1
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Zong R, Wang R, Wu M, Ruan H, Ou W, Dong W, Zhang P, Fan S, Li J. Enhancement of the anticancer potential and biosafety of BSA-modified, bacterial membrane-coated curcumin nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114156. [PMID: 39137532 DOI: 10.1016/j.colsurfb.2024.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Bacteria and bacterial components have been widely used as bionanocarriers to deliver drugs to treat tumors. In this study, we isolated bacterial outer membrane vesicles (OMVs) with good stability and high yield for macrophage polarization and cell recruitment. Using ultrasound baths, these bacterial OMVs were combined with curcumin nanoparticles (OMV CUR NPs), following which these nanoparticles were modified with bovine serum albumin (BSA) to achieve high biosafety and tumor-targeting effects. The particle size, PDI, and zeta potential of the BSA-OMV CUR NPs were 157.9 nm, 0.233, and -15.1 mV, respectively. The BSA-OMV CUR NPs exhibited high storage stability, low cytotoxicity, sustained release, enhanced cellular uptake of CUR, induction of tumor cell apoptosis, and inhibition of tumor cell proliferation and migration. By determining the survival rate, body length, heart rate, head size, eye size, and pericardium size of the zebrafish, we found that the BSA-OMV CUR NPs were safe for application in vivo. Moreover, an increase in antiproliferation, antiangiogenic and antimetastatic effects of BSA-OMV CUR NPs was demonstrated in wild-type and transgenic tumor-transplanted zebrafish embryos.
Collapse
Affiliation(s)
- Rui Zong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Rui Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Mengting Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Hainan Ruan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Wanqing Ou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Weiyu Dong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Peng Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
3
|
Wohlmann J. Expanding the field of view - a simple approach for interactive visualisation of electron microscopy data. J Cell Sci 2024; 137:jcs262198. [PMID: 39324375 PMCID: PMC11529876 DOI: 10.1242/jcs.262198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
The unparalleled resolving power of electron microscopy is both a blessing and a curse. At 30,000× magnification, 1 µm corresponds to 3 cm in the image and the field of view is only a few micrometres or less, resulting in an inevitable reduction in the spatial data available in an image. Consequently, the gain in resolution is at the cost of loss of the contextual 'reference space', which is crucial for understanding the embedded structures of interest. This problem is particularly pronounced in immunoelectron microscopy, where the detection of a gold particle is crucial for the localisation of specific molecules. The common solution of presenting high-magnification and overview images side by side often insufficiently represents the cellular environment. To address these limitations, we propose here an interactive visualization strategy inspired by digital maps and GPS modules which enables seamless transitions between different magnifications by dynamically linking virtual low magnification overview images with primary high-resolution data. By enabling dynamic browsing, it offers the potential for a deeper understanding of cellular landscapes leading to more comprehensive analysis of the primary ultrastructural data.
Collapse
Affiliation(s)
- Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| |
Collapse
|
4
|
Saadh MJ, Mustafa MA, Kumar S, Gupta P, Pramanik A, Rizaev JA, Shareef HK, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Alaraj M, Alzubaidi LH. Advancing therapeutic efficacy: nanovesicular delivery systems for medicinal plant-based therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7229-7254. [PMID: 38700796 DOI: 10.1007/s00210-024-03104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 10/04/2024]
Abstract
The utilization of medicinal plant extracts in therapeutics has been hindered by various challenges, including poor bioavailability and stability issues. Nanovesicular delivery systems have emerged as promising tools to overcome these limitations by enhancing the solubility, bioavailability, and targeted delivery of bioactive compounds from medicinal plants. This review explores the applications of nanovesicular delivery systems in antibacterial and anticancer therapeutics using medicinal plant extracts. We provide an overview of the bioactive compounds present in medicinal plants and their therapeutic properties, emphasizing the challenges associated with their utilization. Various types of nanovesicular delivery systems, including liposomes, niosomes, ethosomes, and solid lipid nanoparticles, among others, are discussed in detail, along with their potential applications in combating bacterial infections and cancer. The review highlights specific examples of antibacterial and anticancer activities demonstrated by these delivery systems against a range of pathogens and cancer types. Furthermore, we address the challenges and limitations associated with the scale-up, stability, toxicity, and regulatory considerations of nanovesicular delivery systems. Finally, future perspectives are outlined, focusing on emerging technologies, integration with personalized medicine, and potential collaborations to drive forward research in this field. Overall, this review underscores the potential of nanovesicular delivery systems for enhancing the therapeutic efficacy of medicinal plant extracts in antibacterial and anticancer applications, while identifying avenues for further research and development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Sanjay Kumar
