1
|
Huang C, Hoque MT, Qu QR, Henderson J, Bendayan R. Antiretroviral drug dolutegravir induces inflammation at the mouse brain barriers. FASEB J 2024; 38:e23790. [PMID: 38982638 DOI: 10.1096/fj.202400558r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1β, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.
Collapse
Affiliation(s)
- Chang Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Qing Rui Qu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Jacobson DL, Crider KS, DeMarrais P, Brummel S, Zhang M, Pfeiffer CM, Moore CA, McCarthy K, Johnston B, Mohammed T, Vhembo T, Kabugho E, Muzorah GA, Cassim H, Fairlie L, Machado ES, Ngocho JS, Shapiro RL, Serghides L, Chakhtoura N, Chinula L, Lockman S. Dolutegravir- Versus Efavirenz-Based Treatment in Pregnancy: Impact on Red Blood Cell Folate Concentrations in Pregnant Women and Their Infants. J Infect Dis 2024:jiae308. [PMID: 38877762 DOI: 10.1093/infdis/jiae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
In IMPAACT 2010/VESTED, pregnant women were randomized to initiate dolutegravir (DTG)+emtricitabine (FTC)/tenofovir alafenamide (TAF), DTG+FTC/tenofovir disoproxil fumarate (TDF), or efavirenz (EFV)/FTC/TDF. We assessed red blood cell folate concentrations (RBC-folate) at maternal study entry and delivery, and infant birth. RBC-folate outcomes were: 1) maternal change entry to delivery (trajectory), 2) infant, 3) ratio of infant-to-maternal delivery. Generalized estimating equation models for each log(folate) outcome were fit to estimate adjusted geometric mean ratio (Adj-GMR)/GMR trajectories (Adj-GMRT) of each arm comparison in 340 mothers and 310 infants. Overall, 90% of mothers received folic acid supplements and 78% lived in Africa. At entry, median maternal age was 25 years, gestational age was 22 weeks, CD4 count was 482 cells/mm3 and log10HIV RNA was 3 copies/mL. Entry RBC-folate was similar across arms. Adj-GMRT of maternal folate was 3% higher in the DTG+FTC/TAF versus EFV/FTC/TDF arm (1.03, 95%CI 1.00, 1.06). The DTG+FTC/TAF arm had an 8% lower infant-maternal folate ratio (0.92, 95%CI 0.78, 1.09) versus EFV/FTC/TDF. Results are consistent with no clinically meaningful differences between arms for all RBC-folate outcomes and they suggest that cellular uptake of folate and folate transport to the infant do not differ in pregnant women starting DTG- vs. EFV-based ART.
Collapse
Affiliation(s)
- Denise L Jacobson
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Krista S Crider
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Patricia DeMarrais
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Sean Brummel
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Mindy Zhang
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christine M Pfeiffer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | - Tichaona Vhembo
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
| | | | | | - Haseena Cassim
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lee Fairlie
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Elizabeth S Machado
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - James S Ngocho
- Kilimanjaro Christian Medical University College, Tanzania
| | - Roger L Shapiro
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lena Serghides
- University Health Network and Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | | | - Lameck Chinula
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Shahin Lockman
- Botswana Harvard Health Partnership; Brigham and Women's Hospital, Boston, MA; Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Caiaffa CD, Tukeman G, Delgado CZ, Ambekar YS, Mekonnen TT, Singh M, Rodriguez V, Ricco E, Kraushaar D, Aglyamov SR, Scarcelli G, Larin KV, Finnell RH, Cabrera RM. Dolutegravir induces FOLR1 expression during brain organoid development. Front Mol Neurosci 2024; 17:1394058. [PMID: 38828282 PMCID: PMC11140035 DOI: 10.3389/fnmol.2024.1394058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
During the first month of pregnancy, the brain and spinal cord are formed through a process called neurulation. However, this process can be altered by low serum levels of folic acid, environmental factors, or genetic predispositions. In 2018, a surveillance study in Botswana, a country with a high incidence of human immunodeficiency virus (HIV) and lacking mandatory food folate fortification programs, found that newborns whose mothers were taking dolutegravir (DTG) during the first trimester of pregnancy had an increased risk of neural tube defects (NTDs). As a result, the World Health Organization and the U.S. Food and Drug Administration have issued guidelines emphasizing the potential risks associated with the use of DTG-based antiretroviral therapies during pregnancy. To elucidate the potential mechanisms underlying the DTG-induced NTDs, we sought to assess the potential neurotoxicity of DTG in stem cell-derived brain organoids. The gene expression of brain organoids developed in the presence of DTG was analyzed by RNA sequencing, Optical Coherence Tomography (OCT), Optical Coherence Elastography (OCE), and Brillouin microscopy. The sequencing data shows that DTG induces the expression of the folate receptor (FOLR1) and modifies the expression of genes required for neurogenesis. The Brillouin frequency shift observed at the surface of DTG-exposed brain organoids indicates an increase in superficial tissue stiffness. In contrast, reverberant OCE measurements indicate decreased organoid volumes and internal stiffness.
