1
|
Li Y, Song TZ, Cao L, Zhang HD, Ma Y, Tian RR, Zheng YT, Zhang C. Large expansion of plasma commensal viruses is associated with SIV pathogenesis in Macaca leonina. SCIENCE ADVANCES 2024; 10:eadq1152. [PMID: 39356751 PMCID: PMC11446265 DOI: 10.1126/sciadv.adq1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection disrupts the homeostatic equilibrium between the host and commensal microbes. However, the dynamic changes of plasma commensal viruses and their role in HIV/simian immunodeficiency virus (SIV) pathogenesis are rarely reported. Here, we investigated the longitudinal changes of plasma virome, inflammation levels, and disease markers using an SIV-infected Macaca leonina model. Large expansions of plasma Anelloviridae, Parvoviridae, Circoviridae and other commensal viruses, and elevated levels of inflammation and D-dimer were observed since the chronic phase of SIV infection. Anelloviridae abundance appears to correlate positively with the CD4+ T cell count but negatively with SIV load especially at the acute phase, whereas other commensal viruses' abundances show opposite correlations with the two disease markers. Antiretroviral therapy slightly reduces but does not substantially reverse the expansion of commensal viruses. Furthermore, 1387 primate anellovirus open reading frame 1 sequences of more than 1500 nucleotides were annotated. The data reveal different roles of commensal viruses in SIV pathogenesis.
Collapse
Affiliation(s)
- Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Han-Dan Zhang
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- College of Pharmacy and Chemistry, Dali University, Dali, Yunnan 671000, China
| | - Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ren-Rong Tian
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
2
|
Yilmaz ZB, Memisoglu F, Akbulut S. Management of cytomegalovirus infection after liver transplantation. World J Transplant 2024; 14:93209. [PMID: 39295968 PMCID: PMC11317856 DOI: 10.5500/wjt.v14.i3.93209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 07/31/2024] Open
Abstract
Cytomegalovirus (CMV) infection is one of the primary causes of morbidity and mortality following liver transplantation (LT). Based on current worldwide guidelines, the most effective strategies for avoiding post-transplant CMV infection are antiviral prophylaxis and pre-emptive treatment. CMV- IgG serology is the established technique for pretransplant screening of both donors and recipients. The clinical presentation of CMV infection and disease exhibits variability, prompting clinicians to consistently consider this possibility, particularly within the first year post-transplantation or subsequent to heightened immunosuppression. At annual symposia to discuss CMV prevention and how treatment outcomes can be improved, evidence on the incorporation of immune functional tests into clinical practice is presented, and the results of studies with new antiviral treatments are evaluated. Although there are ongoing studies on the use of letermovir and maribavir in solid organ transplantation, a consensus reflected in the guidelines has not been formed. Determining the most appropriate strategy at the individual level appears to be the key to enhancing outcomes. Although prevention strategies reduce the risk of CMV disease, the disease can still occur in up to 50% of high-risk patients. A balance between the risk of infection and disease development and the use of immunosuppressants must be considered when talking about the proper management of CMV in solid organ transplant recipients. The objective of this study was to establish a comprehensive framework for the management of CMV in patients who have had LT.
Collapse
Affiliation(s)
- Zeynep Burcin Yilmaz
- Infectious Diseases and Clinical Microbiology, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| | - Funda Memisoglu
- Infectious Diseases and Clinical Microbiology, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| | - Sami Akbulut
- Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| |
Collapse
|
3
|
Li X, Chen Y, Xiong J, Chen P, Zhang D, Li Q, Zhu P. Biomarkers differentiating regression from progression among untreated cervical intraepithelial neoplasia grade 2 lesions. J Adv Res 2024:S2090-1232(24)00393-X. [PMID: 39260797 DOI: 10.1016/j.jare.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Cervical intraepithelial neoplasia grade 2 (CIN2) is one of the precursor stages before cervical lesions develop into cervical cancer. The spontaneous development of CIN2 is ambiguous. One part of CIN2 lesions will progress to cervical intraepithelial neoplasia grade 3 or worse (CIN3+), another part will regress to cervical intraepithelial neoplasia grade 1 or less (CIN1-), and the last part will persist. Although the guidelines suggest that CIN2 patients with fertility requirements can be treated conservatively to minimize the risk of infertility and obstetric complications, most CIN2 patients undergo surgical treatment to prevent the progression of the disease, which will lead to over-treatment and unnecessary complications. AIM OF REVIEW The clinical outcome of CIN2 lesions is unpredictable and depends on histopathological examinations. Thus, it is necessary to identify the biomarkers differentiating regression lesions from progression lesions, which is conducive to supporting individualised treatment. The natural history of CIN2 is commonly regulated by the interaction of human papillomavirus (HPV) viral factors (HPV genotype and HPV methylation), host factors (p16/Ki-67 status, host gene methylation effects, human leukocyte antigen subtypes and immune microenvironment) and other factors (vaginal microbiota). KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarized the biomarkers predicting the spontaneous regression of CIN2, which correlated with HPV infection, the (epi)genetic change of host genes and microenvironment change. However, potential biomarkers must be validated with prospective cohort studies, which should be conducted with expanded enrollment, a longer observational period and the tracking of more patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Gynecology, The Third Xiangya Hospital, Central South University, 138 Tong Zipo Road, Changsha 410013, P. R. China
| | - Yan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P. R. China; Xiangya Medical Laboratory, Central South University, 110 Xiangya Road, Changsha 410078, P. R. China
| | - Jing Xiong
- Department of Gynecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, P. R. China
| | - Puxiang Chen
- Department of Gynecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, P. R. China
| | - Dongdong Zhang
- Department of Gynecology, The Maternal and Child Health Hospital of Zibo City, Zibo City, Shandong 255029, P. R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P. R. China.