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Pooja Gupta
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18, Amir Temur Street, Rector, Samarkand, Uzbekistan
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | - Mohd Alaraj
- Faculty of Pharmacy, Jerash Private University, Jerash, Jordan
| | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Ravichandiran P, Martyna A, Kochanowicz E, Maroli N, Kubiński K, Masłyk M, Boguszewska-Czubara A, Ramesh T. In Vitro and In Vivo Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Potential Anticancer Agents. ChemMedChem 2024:e202400495. [PMID: 39136593 DOI: 10.1002/cmdc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Indexed: 10/16/2024]
Abstract
A novel library of naphthoquinone derivatives (3-5 aa) was synthesized and evaluated for their anticancer properties. Specifically, compounds 5 i, 5 l, 5 o, 5 q, 5 r, 5 s, 5 t, and 5 v demonstrated superior cytotoxic activity against the cancer cell lines that were studied. All the studied compounds exhibited a higher selectivity index (SI) and a favourable safety profile than the standard drug doxorubicin. Notably, compound 5 v displayed a greater cytotoxic effect on MCF-7 cells (IC50=1.2 μM, and 0.9 μM at 24 h and 48 h, respectively) compared to the standard drug doxorubicin (IC50=2.4 μM, and 2.1 μM at 24 h and 48 h, respectively). To further investigate the mechanism of cytotoxic effect, additional anticancer studies were conducted with 5 v in MCF-7 cells. The studies are including morphological changes, AO/EB (acridine orange/ethidium bromide) double staining, apoptosis analysis, cell colony assay, SDS-PAGE and Western blotting, cell cycle analysis, and detecting reactive oxygen species (ROS) assay. The findings showed that 5 v triggered cytotoxic effects in MCF-7 cells through the initiation of cell cycle arrest at the G1/S phase and necrosis. In vivo ecotoxicity studies indicated that 5 v had lower toxicity towards zebrafish larvae (LC50=50.15 μM) and had an insignificant impact on cardiac functions. In vivo xenotransplantation of MCF-7 cells in zebrafish larvae demonstrated a significant reduction in tumour volume in the xenograft. Approximately 95 % of the zebrafish larvae with 5 v xenografts survived after 10 days of the treatment. Finally, a computational modelling study was conducted on four protein receptors, namely ER, EFGR, BRCA1, and VEFGR2. The findings highlight the importance of the aminonaphthoquinone moiety, amide linkage, and propyl thio moiety in enhancing the anticancer properties. 5 v exhibited superior drug-likeness features and docking scores (-9.1, -7.1, -8.9, and -10.9 kcal/mol) compared to doxorubicin (-7.2, -6.1, -6.9, and -7.3 kcal/mol) against ER, EFGR, BRCA1, and VEGFR2 receptors, respectively. Therefore, the notable antitumor effects of naphthoquinone derivatives (3-5 aa) suggest that these molecular frameworks may play a role in the development of promising anticancer agents for cancer treatment.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Present Address: Analytical, HP Green R & D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, Karnataka, 562114, India
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4 A, 20-093, Lublin, Poland
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
6
|
Zhan T, Song W, Jing G, Yuan Y, Kang N, Zhang Q. Zebrafish live imaging: a strong weapon in anticancer drug discovery and development. Clin Transl Oncol 2024; 26:1807-1835. [PMID: 38514602 DOI: 10.1007/s12094-024-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Developing anticancer drugs is a complex and time-consuming process. The inability of current laboratory models to reflect important aspects of the tumor in vivo limits anticancer medication research. Zebrafish is a rapid, semi-automated in vivo screening platform that enables the use of non-invasive imaging methods to monitor morphology, survival, developmental status, response to drugs, locomotion, or other behaviors. Zebrafish models are widely used in drug discovery and development for anticancer drugs, especially in conjunction with live imaging techniques. Herein, we concentrated on the use of zebrafish live imaging in anticancer therapeutic research, including drug screening, efficacy assessment, toxicity assessment, and mechanism studies. Zebrafish live imaging techniques have been used in numerous studies, but this is the first time that these techniques have been comprehensively summarized and compared side by side. Finally, we discuss the hypothesis of Zebrafish Composite Model, which may provide future directions for zebrafish imaging in the field of cancer research.