Collapse
Affiliation(s)
- Carlo Donato Caiaffa
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, United States
| | - Gabriel Tukeman
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | | | - Yogeshwari S. Ambekar
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Taye T. Mekonnen
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Manmohan Singh
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Victoria Rodriguez
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX, United States
| | - Emily Ricco
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX, United States
| | - Daniel Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX, United States
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Kirill V. Larin
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Zizioli D, Quiros-Roldan E, Ferretti S, Mignani L, Tiecco G, Monti E, Castelli F, Zanella I. Dolutegravir and Folic Acid Interaction during Neural System Development in Zebrafish Embryos. Int J Mol Sci 2024; 25:4640. [PMID: 38731859 PMCID: PMC11083492 DOI: 10.3390/ijms25094640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 μM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.
Collapse
Affiliation(s)
- Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Eugenia Quiros-Roldan
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Giorgio Tiecco
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Francesco Castelli
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
- Cytogenetics and Molecular Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Abstract
OBJECTIVES In 2018, the Botswana Tsepamo Study reported a nine-fold increased risk of neural tube defects in infants whose mothers were treated with dolutegravir (DTG) from the time of conception. As maternal folate supplementation and status is a well known modifier of neural tube defect (NTD) risk, we sought to evaluate birth outcomes in mice fed normal and low folic acid diets treated with DTG during pregnancy. DESIGN DTG was evaluated for developmental toxicity using pregnant mice fed normal or low folic acid diet. METHODS CD-1 mice were provided diet with normal (3 mg/kg) or low (0.3 mg/kg) folic acid. They were treated with water, a human therapeutic-equivalent dose, or supratherapeutic dose of DTG from mouse embryonic day E6.5 to E12.5. Pregnant dams were sacrificed at term (E18.5) and fetuses were inspected for gross, internal, and skeletal defects. RESULTS Fetuses with exencephaly, an NTD, were present in both therapeutic human equivalent and supratherapeutic exposures in dams fed low folic acid diet. Cleft palates were also found under both folate conditions. CONCLUSIONS Recommended dietary folic acid levels during mouse pregnancy ameliorate developmental defects that arise from DTG exposure. Since low folate status in mice exposed to DTG increases the risk for NTDs, it is possible that DTG exposures in people living with HIV with low folate status during pregnancy may explain, at least in part, the elevated NTD risk signal observed in Botswana. Based on these results, future studies should consider folate status as a modifier for DTG-associated NTD risk.
Collapse
Affiliation(s)
- Gabriel L. TUKEMAN
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX
| | - Hui WEI
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX
| | - Richard H. FINNELL
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX
- Baylor College of Medicine, Department of Medicine, Houston, TX
| | - Robert M. CABRERA
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX
| |
Collapse
|
6
|
Foster EG, Sillman B, Liu Y, Summerlin M, Kumar V, Sajja BR, Cassidy AR, Edagwa B, Gendelman HE, Bade AN. Long-acting dolutegravir formulations prevent neurodevelopmental impairments in a mouse model. Front Pharmacol 2023; 14:1294579. [PMID: 38149054 PMCID: PMC10750158 DOI: 10.3389/fphar.2023.1294579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The World Health Organization has recommended dolutegravir (DTG) as a preferred first-line treatment for treatment naive and experienced people living with human immunodeficiency virus type one (PLWHIV). Based on these recommendations 15 million PLWHIV worldwide are expected to