1
|
Baumer Y, Irei J, Boisvert WA. Cholesterol crystals in the pathogenesis of atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01100-3. [PMID: 39558130 DOI: 10.1038/s41569-024-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The presence of cholesterol crystals (CCs) in tissues was first described more than 100 years ago. CCs have a pathogenic role in various cardiovascular diseases, including myocardial infarction, aortic aneurysm and, most prominently, atherosclerosis. Although the underlying mechanisms and signalling pathways involved in CC formation are incompletely understood, numerous studies have highlighted the existence of CCs at various stages of atheroma progression. In this Review, we summarize the mechanisms underlying CC formation and the role of CCs in cardiovascular disease. In particular, we explore the established links between lipid metabolism across various cell types and the formation of CCs, with a focus on CC occurrence in the vasculature. We also discuss CC-induced inflammation as one of the pathogenic features of CCs in the atheroma. Finally, we summarize the therapeutic strategies aimed at reducing CC-mediated atherosclerotic burden, including approaches to inhibit CC formation in the vasculature or to mitigate the inflammatory response triggered by CCs. Addressing CC formation might emerge as a crucial component in our broader efforts to combat cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, NIH, NHLBI, Bethesda, MD, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
2
|
Wang X, Fu W, Zhou G, Huo H, Shi X, Wang H, Wang Y, Huang X, Shen L, Li L, He B. Endothelial Cell-Derived Cholesterol Crystals Promote Endothelial Inflammation in Early Atherogenesis. Antioxid Redox Signal 2024; 41:201-215. [PMID: 38504584 DOI: 10.1089/ars.2023.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wenxia Fu
- Department of Cardiac Function, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Guo Zhou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yinghua Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Long Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Chaudhry WAR, Ashfaq M, Kaur P, Kumar M, Faraz M, Malik J, Mehmoodi A. Cardiovascular risk assessment in inflammatory bowel disease with coronary calcium score. Ann Med Surg (Lond) 2024; 86:1496-1505. [PMID: 38463108 PMCID: PMC10923345 DOI: 10.1097/ms9.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
The interplay between inflammatory bowel disease (IBD) and atherosclerotic cardiovascular disease (ASCVD) underscores the intricate connections between chronic inflammation and cardiovascular health. This review explores the multifaceted relationship between these conditions, highlighting the emerging significance of the coronary calcium score as a pivotal tool in risk assessment and management. Chronic inflammation, a hallmark of IBD, has far-reaching systemic effects that extend to the cardiovascular system. Shared risk factors and mechanisms, such as endothelial dysfunction, lipid dysfunction, and microbiome dysregulation, contribute to the elevated ASCVD risk observed in individuals with IBD. Amidst this landscape, the coronary calcium score emerges as a means to quantify calcified plaque within coronary arteries, offering insights into atherosclerotic burden and potential risk stratification. The integration of the coronary calcium score refines cardiovascular risk assessment, enabling tailored preventive strategies for individuals with IBD. By identifying those at elevated risk, healthcare providers can guide interventions, fostering informed shared decision-making. Research gaps persist, prompting further investigation into mechanisms linking IBD and ASCVD, particularly in the context of intermediate mechanisms and early atherosclerotic changes. The potential of the coronary calcium score extends beyond risk assessment-it holds promise for targeted interventions. Randomized trials exploring the impact of IBD-modifying therapies on ASCVD risk reduction can revolutionize preventive strategies. As precision medicine gains prominence, the coronary calcium score becomes a beacon of insight, illuminating the path toward personalized cardiovascular care for individuals living with IBD. Through interdisciplinary collaboration and rigorous research, we embark on a journey to transform the paradigm of preventive medicine and enhance the well-being of this patient population.