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P. R. China.
| |
Collapse
|
4
|
Ma S, Yin Y, Guo Y, Yao C, Xu S, Luo Q, Yin G, Wang S, Wang Q, Chen H, Wang R, Jin L, Liang G, Wang H. The plasma viral communities associate with clinical profiles in a large-scale haematological patients cohort. MICROBIOME 2024; 12:137. [PMID: 39044261 PMCID: PMC11265361 DOI: 10.1186/s40168-024-01855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Haematological patients exhibit immune system abnormalities that make them susceptible to viral infections. Understanding the relationship between the virome in the blood plasma of haematological patients and their clinical characteristic is crucial for disease management. We aimed to explore the presence of viral pathogens and identify close associations between viral infections and various clinical features. RESULTS A total of 21 DNA viruses and 6 RNA viruses from 12 virus families were identified from 1383 patients. Patients with haematological diseases exhibited significantly higher diversity, prevalence, and co-detection rates of viral pathogens. During fever episodes, pathogen detection was notably higher, with Epstein-Barr virus (EBV) and Mucorales infections being the most probable culprits for fever symptoms in non-haematological patients. The detection rate of torque teno virus (TTV) significantly increases in haematological patients after transplantation and during primary lung infections. Additionally, TTV-positive patients demonstrate significantly higher absolute neutrophil counts, while C-reactive protein and procalcitonin levels are notably lower. Furthermore, TTV, cytomegalovirus, and parvovirus B19 (B19V) were found to be more prevalent in non-neutropenic patients, while non-viral pathogenic infections, such as Gram-negative bacteria and Mucorales, were more common in neutropenic patients. Pegivirus C (HPgV-C) infection often occurred post-transplantation, regardless of neutropenia. Additionally, some viruses such as TTV, B19V, EBV, and HPgV-C showed preferences for age and seasonal infections. CONCLUSIONS Analysis of the plasma virome revealed the susceptibility of haematological patients to plasma viral infections at specific disease stages, along with the occurrence of mixed infections with non-viral pathogens. Close associations were observed between the plasma virome and various clinical characteristics, as well as clinical detection parameters. Understanding plasma virome aids in auxiliary clinical diagnosis and treatment, enabling early prevention to reduce infection rates in patients and improve their quality of life. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Chaoqun Yao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qingqing Luo
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
Pourkarim MR. Navigating Evolving Challenges in Blood Safety. Viruses 2024; 16:123. [PMID: 38257823 PMCID: PMC10821029 DOI: 10.3390/v16010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Blood safety remains a paramount public health concern, and health authorities maintain a high level of vigilance to prevent transfusion-transmitted infections (TTIs) [...].