be treated with DTG regimens on or before 2025. This includes pregnant women. Current widespread use of DTG is linked to the drug's high potency, barrier to resistance, and cost-effectiveness. Despite such benefits, potential risks of DTG-linked fetal neurodevelopmental toxicity remain a concern. To this end, novel formulation strategies are urgently needed in order to maximize DTG's therapeutic potentials while limiting adverse events. In regard to potential maternal fetal toxicities, we hypothesized that injectable long-acting nanoformulated DTG (NDTG) could provide improved safety by reducing drug fetal exposures compared to orally administered native drug. To test this notion, we treated pregnant C3H/HeJ mice with daily oral native DTG at a human equivalent dosage (5 mg/kg; n = 6) or vehicle (control; n = 8). These were compared against pregnant mice injected with intramuscular (IM) NDTG formulations given at 45 (n = 3) or 25 (n = 4) mg/kg at one or two doses, respectively. Treatment began at gestation day (GD) 0.5. Magnetic resonance imaging scanning of live dams at GD 17.5 was performed to obtain T1 maps of the embryo brain to assess T1 relaxation times of drug-induced oxidative stress. Significantly lower T1 values were noted in daily oral native DTG-treated mice, whereas comparative T1 values were noted between control and NDTG-treated mice. This data reflected prevention of DTG-induced oxidative stress when delivered as NDTG. Proteomic profiling of embryo brain tissues harvested at GD 17.5 demonstrated reductions in oxidative stress, mitochondrial impairments, and amelioration of impaired neurogenesis and synaptogenesis in NDTG-treated mice. Pharmacokinetic (PK) tests determined that both daily oral native DTG and parenteral NDTG achieved clinically equivalent therapeutic plasma DTG levels in dams (4,000-6,500 ng/mL). Importantly, NDTG led to five-fold lower DTG concentrations in embryo brain tissues compared to daily oral administration. Altogether, our preliminary work suggests that long-acting drug delivery can limit DTG-linked neurodevelopmental deficits.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Micah Summerlin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Balasrinivasa R. Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam R. Cassidy
- Departments of Psychiatry and Psychology & Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
7
|
Kuo SH, Hsu WL, Wu CY, Lai YC, Chen TC. Dolutegravir-induced growth and lifespan effects in Caenorhabditis elegans. BMC Pharmacol Toxicol 2023; 24:74. [PMID: 38062506 PMCID: PMC10702061 DOI: 10.1186/s40360-023-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Integrase strand transfer inhibitor (INSTIs)-based combination antiretroviral treatment in people living with HIV (PLWH) has been reportedly correlated with several adverse effects, such as weight gain, fetal defects or psychiatric disorders. METHODS To comprehensively understand the adverse effect of INSTIs, our study utilized Caenorhabditis Elegans (C. elegans) as a model to investigate how dolutegravir (DTG) affected its life cycle, growth, reproduction and lifespan. RESULTS Our results indicated that DTG enhanced body growth at the early stage of treatment, but no change was detected for long-term treatment. The treatment also influenced the reproductive system, decreased egg-hatching but had no effect on egg-laying. Besides, DTG resulted in lifespan reduction, which is dependent on increased levels of reactive oxidative species (ROS) accumulation. Treatment with N-acetyl-cysteine (NAC) in worms restrained intracellular ROS accumulation and improved DTG-induced lifespan reduction. CONCLUSIONS Our study demonstrates for the first time the effect of DTG treatment on life cycle. DTG-induced adverse effects are potentially associated with intracellular ROS accumulation. Quenching ROS accumulation might provide a novel strategy for dealing with the adverse effects of INSTIs.
Collapse
Affiliation(s)
- Shin-Huei Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung, 80145, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Yu-Chang Lai
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung, 80145, Taiwan.