Collapse
Affiliation(s)
- Tiancheng Zhan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wanqian Song
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guo Jing
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
7
|
Creamer A, Fiego AL, Agliano A, Prados-Martin L, Høgset H, Najer A, Richards DA, Wojciechowski JP, Foote JEJ, Kim N, Monahan A, Tang J, Shamsabadi A, Rochet LNC, Thanasi IA, de la Ballina LR, Rapley CL, Turnock S, Love EA, Bugeon L, Dallman MJ, Heeney M, Kramer-Marek G, Chudasama V, Fenaroli F, Stevens MM. Modular Synthesis of Semiconducting Graft Copolymers to Achieve "Clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300413. [PMID: 36905683 DOI: 10.1002/adma.202300413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.
Collapse
Affiliation(s)
- Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alessandra Lo Fiego
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alice Agliano
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lino Prados-Martin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Håkon Høgset
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Richards
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James E J Foote
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Amy Monahan
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiaqing Tang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - André Shamsabadi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Léa N C Rochet
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioanna A Thanasi
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, 0372, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Vijay Chudasama
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Federico Fenaroli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4021, Norway
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0371, Norway
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
8
|
Fonseca M, Jarak I, Victor F, Domingues C, Veiga F, Figueiras A. Polymersomes as the Next Attractive Generation of Drug Delivery Systems: Definition, Synthesis and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:319. [PMID: 38255485 PMCID: PMC10817611 DOI: 10.3390/ma17020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Polymersomes are artificial nanoparticles formed by the self-assembly process of amphiphilic block copolymers composed of hydrophobic and hydrophilic blocks. They can encapsulate hydrophilic molecules in the aqueous core and hydrophobic molecules within the membrane. The composition of block copolymers can be tuned, enabling control of characteristics and properties of formed polymersomes and, thus, their application in areas such as drug delivery, diagnostics, or bioimaging. The preparation methods of polymersomes can also impact their characteristics and the preservation of the encapsulated drugs. Many methods have been described, including direct hydration, thin film hydration, electroporation, the pH-switch method, solvent shift method, single and double emulsion method, flash nanoprecipitation, and microfluidic synthesis. Considering polymersome structure and composition, there are several types of polymersomes including theranostic polymersomes, polymersomes decorated with targeting ligands for selective delivery, stimuli-responsive polymersomes, or porous polymersomes with multiple promising applications. Due to the shortcomings related to the stability, efficacy, and safety of some therapeutics in the human body, polymersomes as drug delivery systems have been good candidates to improve the quality of therapies against a wide range of diseases, including cancer. Chemotherapy and immunotherapy can be improved by using polymersomes to deliver the drugs, protecting and directing them to the exact site of action. Moreover, this approach is also promising for targeted delivery of biologics since they represent a class of drugs with poor stability and high susceptibility to in vivo clearance. However, the lack of a well-defined regulatory plan for polymersome formulations has hampered their follow-up to clinical trials and subsequent market entry.