Collapse
Affiliation(s)
| | - Muhammad Ashfaq
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Parvinder Kaur
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Mahendra Kumar
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Amin Mehmoodi
- Department of Medicine, Ibn e Seena Hospital, Kabul, Afghanistan
| |
Collapse
|
4
|
Yang HY, Chi SC, Ko YC, Chen MJ, Kuang TM, Chang YF, Liu CJL. Bleb-related infection after primary trabeculectomy: medical chart reviews from 1993 to 2021. Br J Ophthalmol 2023; 108:58-64. [PMID: 36283798 DOI: 10.1136/bjo-2022-321429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND To investigate the incidence of and risk factors for bleb-related infection (BRI) in patients who underwent mitomycin C-augmented primary trabeculectomy. METHODS We reviewed the medical charts of consecutive patients who had received primary trabeculectomy in Taipei Veterans General Hospital. We recorded the demographic and clinical characteristics of patients before, during and after surgery. Furthermore, we recorded the time interval between surgery and infection onset, clinical manifestations and visual outcomes of patients with BRI. The cumulative incidence of BRI was estimated using the Kaplan-Meier method. A Cox proportional hazards model was used to explore factors associated with BRI. RESULTS In total, 1663 eyes were postoperatively followed up for 94.57±65.23 months. The cumulative incidence of BRI was 1.86 per 1000 person-years during the 28-year follow-up period: 24 (1.44%) patients developed BRI and 6 (0.36%) patients additionally developed endophthalmitis. A multivariate analysis revealed a significant association of BRI with wound manipulation, high myopia and hyperlipidaemia. Patients younger than 60 years were more likely to receive wound manipulation than their elderly counterparts (<0.001). One year after BRI, the best corrected visual acuity of the eyes with blebitis did not change significantly, whereas that of the eyes with endophthalmitis worsened significantly. CONCLUSION Risk factors for BRI after trabeculectomy include wound manipulation, high myopia and hyperlipidaemia. Considering myopia is highly prevalent throughout the world and is a risk factor for glaucoma, the lifelong risk of BRI after trabeculectomy in eyes with high myopia warrants the attention of ophthalmologists.
Collapse
Affiliation(s)
- Hsin-Yu Yang
- Yuanshan and Suao Branch, Taipei Veterans General Hospital, Yilan, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Chu Chi
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Chieh Ko
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mei-Ju Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Mei Kuang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fan Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Catherine Jui-Ling Liu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Chen L, Chen H, Guo S, Chen Z, Yang H, Liu Y, Chen X, Chen X, Du T, Long X, Zhao J, Guo M, Lao T, Huang D, Wang L, Chen J, Liu C. Psoriasis comorbid with atherosclerosis meets in lipid metabolism. Front Pharmacol 2023; 14:1308965. [PMID: 38149053 PMCID: PMC10750357 DOI: 10.3389/fphar.2023.1308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Psoriasis (PSO) is a common skin disease affecting approximately 1%-3% of the population, and the incidence rate is increasing yearly. PSO is associated with a dramatically increased risk of cardiovascular disease, the most common of which is atherosclerosis (AS). In the past, inflammation was considered to be the triggering factor of the two comorbidities, but in recent years, studies have found that lipid metabolism disorders increase the probability of atherosclerosis in patients with psoriasis. In this review, we discuss epidemiological studies, clinical treatment methods, risk factors, and lipid metabolism of psoriasis and atherosclerosis comorbidities.
Collapse
Affiliation(s)
- Liuping Chen
- Department of Critical Care Medicine, The Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sien Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haifeng Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanjiao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Du
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyao Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingli Guo
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianfeng Lao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - DongHui Huang
- Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| |
Collapse
|
6
|
Peng Y, Zhang Y, Luo M, Pan Y, Zhou R, Yan YN, Yi T, Luo F, Wang B, Wang L, Ran C, Wang H. NEK2 overexpression aggravates IL-22-induced keratinocyte proliferation and cytokine level increases and IMQ-induced psoriasis-like dermatitis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119525. [PMID: 37348763 DOI: 10.1016/j.bbamcr.2023.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Psoriasis is a common inflammatory skin disease characterized by the excessive proliferation and abnormal differentiation of keratinocytes. Protein kinases could act on intracellular signaling pathways associated with cell proliferation. OBJECTIVE Identifying more hub protein kinases affecting cellular and molecular processes in psoriasis, and exploring the dynamic effects of baicalin and NEK2 on the IL-22-induced cellular inflammation and IMQ-induced psoriasis-like mice. METHODS AND RESULTS In this study, differentially expressed protein kinases playing a hub role in psoriasis initiation and development were identified using integrative bioinformatics analyses, and NEK2 has been chosen. NEK2 was significantly up-regulated in psoriatic samples according to online datasets and experimental analyses. In IL-22-induced cellular inflammation model in HaCaT cells, NEK2 overexpression promoted, whereas NEK2 knockdown partially abolished IL-22-induced alterations in cell viability, DNA synthesis, cytokine levels, as well as STAT3 phosphorylation and p-RB, cyclin D1, CDK4, and CDK6 protein contents. Baicalin treatment partially suppressed IL-22-induced HaCaT cell viability, DNA synthesis, and increases in cytokine levels, whereas NEK2 overexpression significantly abolished Baicalin-induced protection against cellular inflammation. In IMQ-induced psoriasis-like skin inflammation model in mice, baicalin markedly ameliorated IMQ-induced psoriasis-like symptoms and local skin inflammation, whereas NEK2 overexpression partially eliminated the therapeutic effects of baicalin. CONCLUSION NEK2, up-regulated in psoriatic lesion skin, could aggravate IMQ-induced psoriasis-like dermatitis and attenuate the therapeutic efficiency of baicalin through promoting keratinocyte proliferation and cytokine levels. The STAT3 signaling might be involved.