- Center for Medical Education and Humanizing Health Professional Education, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
8
|
Fairlie L, Lavies D, Kalk E, Mhlongo O, Patel F, Technau KG, Mahtab S, Moodley D, Subedar H, Mullick S, Sawry S, Mehta U. Safety surveillance for PrEP in pregnant and breastfeeding women. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1221101. [PMID: 37854936 PMCID: PMC10581206 DOI: 10.3389/frph.2023.1221101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
The risk of HIV acquisition is higher during pregnancy and postpartum than other times. Newly acquired maternal HIV infection associated with high primary viraemia, substantially increases the risk of vertical HIV transmission. Pre-exposure prophylaxis (PrEP) reduces the risk of HIV acquisition. Currently available products include oral tenofovir/emtricitabine (TDF/FTC) and tenofovir alafenamide (TAF)/FTC), long-acting cabotegravir (CAB-LA) and the dapivirine ring (DVR). All except oral TDF/FTC have limited safety data available for use in pregnant and breastfeeding women. The safety of new PrEP agents for pregnant women and the fetus, infant and child, either exposed in utero or during breastfeeding is an ongoing concern for health care workers and pregnant and breastfeeding women, particularly as the safety risk appetite for antiretroviral (ARV) agents used as PrEP is lower in pregnant and breastfeeding women who are HIV-uninfected, compared to women living with HIV taking ARVs as treatment. With the widespread rollout of TDF/FTC among pregnant women in South Africa and other low-middle income countries (LMIC) and the potential introduction of new PrEP agents for pregnant women, there is a need for safety surveillance systems to identify potential signals of risk to either the mother or fetus, measure the burden of such a risk, and where appropriate, provide specific reassurance to PrEP users. Safety data needs to be collected across the continuum of the product life cycle from pre-licensure into the post-marketing period, building a safety profile through both passive and active surveillance systems, recognising the strengths and limitations of each, and the potential for bias and confounding. Pharmacovigilance systems that aim to assess the risk of adverse birth outcomes in pregnant women exposed to PrEP and other agents need to consider the special requirements of pregnancy epidemiology to ensure that the data derived from surveillance are sufficiently robust to inform treatment policies. Here we review the known safety profiles of currently available PrEP candidates in women of child-bearing potential, pregnancy and breastfeeding and discuss pragmatic approaches for such surveillance in HIV-endemic LMICs.
Collapse
Affiliation(s)
- Lee Fairlie
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Diane Lavies
- Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emma Kalk
- Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Faeezah Patel
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Karl-Günter Technau
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Sana Mahtab
- Wits Vaccines & Infectious Diseases Analytics (VIDA) Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhayendre Moodley
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Saiqa Mullick
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shobna Sawry
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ushma Mehta
- Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Saki M, De Villiers H, Ntsapi C, Tiloke C. The Hepatoprotective Effects of Moringa oleifera against Antiretroviral-Induced Cytotoxicity in HepG 2 Cells: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3235. [PMID: 37765399 PMCID: PMC10537654 DOI: 10.3390/plants12183235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
The untreated human immunodeficiency virus (HIV), a lentivirus species that attacks immune cells (CD4+ T cells), causes acquired immunodeficiency syndrome (AIDS). HIV-positive people manage HIV/AIDS by using antiretroviral therapy (ART). The ART treatment regimen contains two nucleoside reverse transcriptase inhibitors (NRTIs) and one non-nucleoside reverse transcriptase inhibitor/integrase strand transfer inhibitor. Tenofovir, an NRTI approved for managing HIV infection, is associated with hepatic steatosis and lactic acidosis, which are linked to mitochondrial toxicity and oxidative stress. Due to side-effects associated with ART, people living with HIV often use medicinal plants or a combination of medicinal plants with ART to promote adherence and diminish the side-effects and cytotoxicity. The Moringa oleifera (MO) tree from the family of Moringaceae is among the medicinal trees studied in managing HIV/AIDS in sub-Saharan Africa. The MO tree extracts have been reported to have inhibitory activity primarily against HIV due to their bioactive compounds. However, there is a scarcity of knowledge about the use of the MO tree amongst HIV/AIDS patients receiving ART in South Africa and its effect on patient compliance and outcomes. Thus, this review aims to outline the impact of MO aqueous leaf extract on oxidative stress and antioxidant responses in human HepG2 liver cells after exposure to antiretrovirals such as tenofovir. The review will contribute to a comprehensive understanding of the potential protective effect of MO aqueous leaf extract on tenofovir-induced cytotoxicity.
Collapse
Affiliation(s)
| | | | | | - Charlette Tiloke
- Department of Basic Medical Sciences, School of Biomedical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (M.S.); (H.D.V.); (C.N.)
| |
Collapse
|
10
|
Dontsova V, Mohan H, Blanco C, Jao J, Greene NDE, Copp AJ, Zash R, Serghides L. Metabolic implications and safety of dolutegravir use in pregnancy. Lancet HIV 2023; 10:e606-e616. [PMID: 37549681 PMCID: PMC11100098 DOI: 10.1016/s2352-3018(23)00141-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/09/2023]
Abstract
Dolutegravir is recommended for all people living with HIV because of its efficacy, high barrier to resistance, favourable safety and tolerability profile, and affordability. Dolutegravir has the highest rates of viral suppression in pregnancy, therefore preventing perinatal HIV transmission. In view of these benefits, particularly for pregnant women, an important question is if dolutegravir is safe in pregnancy. Dolutegravir has been associated with metabolic complications, including weight gain and rare events of hyperglycaemia, that could affect maternal, fetal, and postnatal health. We review the current clinically and experimentally based literature on the implications of dolutegravir use for pregnant women and for developing embryos and fetuses. Possible effects on folate status, energy metabolism, adipogenesis, and oxidative stress are considered. In many instances, insufficient data are available, pointing to the need for additional research in this important area of HIV treatment.