Collapse
Affiliation(s)
- Mariana Fonseca
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
| | - Ivana Jarak
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Francis Victor
- Department of Pharmacy, University Chenab Gujarat, Punjab 50700, Pakistan;
| | - Cátia Domingues
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Singh P, Sen K, Sa P, Khuntia A, Raghav SK, Swain RK, Sahoo SK. Piperlongumine based nanomedicine impairs glycolytic metabolism in triple negative breast cancer stem cells through modulation of GAPDH & FBP1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155181. [PMID: 38091824 DOI: 10.1016/j.phymed.2023.155181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and exhibits high rate of chemoresistance, metastasis, and relapse. This can be attributed to the failure of conventional therapeutics to target a sub-population of slow cycling or quiescent cells called as cancer stem cells (CSCs). Therefore, elimination of CSCs is essential for effective TNBC treatment. PURPOSE Research suggests that breast CSCs exhibit elevated glycolytic metabolism which directly contributes in maintenance of stemness, self-renewability and chemoresistance as well as in tumor progression. Therefore, this study aimed to target rewired metabolism which can serve as Achilles heel for CSCs population and have far reaching effect in TNBC treatment. METHODS We used two preclinical models, zebrafish and nude mice to evaluate the fate of nanoparticles as well as the therapeutic efficacy of both piperlongumine (PL) and its nanomedicine (PL-NPs). RESULTS In this context, we explored a phytochemical piperlongumine (PL) which has potent anti-cancer properties but poor pharmacokinetics impedes its clinical translation. So, we developed PLGA based nanomedicine for PL (PL-NPs), and demonstrated that it overcomes the pharmacokinetic limitations of PL, along with imparting advantages of selective tumor targeting through Enhanced Permeability and Retention (EPR) effect in zebrafish xenograft model. Further, we demonstrated that PL-NPs efficiently inhibit glycolysis in CSCs through inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by modulating glutathione S-transferase pi 1 (GSTP1) and upregulation of fructose-1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis. We also illustrated that inhibition of glycolysis results in overall tumor regression in two preclinical models. CONCLUSION This study discusses novel mechanism of action by which PL acts on CSCSs. Taken together our study provides insight into development of PL based nanomedicine which could be exploited in clinics to achieve complete eradication of TNBC by targeting CSCs.
Collapse
Affiliation(s)
- Priya Singh
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Kaushik Sen
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Pratikshya Sa
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Auromira Khuntia
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad 121 001, Haryana, India
| | - Sunil K Raghav
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India
| | - Rajeeb K Swain
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco square, Bhubaneswar 751 023, Odisha, India.
| |
Collapse
|
10
|
Bauer TA, Schramm J, Fenaroli F, Siemer S, Seidl CI, Rosenauer C, Bleul R, Stauber RH, Koynov K, Maskos M, Barz M. Complex Structures Made Simple - Continuous Flow Production of Core Cross-Linked Polymeric Micelles for Paclitaxel Pro-Drug-Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210704. [PMID: 36934295 DOI: 10.1002/adma.202210704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Indexed: 05/26/2023]
Abstract
Translating innovative nanomaterials to medical products requires efficient manufacturing techniques that enable large-scale high-throughput synthesis with high reproducibility. Drug carriers in medicine embrace a complex subset of tasks calling for multifunctionality. Here, the synthesisof pro-drug-loaded core cross-linked polymeric micelles (CCPMs) in a continuous flow processis reported, which combines the commonly separated steps of micelle formation, core cross-linking, functionalization, and purification into a single process. Redox-responsive CCPMs are formed from thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) and functional cross-linkers based on dihydrolipoic acid hydrazide for pH-dependent release of paclitaxel. The precisely controlled microfluidic process allows the production of spherical micelles (Dh = 35 nm) with low polydispersity values (PDI < 0.1) while avoiding toxic organic solvents and additives with unfavorable safety profiles. Self-assembly and cross-linking via slit interdigital micromixers produces 350-700 mg of CCPMs/h per single system, while purification by online tangential flow filtration successfully removes impurities (unimer ≤ 0.5%). The formed paclitaxel-loaded CCPMs possess the desired pH-responsive release profile, display stable drug encapsulation, an improved toxicity profile compared to Abraxane (a trademark of Bristol-Myers Squibb), and therapeutic efficiency in the B16F1-xenotransplanted zebrafish model. The combination of reactive polymers, functional cross-linkers, and microfluidics enables the continuous-flow synthesis of therapeutically active CCPMs in a single process.
Collapse
Affiliation(s)
- Tobias A Bauer
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Jonas Schramm
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Federico Fenaroli
- Department for Biosciences, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Svenja Siemer
- Molecular and Cellular Oncology/Nanobiomedicine, ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Christine I Seidl
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Christine Rosenauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/Nanobiomedicine, ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Michael Maskos
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
11
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
12
|
Cakan-Akdogan G, Ersoz E, Sozer SC, Gelinci E. An in vivo zebrafish model reveals circulating tumor cell targeting capacity of serum albumin nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Najer A, Belessiotis-Richards A, Kim H, Saunders C. Block Length-Dependent Protein Fouling on Poly(2-oxazoline)-Based Polymersomes: Influence on Macrophage Association and Circulation Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201993. [PMID: 35670200 PMCID: PMC7615485 DOI: 10.1002/smll.202201993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Polymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse. Herein, a systematic study is reported of the structural, dynamic and antifouling properties of polymersomes made of poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA). The study relates in vitro antifouling performance of the polymersomes to atomistic molecular dynamics simulations of polymersome membrane hydration behavior. These observations support the experimentally demonstrated benefit of maximizing the length of PMOXA (degree of polymerization (DP) > 6) while keeping PDMS at a minimal length that still provides sufficient membrane stability (DP > 19). In vitro macrophage association and in vivo blood circulation evaluation of polymersomes in zebrafish embryos corroborate these findings. They further suggest that single copolymer presentation on polymersomes is outperformed by blends of varied copolymer lengths. This study helps to rationalize design rules for stable and low-fouling polymersomes for future medical applications.