Collapse
Affiliation(s)
- Youhua Peng
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China; Department of Dermatology, Hunan Aerospace Hospital, Changsha, Hunan, China
| | - Yujin Zhang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Meijunzi Luo
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Yi Pan
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Rong Zhou
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Yi-Ning Yan
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Tingting Yi
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Feifei Luo
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Biying Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Li Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Chongjun Ran
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Haizhen Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China.
| |
Collapse
|
7
|
You M, Jiang Q, Huang H, Ma F, Zhou X. 4-Octyl itaconate inhibits inflammation to attenuate psoriasis as an agonist of oxeiptosis. Int Immunopharmacol 2023; 124:110915. [PMID: 37741130 DOI: 10.1016/j.intimp.2023.110915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Psoriasis is a highly prevalent chronic disease associated with a substantial social and economic burden. Oxeiptosis is a programmed cell death that occurs when cells are in a state of high oxidative stress, which has a potent anti-inflammatory effect. However, there is still no research on oxeiptosis in psoriasis, and the agonists or antagonists of oxeiptosis remain an unclear field. Here, we found that oxeiptosis of keratinocytes was inhibited in psoriasis lesions. KEAP1, as the upstream molecular component of oxeiptosis, is highly expressed in psoriasis lesions. Knockdown of KEAP1 in HaCaT cells caused oxeiptosis in the condition of M5 cocktail stimulation. Next, we found that the cell-permeable derivative of itaconate, 4-octylitaconate (OI) promoted oxeiptosis of keratinocytes by inhibiting KEAP1 and then activating PGAM5 which are two upstream molecular components of oxeiptosis. At the same time, OI can reduce the expression of inflammatory cytokines induced by M5 cocktail stimulation in vitro. Similarly, we found that OI can alleviate IMQ-induced psoriatic lesions in mice and downregulate the levels of inflammatory cytokines in psoriatic lesions. In summary, our findings suggest that oxeiptosis of keratinocytes was inhibited in psoriasis and OI can significantly inhibit inflammation and alleviate psoriasis as an agonist of oxeiptosis, indicating that oxeiptosis may be involved in regulating the progression of psoriasis, which may provide new therapeutic targets for psoriasis treatment.
Collapse
Affiliation(s)
- Mengshu You
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huining Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fangyu Ma
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
8
|
Baumer Y, Singh K, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Bleck CK, Mitchell VM, Collins BS, Pirooznia M, Dagur PK, Allan DS, Muallem-Schwartz D, Childs RW, Powell-Wiley TM. Social Determinants modulate NK cell activity via obesity, LDL, and DUSP1 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556825. [PMID: 37745366 PMCID: PMC10515802 DOI: 10.1101/2023.09.12.556825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Adverse social determinants of health (aSDoH) are associated with obesity and related comorbidities like diabetes, cardiovascular disease, and cancer. Obesity is also associated with natural killer cell (NK) dysregulation, suggesting a potential mechanistic link. Therefore, we measured NK phenotypes and function in a cohort of African-American (AA) women from resource-limited neighborhoods. Obesity was associated with reduced NK cytotoxicity and a shift towards a regulatory phenotype. In vitro, LDL promoted NK dysfunction, implicating hyperlipidemia as a mediator of obesity-related immune dysregulation. Dual specific phosphatase 1 (DUSP1) was induced by LDL and was upregulated in NK cells from subjects with obesity, implicating DUSP1 in obesity-mediated NK dysfunction. In vitro, DUSP1 repressed LAMP1/CD107a, depleting NK cells of functional lysosomes to prevent degranulation and cytokine secretion. Together, these data provide novel mechanistic links between aSDoH, obesity, and immune dysregulation that could be leveraged to improve outcomes in marginalized populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Josette A. Yeboah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Li X, Wan L, Zhu T, Li R, Zhang M, Lu H. Biomimetic Liquid Crystal-Modified Mesoporous Silica-Based Composite Hydrogel for Soft Tissue Repair. J Funct Biomater 2023; 14:316. [PMID: 37367280 DOI: 10.3390/jfb14060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporous silica nanospheres (MSNs) with liquid crystal (LC) to enhance bioactivity and biocompatibility in vitro. This LC modification facilitated crucial cellular processes such as the proliferation, migration, spreading, and expression of angiogenesis-related genes and proteins in human umbilical vein endothelial cells (HUVECs). Furthermore, we incorporated LC-modified MSN within a hydrogel matrix to create a multifunctional dressing that combines the biological benefits of LC-MSN with the mechanical advantages of a hydrogel. Upon application to full-thickness wounds, these composite hydrogels exhibited accelerated healing, evidenced by enhanced granulation tissue formation, increased collagen deposition, and improved vascular development. Our findings suggest that the LC-MSN hydrogel formulation holds significant promise for the repair and regeneration of soft tissues.