Collapse
Affiliation(s)
- Valeriya Dontsova
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Camille Blanco
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jennifer Jao
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rebecca Zash
- Department of Medicine, Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, USA
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Mohan H, Nguyen J, MacKenzie B, Yee A, Laurette EY, Sanghvi T, Tejada O, Dontsova V, Leung KY, Goddard C, De Young T, Sled JG, Greene NDE, Copp AJ, Serghides L. Folate deficiency increases the incidence of dolutegravir-associated foetal defects in a mouse pregnancy model. EBioMedicine 2023; 95:104762. [PMID: 37586112 PMCID: PMC10450420 DOI: 10.1016/j.ebiom.2023.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Dolutegravir (DTG) is a recommended first-line regimen for all people with Human Immunodeficiency Virus (HIV) infection. Initial findings from Botswana, a country with no folate fortification program, showed an elevated prevalence of neural tube defects (NTDs) with peri-conceptional exposure to DTG. Here we explore whether a low folate diet influences the risk of DTG-associated foetal anomalies in a mouse model. METHODS C57BL/6 mice fed a folate-deficient diet for 2 weeks, were mated and then randomly allocated to control (water), or 1xDTG (2.5 mg/kg), or 5xDTG (12.5 mg/kg) both administered orally with 50 mg/kg tenofovir disoproxil fumarate 33.3 mg/kg emtricitabine. Treatment was administered once daily from gestational day (GD) 0.5 to sacrifice (GD15.5). Foetuses were assessed for gross anomalies. Maternal and foetal folate levels were quantified. FINDINGS 313 litters (103 control, 106 1xDTG, 104 5xDTG) were assessed. Viability, placental weight, and foetal weight did not differ between groups. NTDs were only observed in the DTG groups (litter rate: 0% control; 1.0% 1xDTG; 1.3% 5xDTG). Tail, abdominal wall, limb, craniofacial, and bleeding defects all occurred at higher rates in the DTG groups versus control. Compared with our previous findings on DTG usage in folate-replete mouse pregnancies, folate deficiency was associated with higher rates of several defects, including NTDs, but in the DTG groups only. We observed a severe left-right asymmetry phenotype that was more frequent in DTG groups than controls. INTERPRETATION Maternal folate deficiency may increase the risk for DTG-associated foetal defects. Periconceptional folic acid supplementation could be considered for women with HIV taking DTG during pregnancy, particularly in countries lacking folate fortification programs. FUNDING This project has been funded by Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN275201800001I and award #R01HD104553. LS is supported by a Tier 1 Canada Research Chair in Maternal-Child Health and HIV. HM is supported by a Junior Investigator award from the Ontario HIV Treatment Network.