Collapse
Affiliation(s)
- Adrian Najer
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alexis Belessiotis-Richards
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
14
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
15
|
Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Mol Cell Biochem 2022; 477:2387-2401. [DOI: 10.1007/s11010-022-04448-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
16
|
Verdi V, Bécot A, van Niel G, Verweij FJ. In vivo imaging of EVs in zebrafish: New perspectives from "the waterside". FASEB Bioadv 2021; 3:918-929. [PMID: 34761174 PMCID: PMC8565201 DOI: 10.1096/fba.2021-00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
To harmoniously coordinate the activities of all its different cell types, a multicellular organism critically depends on intercellular communication. One recently discovered mode of intercellular cross-talk is based on the exchange of "extracellular vesicles" (EVs). EVs are nano-sized heterogeneous lipid bilayer vesicles enriched in a variety of biomolecules that mediate short- and long-distance communication between different cells, and between cells and their environment. Numerous studies have demonstrated important aspects pertaining to the dynamics of their release, their uptake, and sub-cellular fate and roles in vitro. However, to demonstrate these and other aspects of EV biology in a relevant, fully physiological context in vivo remains challenging. In this review we analyze the state of the art of EV imaging in vivo, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real-time and expand our understanding of EV biology at cellular and systems level.
Collapse
Affiliation(s)
- Vincenzo Verdi
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Anaïs Bécot
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| | - Guillaume van Niel
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Frederik J Verweij
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| |
Collapse
|
17
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
18
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
19
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
20
|
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a Model for Anticancer Nanomedicine Studies. Pharmaceuticals (Basel) 2021; 14:625. [PMID: 34203407 PMCID: PMC8308643 DOI: 10.3390/ph14070625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nanomedicine is a new approach to fight against cancer by the development of anticancer nanoparticles (NPs) that are of high sensitivity, specificity, and targeting ability to detect cancer cells, such as the ability of Silica NPs in targeting epithelial cancer cells. However, these anticancer NPs require preclinical testing, and zebrafish is a useful animal model for preclinical studies of anticancer NPs. This model affords a large sample size, optical imaging, and easy genetic manipulation that aid in nanomedicine studies. This review summarizes the numerous advantages of the zebrafish animal model for such investigation, various techniques for inducing cancer in zebrafish, and discusses the methods to assess cancer development in the model and to test for the toxicity of the anticancer drugs and NPs. In addition, it summarizes the recent studies that used zebrafish as a model to test the efficacy of several different anticancer NPs in treating cancer.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
21
|
Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels 2021; 7:gels7020060. [PMID: 34067587 PMCID: PMC8162331 DOI: 10.3390/gels7020060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
With cancer remaining as one of the main causes of deaths worldwide, many studies are undergoing the effort to look for a novel and potent anticancer drug. Nanoparticles (NPs) are one of the rising fields in research for anticancer drug development. One of the key advantages of using NPs for cancer therapy is its high flexibility for modification, hence additional properties can be added to the NPs in order to improve its anticancer action. Polymer has attracted considerable attention to be used as a material to enhance the bioactivity of the NPs. Nanogels, which are NPs cross-linked with hydrophilic polymer network have also exhibited benefits in anticancer application. The characteristics of these nanomaterials include non-toxic, environment-friendly, and variable physiochemical properties. Some other unique properties of polymers are also attributed by diverse methods of polymer synthesis. This then contributes to the unique properties of the nanodrugs. This review article provides an in-depth update on the development of polymer-assisted NPs and nanogels for cancer therapy. Topics such as the synthesis, usage, and properties of the nanomaterials are discussed along with their mechanisms and functions in anticancer application. The advantages and limitations are also discussed in this article.