Collapse
Affiliation(s)
- Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion, Tehran 14665-1157, Iran
| |
Collapse
|
6
|
Thijssen M, Devos T, Meyfroidt G, Van Ranst M, Pourkarim MR. Exploring the relationship between anellovirus load and clinical variables in hospitalized COVID-19 patients: Implications for immune activation and inflammation. IJID REGIONS 2023; 9:49-54. [PMID: 37868342 PMCID: PMC10587511 DOI: 10.1016/j.ijregi.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Objectives Anelloviruses have been linked with host-immunocompetence and inflammation. Here, we studied the anellovirus load in hospitalized COVID-19 patients. Methods We collected samples of patients recruited in the DAWN-Plasma trial that received convalescent plasma (CP) therapy (four plasma units) combined with standard of care (SOC) or SOC of alone. Plasma samples were collected on day 0 and 6 of hospitalization and we quantified anellovirus load. With multivariate models, clinical variables were associated with changes in anellovirus load. Results Samples were collected on day 0 and 6 of 150 patients (103 CP + SOC and 47 SOC). Anellovirus load was higher on day 0 compared to day 6 and we found a significant drop in SOC patients. Patients receiving immunosuppressive drug had a lower anellovirus load (coefficient: 1.021, 95% confidence interval [CI] 0.270-1.772, P = 0.008), while patients admitted to the emergency room displayed a higher abundance on day 0 (1.308, 95% CI 0.443-2.173, P = 0.003). Unspecific markers of inflammation and organ damage, D-dimer (0.001, 95% CI <0.001-0.001, P = 0.001) and lactate dehydrogenase (0.002, 95% CI 0.001-0.004, P = 0.044), were positively associated with anellovirus load. Finally, anellovirus load on day 0 (-39.9, 95% CI -75.72 to -4.27, P = 0.029) was negatively associated with SARS-CoV-2 antibody response on day. Conclusion The results showed associations between clinical variables and anellovirus load in COVID-19 patients. Many variables share properties related to host immunocompetence or inflammation. Therefore, we expect that anellovirus abundance displays the net state of immune activation.
Collapse
Affiliation(s)
- Marijn Thijssen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Timothy Devos
- University Hospitals Leuven, Department of Haematology, Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium
| | - Geert Meyfroidt
- University Hospitals Leuven, Department of Intensive Care Medicine, Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Mahmoud Reza Pourkarim
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
- Shiraz University of Medical Sciences, Health Policy Research Centre, Institute of Health, Shiraz, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
7
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
9
|
Zhang X, Park WD, Thijssen M, Xu Y, Tse LPV, Pourkarim MR, Aurora R, Fan X. Expansion of Betatorquevirus and/or Gammatorquevirus in Patients with Severe Clinical Outcomes of the Liver Diseases. Viruses 2023; 15:1635. [PMID: 37631978 PMCID: PMC10457780 DOI: 10.3390/v15081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Anellovirus (AV) is a ubiquitous virus in the human population. Individuals can be infected with multiple AV genera and species to form a heterogeneous repertoire, termed the anellome. Using advanced methods, we examined the anellomes from 12 paired serum and liver samples, as well as 2701 subjects with different clinical diagnoses. Overall, anellomes are remarkably individualized, with significant among-group differences (Kruskal-Wallis test p = 6.6 × 10-162 for richness and p = 7.48 × 10-162 for Shannon entropy). High dissimilarity scores (beta diversity) were observed between patient groups, except for paired serum and liver samples. At the population level, the relative abundance of combinational AV genus Betatorquevirus (torque teno mini viruses, TTMV), and Gammatorquevirus (torque teno midi viruses, TTMDV) exhibited an exponential distribution with a low bound point at 32%. Defined by this value, the AV TTMV/TTMDV-expanded anellome was significantly enriched among patients with acute liver failure (31.7%) and liver transplantation (40.7%), compared with other patient groups (χ2 test: p = 4.1 × 10-8-3.2 × 10-3). Therefore, anellome heterogeneity may be predictive of clinical outcomes in certain diseases, such as liver disease. The consistency of anellome between paired serum and liver samples indicates that a liquid biopsy approach would be suitable for longitudinal studies to clarify the causality of the AV TTMV/TTMDV-expanded anellome in the outcomes of liver disease.