Collapse
Affiliation(s)
- Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jessica Nguyen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ben MacKenzie
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Audrey Yee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Evelyn Yukino Laurette
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tanvi Sanghvi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Oscar Tejada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Valeriya Dontsova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kit-Yi Leung
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cameron Goddard
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Taylor De Young
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Barlow‐Mosha LN, Ahimbisibwe GM, Chappell E, Amuge PM, Nanduudu A, Kaudha E, Amukele T, Balamusani D, Kafufu B, Nimwesiga A, Kataike H, Namwanje R, Kasangaki G, Mulindwa A, Muzorah GA, Bbuye D, Musiime V, Mujyambere E, Ssenyonga M, Mulima D, Kyambadde RC, Namusanje J, Isabirye R, Nabalamba M, Nakirya BM, Kityo C, Kekitiinwa AR, Giaquinto C, Copp A, Gibb DM, Ford D, Musoke P, Turkova A. Effect of dolutegravir on folate, vitamin B12 and mean corpuscular volume levels among children and adolescents with HIV: a sub-study of the ODYSSEY randomized controlled trial. J Int AIDS Soc 2023; 26:e26174. [PMID: 37766505 PMCID: PMC10534059 DOI: 10.1002/jia2.26174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION Dolutegravir-based antiretroviral therapy (ART) is the preferred antiretroviral treatment for children and adolescents living with HIV. A large surveillance study in Botswana previously raised concerns about an association between pre-conception dolutegravir and neural tube defects. Before these concerns were subsequently resolved, we set up a sub-study to look at the effect of dolutegravir on levels of folate and vitamin B12 in children and adolescents within the randomized ODYSSEY trial, as folate and vitamin B12 are known to play a crucial role in neural tube development. METHODS We conducted the sub-study among Ugandan ODYSSEY participants and compared folate and vitamin B12 between children randomized to dolutegravir-based ART (DTG) and non-dolutegravir-based standard-of-care treatment (SOC). Plasma folate was measured at enrolment and week 4 on stored samples; in addition, plasma and red blood cell (RBC) folate and vitamin B12 were assayed at week ≥96 in prospectively collected samples. RBC mean corpuscular volume (MCV) was measured 24-weekly in all ODYSSEY participants. Samples analysed in the sub-study were collected between September 2016 and October 2020. RESULTS A total of 229 children aged ≥6 years were included in the sub-study with median age at trial enrolment of 12.3 (interquartile range [IQR] 9.0, 14.7) years, and CD4 count of 501 (IQR 228, 695); 112 (49%) children were male. Most participants (225/229, 98%) had plasma folate results at enrolment and 214 (93%) children had results available for RBC folate, vitamin B12 and plasma folate at week ≥96. MCV results were analysed on 679 children aged ≥6 years enrolled in ODYSSEY. At week 4, mean plasma folate was significantly higher in the dolutegravir arm than in SOC (difference [DTG-SOC] 1.6 ng/ml, 95% CI 0.8, 2.3; p<0.001), and this difference persisted to week ≥96 (2.7 ng/ml, 95% CI 1.7, 3.7; p<0.001). Mean RBC folate at ≥96 weeks was also higher in the DTG arm (difference 73 ng/ml, 95% CI 3, 143; p = 0.041). There was no difference in the treatment arms for vitamin B12 levels at ≥96 weeks or change in MCV through trial follow-up. CONCLUSIONS Plasma and RBC folate levels were higher in children and adolescents receiving dolutegravir-based ART than on other ART regimens. Further studies are needed to clarify the mechanisms of these interactions and the clinical implications of increased blood folate levels.
Collapse
Affiliation(s)
| | | | - Elizabeth Chappell
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and MethodologyLondonUK
| | | | | | | | - Timothy Amukele
- Department of PathologyICON Central Laboratories IncFarmingdaleNew YorkUSA
| | | | - Bosco Kafufu
- Infectious Diseases Institute Core LaboratoryKampalaUganda
| | | | - Hajira Kataike
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
| | - Rosemary Namwanje
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
| | - Gladys Kasangaki
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
| | | | | | - Dickson Bbuye
- Baylor College of Medicine Children's Foundation‐UgandaKampalaUganda
| | - Victor Musiime
- Joint Clinical Research CentreKampalaUganda
- Department of Paediatrics and Child HealthMakerere University College of Health SciencesKampalaUganda
| | | | - Mark Ssenyonga
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
| | | | | | | | - Richard Isabirye
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
| | | | - Barbara Musoke Nakirya
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
| | | | | | - Carlo Giaquinto
- Department of Women and Child HealthUniversity of PadovaPadovaItaly
| | - Andrew Copp
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Diana M. Gibb
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and MethodologyLondonUK
| | - Deborah Ford
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and MethodologyLondonUK
| | - Philippa Musoke
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
- Department of Paediatrics and Child HealthMakerere University College of Health SciencesKampalaUganda
| | - Anna Turkova