Collapse
Affiliation(s)
- Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| |
Collapse
|
10
|
Luo L, Guo Y, Chen L, Zhu J, Li C. Crosstalk between cholesterol metabolism and psoriatic inflammation. Front Immunol 2023; 14:1124786. [PMID: 37234169 PMCID: PMC10206135 DOI: 10.3389/fimmu.2023.1124786] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Psoriasis is a chronic autoinflammatory skin disease associated with multiple comorbidities, with a prevalence ranging from 2 to 3% in the general population. Decades of preclinical and clinical studies have revealed that alterations in cholesterol and lipid metabolism are strongly associated with psoriasis. Cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-17), which are important in the pathogenesis of psoriasis, have been shown to affect cholesterol and lipid metabolism. Cholesterol metabolites and metabolic enzymes, on the other hand, influence not only the biofunction of keratinocytes (a primary type of cell in the epidermis) in psoriasis, but also the immune response and inflammation. However, the relationship between cholesterol metabolism and psoriasis has not been thoroughly reviewed. This review mainly focuses on cholesterol metabolism disturbances in psoriasis and their crosstalk with psoriatic inflammation.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lihao Chen
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Baumer Y, McCurdy SG, Boisvert WA. Formation and Cellular Impact of Cholesterol Crystals in Health and Disease. Adv Biol (Weinh) 2021; 5:e2100638. [PMID: 34590446 PMCID: PMC11055929 DOI: 10.1002/adbi.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Indexed: 11/10/2022]
Abstract
Cholesterol crystals (CCs) were first discovered in atherosclerotic plaque tissue in the early 1900 and have since been observed and implicated in many diseases and conditions, including myocardial infarction, abdominal aortic aneurism, kidney disease, ocular diseases, and even central nervous system anomalies. Despite the widespread involvement of CCs in many pathologies, the mechanisms involved in their formation and their role in various diseases are still not fully understood. Current knowledge concerning the formation of CCs, as well as the molecular pathways activated upon cellular exposure to CCs, will be explored in this review. As CC formation is tightly associated with lipid metabolism, the role of cellular lipid homeostasis in the formation of CCs is highlighted, including the role of lysosomes. In addition, cellular pathways and processes known to be affected by CCs are described. In particular, CC-induced activation of the inflammasome and production of reactive oxygen species, along with the role of CCs in complement-mediated inflammation is discussed. Moreover, the clinical manifestation of embolized CCs is described with a focus on renal and skin diseases associated with CC embolism. Lastly, potential therapeutic measures that target either the formation of CCs or their impact on different cell types and tissues are highlighted.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, Building 10, 10 Center Drive, Bethesda, MD 20814, USA
| | - Sara G. McCurdy
- Dept. of Medicine, University of California San Diego, 9500 Gilman Street, La Jolla, CA 92093, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
12
|
Cainzos-Achirica M, Glassner K, Zawahir HS, Dey AK, Agrawal T, Quigley EMM, Abraham BP, Acquah I, Yahya T, Mehta NN, Nasir K. Inflammatory Bowel Disease and Atherosclerotic Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 76:2895-2905. [PMID: 33303079 DOI: 10.1016/j.jacc.2020.10.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory diseases including human immunodeficiency virus infection, psoriasis, rheumatoid arthritis, and systemic lupus erythematosus predispose to atherosclerotic cardiovascular disease (ASCVD). Inflammatory bowel disease (IBD) is a common chronic inflammatory condition, and the United States has the highest prevalence worldwide. IBD has so far been overlooked as a contributor to the burden of ASCVD among young and middle-age adults, but meta-analyses of cohort studies suggest that IBD is an independent risk factor for ASCVD. This review discusses the epidemiological links between IBD and ASCVD and potential mechanisms underlying these associations. ASCVD risk management of patients with IBD is challenging because of their young age and the inability of current risk scores to fully capture their increased risk. The role of IBD in current primary prevention guidelines is evaluated, and strategies for enhanced ASCVD risk reduction in patients with IBD are outlined. Finally, the authors discuss knowledge gaps and future research directions in this innovative field.