Collapse
Affiliation(s)
- Xiaoan Zhang
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- School of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - William D. Park
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Long Ping Victor Tse
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
10
|
Cao L, Ma Y, Wan Z, Li B, Tian W, Zhang C, Li Y. Longitudinal anellome dynamics in the upper respiratory tract of children with acute respiratory tract infections. Virus Evol 2023; 9:vead045. [PMID: 37674817 PMCID: PMC10478798 DOI: 10.1093/ve/vead045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
Anelloviruses (AVs) are ubiquitous in humans and are the most abundant components of the commensal virome. Previous studies on the diversity, transmission, and persistence of AVs mainly focused on the blood or transplanted tissues from adults; however, the profile of the anellome in the respiratory tract in children are barely known. We investigated the anellome profile and their dynamics in the upper respiratory tract from a cohort of children with acute respiratory tract infections (ARTIs). Different to that in adult, betatorquevirus is the most abundant genus, followed by alphatorquevirus. We found that the relative abundance of betatorquevirus was higher in earlier time points, and in contrast, the abundance of alphatorquevirus was higher in later time points; these results might suggest that betatorquevirus decreased with age and alphatorquevirus increased with age in childhood. No difference regarding the diversity and abundance of anellome was found between single and multiple ARTIs, consistent with the idea that AV is not associated with certain disease. Most AVs are transient, and a small proportion (8 per cent) of them were found to be possibly persistent, with persistence time ranging from 1 month to as long as 56 months. Furthermore, the individual respiratory anellome appeared to be unique and dynamic, and the replacement of existing AVs with new ones are common over different time points. These findings demonstrate that betatorquevirus may be the early colonizer in children, and the individual respiratory anellome is unique, which are featured by both chronic infections and AV community replacement.
Collapse
Affiliation(s)
- Le Cao
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People’s Hospital, 99 North Gulou Road, Taizhou 225300, China
| | - Bing Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Weimin Tian
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| |
Collapse
|
11
|
Thijssen M, Khamisipour G, Maleki M, Devos T, Li G, Van Ranst M, Matthijnssens J, Pourkarim MR. Characterization of the Human Blood Virome in Iranian Multiple Transfused Patients. Viruses 2023; 15:1425. [PMID: 37515113 PMCID: PMC10386462 DOI: 10.3390/v15071425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Blood transfusion safety is an essential element of public health. Current blood screening strategies rely on targeted techniques that could miss unknown or unexpected pathogens. Recent studies have demonstrated the presence of a viral community (virobiota/virome) in the blood of healthy individuals. Here, we characterized the blood virome in patients frequently exposed to blood transfusion by using Illumina metagenomic sequencing. The virome of these patients was compared to viruses present in healthy blood donors. A total number of 155 beta-thalassemia, 149 hemodialysis, and 100 healthy blood donors were pooled with five samples per pool. Members of the Anelloviridae and Flaviviridae family were most frequently observed. Interestingly, samples of healthy blood donors harbored traces of potentially pathogenic viruses, including adeno-, rota-, and Merkel cell polyomavirus. Viruses of the Anelloviridae family were most abundant in the blood of hemodialysis patients and displayed a higher anellovirus richness. Pegiviruses (Flaviviridae) were only observed in patient populations. An overall trend of higher eukaryotic read abundance in both patient groups was observed. This might be associated with increased exposure through blood transfusion. Overall, the findings in this study demonstrated the presence of various viruses in the blood of Iranian multiple-transfused patients and healthy blood donors.
Collapse
Affiliation(s)
- Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr 75146-33196, Iran
| | - Mohammad Maleki
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran 14665-1157, Iran
| | - Timothy Devos
- Laboratory of Molecular Immunology (Rega Institute), Department of Hematology, Department of Microbiology and Immunology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410083, China
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran 14665-1157, Iran
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
12
|
Megremis S, Constantinides B, Xepapadaki P, Yap CF, Sotiropoulos AG, Bachert C, Finotto S, Jartti T, Tapinos A, Vuorinen T, Andreakos E, Robertson DL, Papadopoulos NG. Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma. Sci Rep 2023; 13:8319. [PMID: 37221274 PMCID: PMC10205716 DOI: 10.1038/s41598-023-34730-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Asthma development and exacerbation is linked to respiratory virus infections. There is limited information regarding the presence of viruses during non-exacerbation/infection periods. We investigated the nasopharyngeal/nasal virome during a period of asymptomatic state, in a subset of 21 healthy and 35 asthmatic preschool children from the Predicta cohort. Using metagenomics, we described the virome ecology and the cross-species interactions within the microbiome. The virome was dominated by eukaryotic viruses, while prokaryotic viruses (bacteriophages) were independently observed with low abundance. Rhinovirus B species consistently dominated the virome in asthma. Anelloviridae were the most abundant and rich family in both health and asthma. However, their richness and alpha diversity were increased in asthma, along with the co-occurrence of different Anellovirus genera. Bacteriophages were richer and more diverse in healthy individuals. Unsupervised clustering identified three virome profiles that were correlated to asthma severity and control and were independent of treatment, suggesting a link between the respiratory virome and asthma. Finally, we observed different cross-species ecological associations in the healthy versus the asthmatic virus-bacterial interactome, and an expanded interactome of eukaryotic viruses in asthma. Upper respiratory virome "dysbiosis" appears to be a novel feature of pre-school asthma during asymptomatic/non-infectious states and merits further investigation.