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and MethodologyLondonUK
| | - the ODYSSEY trial team
- Makerere University‐Johns Hopkins University (MU‐JHU) Research CollaborationKampalaUganda
| |
Collapse
|
13
|
Gelineau-van Waes J, van Waes MA, Hallgren J, Hulen J, Bredehoeft M, Ashley-Koch AE, Krupp D, Gregory SG, Stessman HA. Gene-nutrient interactions that impact magnesium homeostasis increase risk for neural tube defects in mice exposed to dolutegravir. Front Cell Dev Biol 2023; 11:1175917. [PMID: 37377737 PMCID: PMC10292217 DOI: 10.3389/fcell.2023.1175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
In 2018, data from a surveillance study in Botswana evaluating adverse birth outcomes raised concerns that women on antiretroviral therapy (ART) containing dolutegravir (DTG) may be at increased risk for neural tube defects (NTDs). The mechanism of action for DTG involves chelation of Mg2+ ions in the active site of the viral integrase. Plasma Mg2+ homeostasis is maintained primarily through dietary intake and reabsorption in the kidneys. Inadequate dietary Mg2+ intake over several months results in slow depletion of plasma Mg2+ and chronic latent hypomagnesemia, a condition prevalent in women of reproductive age worldwide. Mg2+ is critical for normal embryonic development and neural tube closure. We hypothesized that DTG therapy might slowly deplete plasma Mg2+ and reduce the amount available to the embryo, and that mice with pre-existing hypomagnesemia due to genetic variation and/or dietary Mg2+ insufficiency at the time of conception and initiation of DTG treatment would be at increased risk for NTDs. We used two different approaches to test our hypothesis: 1) we selected mouse strains that had inherently different basal plasma Mg2+ levels and 2) placed mice on diets with different concentrations of Mg2+. Plasma and urine Mg2+ were determined prior to timed mating. Pregnant mice were treated daily with vehicle or DTG beginning on the day of conception and embryos examined for NTDs on gestational day 9.5. Plasma DTG was measured for pharmacokinetic analysis. Our results demonstrate that hypomagnesemia prior to conception, due to genetic variation and/or insufficient dietary Mg2+ intake, increases the risk for NTDs in mice exposed to DTG. We also analyzed whole-exome sequencing data from inbred mouse strains and identified 9 predicted deleterious missense variants in Fam111a that were unique to the LM/Bc strain. Human FAM111A variants are associated with hypomagnesemia and renal Mg2+ wasting. The LM/Bc strain exhibits this same phenotype and was the strain most susceptible to DTG-NTDs. Our results suggest that monitoring plasma Mg2+ levels in patients on ART regimens that include DTG, identifying other risk factors that impact Mg2+ homeostasis, and correcting deficiencies in this micronutrient might provide an effective strategy for mitigating NTD risk.
Collapse
Affiliation(s)
- J. Gelineau-van Waes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | | | - J. Hallgren
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - J. Hulen
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - M. Bredehoeft
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - A. E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - D. Krupp
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - S. G. Gregory
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - H. A. Stessman
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
14
|
Huang C, Hoque T, Bendayan R. Antiretroviral drugs efavirenz, dolutegravir and bictegravir dysregulate blood-brain barrier integrity and function. Front Pharmacol 2023; 14:1118580. [PMID: 36969875 PMCID: PMC10030948 DOI: 10.3389/fphar.2023.1118580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The implementation of combined antiretroviral therapy (cART) significantly reduces the mortality associated with human immunodeficiency virus (HIV) infection. However, complications such as HIV-associated neurocognitive disorders (HAND) remain a major health concern. We hypothesized that the toxicity of antiretroviral drugs (ARVs) may contribute to the pathogenesis of HAND in addition to cerebral viral infection. To address this question, we evaluated the impact of HIV integrase strand transfer inhibitors (dolutegravir and bictegravir), and a non-nucleoside reverse transcriptase inhibitor (efavirenz) on the integrity and permeability of various human and mouse blood-brain barrier (BBB) models, in vitro, ex vivo and in vivo. We observed a significant downregulation of tight junction proteins (TJP1/Tjp1, OCLN/Ocln and CLDN5/Cldn5), upregulation of proinflammatory cytokines (IL6/Il6, IL8/Il8, IL1β/Il1β) and NOS2/Nos2, and alteration of membrane-associated transporters (ABCB1/Abcb1a, ABCG2/Abcg2 and SLC2A1/Slc2a1) mRNA expression, in vitro, in human (hCMEC/D3) and primary cultures of mouse microvascular endothelial cells, and ex vivo in isolated mouse brain capillaries treated with efavirenz, dolutegravir, and/or bictegravir. We also observed a significant increase in BBB permeability in vivo following treatment with the selected ARVs in mice applying NaF permeability assay. Taken together, these results suggest that clinically recommended integrase strand transfer inhibitors such as dolutegravir may exacerbate HIV-associated cerebrovascular pathology, which may contribute to the associated short-term neuropsychiatric side effects and the high incidence of mild forms of HAND reported in the clinical setting.
