts whether samples are primary or metastasized to the brain, bone, lung, or liver. The prediction performances ranged from AUC of 0.93-0.82. We further designed the model's workflow to provide a second functionality beyond metastasis site prediction, i.e., to identify the biological functions that the DL model uses to perform the prediction. To our knowledge, this is the first multi-class DNN model developed for the generic prediction of metastasis to various sites.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A. Thafar
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
MAP9 Exhibits Protumor Activities and Immune Escape toward Bladder Cancer by Mediating TGF- β1 Pathway. JOURNAL OF ONCOLOGY 2022; 2022:3778623. [PMID: 35656338 PMCID: PMC9155934 DOI: 10.1155/2022/3778623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/16/2022] [Indexed: 11/18/2022]
Abstract
To investigate more potential targets for the treatment of human bladder cancer, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and high-content screening (HCS) analysis were performed, and microtubule-associated protein 9 (MAP9), which had the strongest proliferation inhibition from 809 downregulated genes, has been selected. MAP9 is responsible for bipolar spindle assembly and is involved in the progression of many types of tumors; however, its role in bladder cancer (BC) remains unknown. Expressive levels of MAP9 in BC tissues were determined through immunohistochemistry, and the clinical significance of MAP9 in BC was analyzed. Short hairpin ribonucleic acid- (ShRNA-) MAP9 was used to construct stable MAP9 knockdown BC cell lines. The proliferative abilities of MAP9 were measured through assays in vivo and in vitro, and the migrated and invasive abilities of MAP9 were analyzed via in vitro experiments. Quantitative reverse transcription PCR, western blotting, coimmunoprecipitation (Co-IP), and rescue assays were used to identify downstream targets of MAP9. MAP9 expression increased in the tumor tissues, and its increased level was negatively correlated with prognosis. Further, the loss of MAP9 caused decreased BC cell proliferation via inducing the growth 1/synthesis (G1/S) cell cycle arrest in vitro and slowed tumor growth in vivo. In addition, MAP9 silencing attenuated BC cell migration and invasion. Moreover, we found that the growth 1/synthesis (G1/S) cell cycle-related genes and the epithelial mesenchymal transition (EMT) marker levels decreased after silencing MAP9. Finally, we found that the transforming growth factor beta 1 (TGF-β1) pathway is activated as a mediator for MAP9 to regulate genes related to the G1/S cell cycle and EMT. MAP9 promotes BC progression and immune escape activity through the TGF-β1 pathway and is a potential novel target for therapies of BC.
Collapse
|
12
|
Wang S, Liu W, Ni Y, Wang L, Zhu Y, Shi Q, Yi Z, Wang W, Liu L, Yang L, Kuang Y, Zhu Y, Zhang Q, Yang Z. Overexpression of ERCC3 is associated with poor prognosis in patients with pancreatic cancer. J Cancer 2021; 12:2550-2559. [PMID: 33854616 PMCID: PMC8040713 DOI: 10.7150/jca.54576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is associated with poor prognosis due to limited therapeutic options. Excision repair cross-complementing 3 (ERCC3) is an important member of nucleotide excision repair (NER) that is overexpressed in some cancers and may be regarded as a poor prognostic factor. Yet, its role in pancreatic cancer remains unclear. This study aimed to investigate the expression and functions of ERCC3 in pancreatic cancer patients and its relation with clinicopathological features. Our data suggested that the protein expression level of ERCC3 was higher in tumor tissues than in adjacent tissues. In addition, the expression of ERCC3 has shown to be associated with the tumor extent (p=0.035). Besides, analysis of the dataset in The Cancer Genome Atlas (TCGA) revealed that high expression of ERCC3 was associated with poor overall survival in pancreatic cancer patients (p=0.0136). In Cox regression analysis, ERCC3 was an independent prognostic factor for overall survival in pancreatic cancer (p<0.001). Furthermore, our in vitro data further suggested that the overexpression of ERCC3 significantly promoted pancreatic cancer (BxPC-3, CFPAC-1, and PANC-1 cells) proliferation, invasion, and migration. Taken together, this study suggested that high expression of ERCC3 might be a poor prognostic factor in human pancreatic cancer and might be used as a promising therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Shujie Wang
- Department of pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wenjing Liu
- Department of pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Lifeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Yuzhi Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Qiong Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, China
| | - Zihan Yi
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, China
| | - Wenjie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Lili Liu
- Department of pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Zhe Yang
- Department of pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
13
|
Mok EHK, Leung CON, Lee TKW. MAP9/ERCC3 signaling cascade: A new insight on understanding the chromosomal instability in hepatocellular carcinoma. EBioMedicine 2020; 54:102709. [PMID: 32268270 PMCID: PMC7136610 DOI: 10.1016/j.ebiom.2020.102709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Etienne Ho Kit Mok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
| | - Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|