Collapse
Affiliation(s)
- Spyridon Megremis
- University of Manchester, Manchester, UK.
- University of Leicester, Leicester, UK.
| | | | | | | | | | | | - Susetta Finotto
- Friedrich Alexander University Erlangen-Nurnberg, Erlangen, Germany
| | - Tuomas Jartti
- University of Turku, Turku, Finland
- University of Oulu, Oulu, Finland
| | | | | | | | | | - Nikolaos G Papadopoulos
- University of Manchester, Manchester, UK.
- National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
13
|
Thijssen M, Tacke F, Van Espen L, Cassiman D, Naser Aldine M, Nevens F, Van Ranst M, Matthijnssens J, Pourkarim MR. Plasma virome dynamics in chronic hepatitis B virus infected patients. Front Microbiol 2023; 14:1172574. [PMID: 37228370 PMCID: PMC10203228 DOI: 10.3389/fmicb.2023.1172574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The virome remains an understudied domain of the human microbiome. The role of commensal viruses on the outcome of infections with known pathogens is not well characterized. In this study we aimed to characterize the longitudinal plasma virome dynamics in chronic hepatitis B virus (HBV) infected patients. Eighty-five longitudinal plasma samples were collected from 12 chronic HBV infected individuals that were classified in the four stages of HBV infection. The virome was characterized with an optimized viral extraction protocol and deep-sequenced on a NextSeq 2500 platform. The plasma virome was primarily composed of members of the Anello- Flavi-, and Hepadnaviridae (HBV) families. The virome structure and dynamics did not correlate with the different stages of chronic HBV infection nor with the administration of antiviral therapy. We observed a higher intrapersonal similarity of viral contigs. Genomic analysis of viruses observed in multiple timepoint demonstrated the presence of a dynamic community. This study comprehensively assessed the blood virome structure in chronic HBV infected individuals and provided insights in the longitudinal development of this viral community.
Collapse
Affiliation(s)
- Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lore Van Espen
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Leuven, Belgium
| | - Mahmoud Naser Aldine
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
14
|
Altered vaginal eukaryotic virome is associated with different cervical disease status. Virol Sin 2022; 38:184-197. [PMID: 36565811 PMCID: PMC10176265 DOI: 10.1016/j.virs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are important components of the human body. Growing evidence suggests that they are engaged in the physiology and disease status of the host. Even though the vaginal microbiome is involved in human papillomavirus (HPV) infection and cervical cancer (CC) progression, little is known about the role of the vaginal virome. In this pilot exploratory study, using unbiased viral metagenomics, we aim to investigate the vaginal eukaryotic virome in women with different levels of cervical lesions, and examine their associations with different cervical disease status. An altered eukaryotic virome was observed in women with different levels of lesions and Lactobacillus profiles. Anelloviruses and papillomaviruses are the most commonly detected eukaryotic viruses of the vaginal virome. Higher abundance and richness of anelloviruses and papillomaviruses were associated with low-grade squamous intraepithelial lesion (LSIL) and CC. Besides, higher anellovirus abundance was also associated with lactobacillus-depleted microbiome profiles and bacterial community state (CST) type IV. Furthermore, increased correlations between Anelloviridae and Papillomaviridae occurred in the women with increased cervical disease severity level from LSIL to CC. These data suggest underlying interactions between different microbes as well as the host physiology. Higher abundance and diversity of both anelloviruses and papillomaviruses shared by LSIL and CC suggest that anellovirus may be used as a potential adjunct biomarker to predict the risk of HPV persistent infection and/or CC. Future studies need to focus on the clinical relevance of anellovirus abundance with cervical disease status, and the evaluation of their potential as a new adjunct biomarker for the prediction and prognoses of CC.