Collapse
|
22
|
Biodistribution of surfactant-free poly(lactic-acid) nanoparticles and uptake by endothelial cells and phagocytes in zebrafish: Evidence for endothelium to macrophage transfer. J Control Release 2021; 331:228-245. [PMID: 33444668 DOI: 10.1016/j.jconrel.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
In the development of therapeutic nanoparticles (NP), there is a large gap between in vitro testing and in vivo experimentation. Despite its prominence as a model, the mouse shows severe limitations for imaging NP and the cells with which they interact. Recently, the transparent zebrafish larva, which is well suited for high-resolution live-imaging, has emerged as a powerful alternative model to investigate the in vivo behavior of NP. Poly(D,L lactic acid) (PLA) is widely accepted as a safe polymer to prepare therapeutic NP. However, to prevent aggregation, many NP require surfactants, which may have undesirable biological effects. Here, we evaluate 'safe-by-design', surfactant-free PLA-NP that were injected intravenously into zebrafish larvae. Interaction of fluorescent NPs with different cell types labelled in reporter animals could be followed in real-time at high resolution; furthermore, by encapsulating colloidal gold into the matrix of PLA-NP we could follow their fate in more detail by electron microscopy, from uptake to degradation. The rapid clearance of fluorescent PLA-NP from the circulation coincided with internalization by endothelial cells lining the whole vasculature and macrophages. After 30 min, when no NP remained in circulation, we observed that macrophages continued to internalize significant amounts of NP. More detailed video-imaging revealed a new mechanism of NP transfer where NP are transmitted along with parts of the cytoplasm from endothelial cells to macrophages.
Collapse
|
23
|
Forner-Piquer I, Faucherre A, Byram J, Blaquiere M, de Bock F, Gamet-Payrastre L, Ellero-Simatos S, Audinat E, Jopling C, Marchi N. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae. CHEMOSPHERE 2021; 267:128986. [PMID: 33359984 DOI: 10.1016/j.chemosphere.2020.128986] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The presence of glyphosate represents a debated ecotoxicological and health risk factor. Here, zebrafish larvae were exposed, from 1.5 to 120 h post-fertilization, to a broad concentration range (0.05-10.000 μg/L) of glyphosate to explore its impact on the brain. We evaluated morphology, tracked locomotor behavior and neurophysiological parameters, examined neuro-glio-vascular cell structures, and outlined transcriptomic outcomes by RNA sequencing. At the concentration range tested, glyphosate did not elicit gross morphological changes. Behavioral analysis revealed a significant decrease in locomotor activity following the exposure to 1000 μg/L glyphosate or higher. In parallel, midbrain electrophysiological recordings indicated abnormal, and variable, spike activity in zebrafish larvae exposed to 1000 μg/L glyphosate. Next, we asked whether the observed neurophysiological outcome could be secondary to brain structural modifications. We used transgenic zebrafish and in vivo 2-photon microscopy to examine, at the cellular level, the effects of the behavior-modifying concentration of 1000 μg/L, comparing to low 0.1 μg/L, and control. We ruled out the presence of cerebrovascular and neuronal malformations. However, microglia morphological modifications were visible at the two glyphosate concentrations, specifically the presence of amoeboid cells suggestive of activation. Lastly, RNAseq analysis showed the deregulation of transcript families implicated in neuronal physiology, synaptic transmission, and inflammation, as evaluated at the two selected glyphosate concentrations. In zebrafish larvae, behavioral and neurophysiological defects occur after the exposure to high glyphosate concentrations while cellular and transcript signatures can be detected in response to low dose. The prospective applicability to ecotoxicology and the possible extension to brain-health vulnerability are critically discussed.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Adèle Faucherre
- Molecular mechanisms of regeneration, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM LabEx ICST), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Julia Byram
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Marine Blaquiere
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Frederic de Bock
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Laurence Gamet-Payrastre
- Toxalim, Research Centre in Food Toxicology (Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS), 180 Chemin de tournefeuille, 31300, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim, Research Centre in Food Toxicology (Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS), 180 Chemin de tournefeuille, 31300, Toulouse, France
| | - Etienne Audinat
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Chris Jopling
- Molecular mechanisms of regeneration, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM LabEx ICST), 141 rue de la Cardonille, 34094, Montpellier, France.
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France.
| |
Collapse
|