Collapse
Affiliation(s)
- Miguel Cainzos-Achirica
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA; Center for Outcomes Research, Houston Methodist, Houston, Texas, USA. https://twitter.com/miguelcainzos23
| | - Kerri Glassner
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA; Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | | | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanushree Agrawal
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Eamonn M M Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | - Bincy P Abraham
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA; Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | - Isaac Acquah
- Center for Outcomes Research, Houston Methodist, Houston, Texas, USA
| | - Tamer Yahya
- Center for Outcomes Research, Houston Methodist, Houston, Texas, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Khurram Nasir
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA; Center for Outcomes Research, Houston Methodist, Houston, Texas, USA.
| |
Collapse
|
13
|
Niyonzima N, Bakke SS, Gregersen I, Holm S, Sandanger Ø, Orrem HL, Sporsheim B, Ryan L, Kong XY, Dahl TB, Skjelland M, Sørensen KK, Rokstad AM, Yndestad A, Latz E, Gullestad L, Andersen GØ, Damås JK, Aukrust P, Mollnes TE, Halvorsen B, Espevik T. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis. EBioMedicine 2020; 60:102985. [PMID: 32927275 PMCID: PMC7494683 DOI: 10.1016/j.ebiom.2020.102985] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND During atherogenesis, cholesterol precipitates into cholesterol crystals (CC) in the vessel wall, which trigger plaque inflammation by activating the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome. We investigated the relationship between CC, complement and NLRP3 in patients with cardiovascular disease. METHODS We analysed plasma, peripheral blood mononuclear cells (PBMC) and carotid plaques from patients with advanced atherosclerosis applying ELISAs, multiplex cytokine assay, qPCR, immunohistochemistry, and gene profiling. FINDINGS Transcripts of interleukin (IL)-1beta(β) and NLRP3 were increased and correlated in PBMC from patients with acute coronary syndrome (ACS). Priming of these cells with complement factor 5a (C5a) and tumour necrosis factor (TNF) before incubation with CC resulted in increased IL-1β protein when compared to healthy controls. As opposed to healthy controls, systemic complement was significantly increased in patients with stable angina pectoris or ACS. In carotid plaques, complement C1q and C5b-9 complex accumulated around CC-clefts, and complement receptors C5aR1, C5aR2 and C3aR1 were higher in carotid plaques compared to control arteries. Priming human carotid plaques with C5a followed by CC incubation resulted in pronounced release of IL-1β, IL-18 and IL-1α. Additionally, mRNA profiling demonstrated that C5a and TNF priming followed by CC incubation upregulated plaque expression of NLRP3 inflammasome components. INTERPRETATION We demonstrate that CC are important local- and systemic complement activators, and we reveal that the interaction between CC and complement could exert its effect by activating the NLRP3 inflammasome, thus promoting the progression of atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Niyonzima
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway
| | - Siril S Bakke
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Hilde L Orrem
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | | | - Mona Skjelland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Kirsten Krohg Sørensen
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Anne Mari Rokstad
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Eicke Latz
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway; Institute of Innate Immunity, Biomedical Center, University of Bonn, Germany
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Norway; KG Jebsen Center for Cardiac Research, and Center for Heart Failure Research, Oslo University Hospital, Norway
| | | | - Jan Kristian Damås
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Norway
| | - Tom E Mollnes
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway; Department of Immunology, Oslo University Hospital, Norway; KG Jebsen TREC, Department of Clinical Medicine, University of Tromsø, Norway; Research Laboratory, Norland Hospital, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gate 17, Trondheim 7030, Norway; The Central Norway Regional Health Authority, St. Olavs Hospital HF, Norway.
| |
Collapse
|