Collapse
|
15
|
Slavov SN. Viral Metagenomics for Identification of Emerging Viruses in Transfusion Medicine. Viruses 2022; 14:v14112448. [PMID: 36366546 PMCID: PMC9699440 DOI: 10.3390/v14112448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Viral metagenomics has revolutionized our understanding for identification of unknown or poorly characterized viruses. For that reason, metagenomic studies gave been largely applied for virus discovery in a wide variety of clinical samples, including blood specimens. The emerging blood-transmitted virus infections represent important problem for public health, and the emergence of HIV in the 1980s is an example for the vulnerability of Blood Donation systems to such infections. When viral metagenomics is applied to blood samples, it can give a complete overview of the viral nucleic acid abundance, also named "blood virome". Detailed characterization of the blood virome of healthy donors could identify unknown (emerging) viral genomes that might be assumed as hypothetic transfusion threats. However, it is impossible only by application of viral metagenomics to assign that one viral agent could impact blood transfusion. That said, this is a complex issue and will depend on the ability of the infectious agent to cause clinically important infection in blood recipients, the viral stability in blood derivatives and the presence of infectious viruses in blood, making possible its transmission by transfusion. This brief review summarizes information regarding the blood donor virome and some important challenges for use of viral metagenomics in hemotherapy for identification of transfusion-transmitted viruses.
Collapse
Affiliation(s)
- Svetoslav Nanev Slavov
- Department of Cellular and Molecular Therapy (NuCeL), Butantan Institute, São Paulo 05503-900, SP, Brazil; ; Tel.: +55-(16)-2101-9300 (ext. 9365)
- Laboratory of Bioinformatics, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto CEP 14051-140, SP, Brazil
| |
Collapse
|
16
|
Sen T, Thummer RP. The Impact of Human Microbiotas in Hematopoietic Stem Cell and Organ Transplantation. Front Immunol 2022; 13:932228. [PMID: 35874759 PMCID: PMC9300833 DOI: 10.3389/fimmu.2022.932228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human microbiota heavily influences most vital aspects of human physiology including organ transplantation outcomes and transplant rejection risk. A variety of organ transplantation scenarios such as lung and heart transplantation as well as hematopoietic stem cell transplantation is heavily influenced by the human microbiotas. The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi, archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the past decade has established the existence of complex cross-species, cross-kingdom interactions between the residents of the various human microbiotas and the human body. Since the gut microbiota is the densest, most popular, and most studied human microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and genital microbiotas is often overshadowed. However, these microbiotas also provide critical and unique insights pertaining to transplantation success, rejection risk, and overall host health, across multiple different transplantation scenarios. Organ transplantation as well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is known to adversely impact the microbiotas, thereby increasing the risk of adverse patient outcomes. Over the past decade, holistic approaches to post-transplant patient care such as the administration of clinical and dietary interventions aiming at restoring deranged microbiota community structures have been gaining momentum. Examples of these include prebiotic and probiotic administration, fecal microbial transplantation, and bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will discuss these perspectives and explore the role of different human microbiotas in the context of various transplantation scenarios.
Collapse
Affiliation(s)
| | - Rajkumar P. Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
17
|
Plasma Virome Reveals Blooms and Transmission of Anellovirus in Intravenous Drug Users with HIV-1, HCV, and/or HBV Infections. Microbiol Spectr 2022; 10:e0144722. [PMID: 35758682 PMCID: PMC9431549 DOI: 10.1128/spectrum.01447-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intravenous drug users (IDUs) are a high-risk group for HIV-1, hepatitis C virus (HCV), and hepatitis B virus (HBV) infections, which are the leading causes of death in IDUs. However, the plasma virome of IDUs and how it is influenced by above viral infections remain unclear. Using viral metagenomics, we determined the plasma virome of IDUs and its association with HIV-1, HCV, and/or HBV infections. Compared with healthy individuals, IDUs especially those with major viral infections had higher viral abundance and diversity. Anelloviridae dominated plasma virome. Coinfections of multiple anelloviruses were common, and anelloviruses from the same genus tended to coexist together. In this study, 4,487 anellovirus ORF1 sequences were identified, including 1,620 (36.1%) with less than 69% identity to any known sequences, which tripled the current number. Compared with healthy controls (HC), more anellovirus sequences were observed in neg-IDUs, and HIV-1, HCV, and/or HBV infections further expanded the sequence number in IDUs, which was characterized by the emergence of novel divergent taxons and blooms of resident anelloviruses. Pegivirus was mainly identified in infected IDUs. Five main pegivirus transmission clusters (TCs) were identified by phylogenetic analysis, suggesting a transmission link. Similar anellovirus profiles were observed in IDUs within the same TC, suggesting transmission of anellome among IDUs. Our data suggested that IDUs suffered higher plasma viral burden especially anelloviruses, which was associated with HIV-1, HCV, and/or HBV infections. Blooms in abundance and unprecedented diversity of anellovirus highlighted active evolution and replication of this virus in blood circulation, and an uncharacterized role it may engage with the host. IMPORTANCE Virome is associated with immune status and determines or influences disease progression through both pathogenic and resident viruses. Increased viral burden in IDUs especially those with major viral infections indicated the suboptimal immune status and high infection risks of these population. Blooms in abundance and unprecedented diversity of anellovirus highlighted its active evolution and replication in the blood circulation, and sensitive response to other viral infections. In addition, transmission cluster analysis revealed the transmission link of pegivirus among IDUs, and the individuals with transmission links shared similar anellome profiles. In-depth monitoring of the plasma virome in high-risk populations is not only needed for surveillance for emerging viruses and transmission networks of major and neglected bloodborne viruses, but also important for a better understanding of commensal viruses and their role it may engage with immune system.
Collapse
|
18
|
Mrzljak A, Simunov B, Balen I, Jurekovic Z, Vilibic-Cavlek T. Human pegivirus infection after transplant: Is there an impact? World J Transplant 2022; 12:1-7. [PMID: 35096551 PMCID: PMC8771596 DOI: 10.5500/wjt.v12.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
The microbiome's role in transplantation has received growing interest, but the role of virome remains understudied. Pegiviruses are single-stranded positive-sense RNA viruses, historically associated with liver disease, but their path-ogenicity is controversial. In the transplantation setting, pegivirus infection does not seem to have a negative impact on the outcomes of solid-organ and hematopoietic stem cell transplant recipients. However, the role of pegiviruses as proxies in immunosuppression monitoring brings novelty to the field of virome research in immunocompromised individuals. The possible immunomodulatory effect of pegivirus infections remains to be elucidated in further trials.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Bojana Simunov
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
| | - Ivan Balen
- Department of Gastroenterology and Endocrinology, General Hospital “Dr. Josip Bencevic”, Slavonski Brod 35000, Croatia
| | - Zeljka Jurekovic
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
19
|
Redondo N, Navarro D, Aguado JM, Fernández-Ruiz M. Viruses, friends and foes: The case of Torque Teno virus and the net state of immunosuppression. Transpl Infect Dis 2021; 24:e13778. [PMID: 34933413 DOI: 10.1111/tid.13778] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022]
Abstract
New reliable biomarkers are needed to improve individual risk assessment for post-transplant infection, acute graft rejection and other immune-related complications after solid organ transplantation (SOT) and allogeneic hematopoietic stem cell transplantation (allo-HSCT). One promising strategy relies on the monitoring of replication kinetics of virome components as functional surrogate for the net state of immunosuppression. Torque Teno Virus (TTV) is a small, non-enveloped, circular, single-stranded DNA anellovirus with no attributable pathological effects. A major component of the human blood virome, TTV exhibits various features that facilitate its application as immune biomarker: high prevalence rates, nearly ubiquitous distribution, stable viral loads with little intra-individual variability, insensitivity to antiviral drugs, and availability of commercial PCR assays for DNA quantification. The present review summarizes the available studies supporting the use of post-transplant TTV viremia to predict patient and graft outcomes after SOT and allo-HSCT. Taken together, this evidence suggests that high or increasing TTV DNA levels precede the occurrence of infectious complications in the SOT setting, whereas low or decreasing viral loads are associated with the development of acute rejection. The interpretation in allo-HSCT recipients is further complicated by complex interplay with the underlying disease, conditioning regimen and timing of recovery of lymphocyte counts, although TTV kinetics may act as a marker of immunological reconstitution at the early post-transplant period. The standardization of PCR methods and reporting units for TTV DNAemia and the results from ongoing interventional trials evaluating a TTV load-guided strategy to adjust immunosuppressive therapy are achievements expected in the coming years. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain
| | - David Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain.,Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
20
|
Fernández-Ruiz M, Forque L, Albert E, Redondo N, Giménez E, López-Medrano F, González E, Polanco N, Ruiz-Merlo T, Parra P, San Juan R, Andrés A, Aguado JM, Navarro D. Human pegivirus type 1 infection in kidney transplant recipients: Replication kinetics and clinical correlates. Transpl Infect Dis 2021; 24:e13771. [PMID: 34921747 DOI: 10.1111/tid.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Increasing evidence suggests that infection with the nonpathogenic human pegivirus type 1 (HPgV-1) exerts a clinical benefit in human immunodeficiency virus (HIV) patients, which could be attributable to immunomodulatory effects. Whether this impact can be extrapolated to kidney transplantation (KT) remains largely unknown. METHODS We measured plasma HPgV-1 RNA by real-time polymerase chain reaction targeting the 5' untranslated region at various points (pretransplantation, day 7, months 1, 3, 6, and 12) in 199 KT recipients. Study outcomes included posttransplant serious infection, immunosuppression-related adverse event (opportunistic infection and/or de novo cancer), and acute graft rejection. RESULTS HPgV-1 infection was demonstrated in 52 (26.1%) patients, with rates increasing from 14.7% at baseline to 19.1% by month 12 (p-value = .071). De novo infection occurred in 13.8% of patients with no detectable HPgV-1 RNA before transplantation. Double-organ (liver-kidney or kidney-pancreas) transplantation (odds ratio [OR]: 5.62; 95% confidence interval [CI]: 1.52-20.82) and donation after brain death (OR: 2.21; 95% CI: 1.00-4.88) were associated with posttransplant HPgV-1 infection, whereas pretransplant hypertension was protective (OR: 0.23; 95% CI: 0.09-0.55). There were no significant differences in the incidence of study outcomes according to HPgV-1 status. Plasma HPgV-1 RNA levels at different points did not significantly differ between patients that subsequently developed outcomes and those remaining free from these events. No correlation between HPgV-1 RNA and immune parameters or torque teno virus DNA load was observed either. CONCLUSION Unlike patients living with HIV, HPgV-1 infection does not seem to influence patient or graft outcomes after KT.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Lorena Forque
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Eliseo Albert
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Estela Giménez
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - David Navarro
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
21
|
Abstract
Altered gut virome and expanded abundance of certain viruses were found in HIV-1-infected individuals. It remains largely unknown how plasma virus composition changes during HIV-1 infection and antiretroviral therapy (ART). We performed viral metagenomic analysis on viral particles enriched from human plasma from 101 men who have sex with men (MSM) with or without HIV-1 infection and whether or not on ART and compared the differences in the plasma virome. An increased plasma viral abundance of main eukaryotic viruses was observed during HIV-1 infection in MSM, especially in AIDS patients (CD4+ T cell counts of <200). Anellovirus, pegivirus and hepatitis B virus (HBV) were the most abundant blood-borne viruses detected among MSM and HIV-1-infected individuals, and anellovirus and pegivirus were closely related to HIV-1 infection. High diversity of anelloviruses was found mostly in HIV-1-infected MSM, and their abundance was positively correlated with the HIV-1 viral load, but negatively correlated with both CD4+ T cell counts and CD4+/CD8+ ratio; in contrast, the abundance of pegivirus showed opposite correlations. ART usage could restore the plasma virome toward that of HIV-1-negative individuals. These data showed an expansion in abundance of certain viruses during HIV-1 infection, indicating the higher risk of shedding some blood-borne viruses in these individuals. These investigations indicate that both anellovirus and pegivirus may play certain roles in HIV disease progression.IMPORTANCE Though an increasing number of studies have indicated the existence of an interaction between the virome and human health or disease, the specific role of these plasma viral components remains largely unsolved. We provide evidence here that an altered plasma virome profile is associated with different immune status of HIV-1 infection. Specific resident viruses, such as anellovirus and pegivirus, may directly or indirectly participate in the disease progression of HIV-1 infection. These results can help to determine their clinical relevance and design potential therapies.
Collapse
|
22
|
Blesl A, Stadlbauer V. The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients 2021; 13:nu13031018. [PMID: 33801133 PMCID: PMC8004151 DOI: 10.3390/nu13031018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut-liver axis describes the physiological interplay between the gut and the liver and has important implications for the maintenance of health. Disruptions of this equilibrium are an important factor in the evolution and progression of many liver diseases. The composition of the gut microbiome, the gut barrier, bacterial translocation, and bile acid metabolism are the key features of this cycle. Chronic cholestatic liver diseases include primary sclerosing cholangitis, the generic term secondary sclerosing cholangitis implying the disease secondary sclerosing cholangitis in critically ill patients and primary biliary cirrhosis. Pathophysiology of these diseases is not fully understood but seems to be multifactorial. Knowledge about the alterations of the gut-liver axis influencing the pathogenesis and the outcome of these diseases has considerably increased. Therefore, this review aims to describe the function of the healthy gut-liver axis and to sum up the pathological changes in these cholestatic liver diseases. The review compromises the actual level of knowledge about the gut microbiome (including the mycobiome and the virome), the gut barrier and the consequences of increased gut permeability, the effects of bacterial translocation, and the influence of bile acid composition and pool size in chronic cholestatic liver diseases. Furthermore, therapeutic implications and future scientific objectives are outlined.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Correspondence:
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|