Collapse
|
15
|
Foster EG, Palermo NY, Liu Y, Edagwa B, Gendelman HE, Bade AN. Inhibition of matrix metalloproteinases by HIV-1 integrase strand transfer inhibitors. FRONTIERS IN TOXICOLOGY 2023; 5:1113032. [PMID: 36896351 PMCID: PMC9988942 DOI: 10.3389/ftox.2023.1113032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
More than fifteen million women with the human immunodeficiency virus type-1 (HIV-1) infection are of childbearing age world-wide. Due to improved and affordable access to antiretroviral therapy (ART), the number of in utero antiretroviral drug (ARV)-exposed children has exceeded a million and continues to grow. While most recommended ART taken during pregnancy suppresses mother to child viral transmission, the knowledge of drug safety linked to fetal neurodevelopment remains an area of active investigation. For example, few studies have suggested that ARV use can be associated with neural tube defects (NTDs) and most notably with the integrase strand transfer inhibitor (INSTI) dolutegravir (DTG). After risk benefit assessments, the World Health Organization (WHO) made recommendations for DTG usage as a first and second-line preferred treatment for infected populations including pregnant women and those of childbearing age. Nonetheless, long-term safety concerns remain for fetal health. This has led to a number of recent studies underscoring the need for biomarkers to elucidate potential mechanisms underlying long-term neurodevelopmental adverse events. With this goal in mind, we now report the inhibition of matrix metalloproteinases (MMPs) activities by INSTIs as an ARV class effect. Balanced MMPs activities play a crucial role in fetal neurodevelopment. Inhibition of MMPs activities by INSTIs during neurodevelopment could be a potential mechanism for adverse events. Thus, comprehensive molecular docking testing of the INSTIs, DTG, bictegravir (BIC), and cabotegravir (CAB), against twenty-three human MMPs showed broad-spectrum inhibition. With a metal chelating chemical property, each of the INSTI were shown to bind Zn++ at the MMP's catalytic domain leading to MMP inhibition but to variable binding energies. These results were validated in myeloid cell culture experiments demonstrating MMP-2 and 9 inhibitions by DTG, BIC and CAB and even at higher degree than doxycycline (DOX). Altogether, these data provide a potential mechanism for how INSTIs could affect fetal neurodevelopment.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nicholas Y. Palermo
- Computational Chemistry Core, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NeE, United States
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
Cabotegravir Exposure of Zebrafish ( Danio rerio) Embryos Impacts on Neurodevelopment and Behavior. Int J Mol Sci 2023; 24:ijms24031994. [PMID: 36768311 PMCID: PMC9916638 DOI: 10.3390/ijms24031994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
As most new medications, Cabotegravir (CAB) was recently approved as an antiretroviral treatment of HIV infection without in-depth safety information on in utero exposure. Although no developmental toxicity in rats and rabbits was reported, recent studies demonstrated that CAB decreases pluripotency of human embryonic stem cells. CAB exposure effects during development were assessed in zebrafish embryos by the Fish Embryo Toxicity test after exposure at subtherapeutic concentrations up to 25× the human Cmax. Larvae behavior was assessed by the light-dark locomotion test. The expression of factors involved in neurogenesis was evaluated by whole-mount in situ hybridization. CAB did not cause gross morphological defects at low doses, although pericardial edema, uninflated swim bladder, decreased heartbeats, growth delay, and decreased hatching rate were observed at the highest concentrations. Decreased locomotion was observed even at the subtherapeutic dose, suggesting alterations of nervous system integrity. This hypothesis was supported by the observation of decreased expression of crucial factors involved in early neuronal differentiation in diencephalic and telencephalic dopaminergic areas, midbrain/hindbrain boundary, and craniofacial ganglia. These findings support CAB effects on neurogenesis in zebrafish embryos and suggest long-term follow-up of exposed infants to provide data on drug safety during pregnancy.
Collapse
|
17
|
Foster EG, Gendelman HE, Bade AN. HIV-1 Integrase Strand Transfer Inhibitors and Neurodevelopment. Pharmaceuticals (Basel) 2022; 15:1533. [PMID: 36558984 PMCID: PMC9783753 DOI: 10.3390/ph15121533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Children born to mothers, with or at risk, of human immunodeficiency virus type-1 (HIV-1) infection are on the rise due to affordable access of antiretroviral therapy (ART) to pregnant women or those of childbearing age. Each year, up to 1.3 million HIV-1-infected women on ART have given birth with recorded mother-to-child HIV-1 transmission rates of less than 1%. Despite this benefit, the outcomes of children exposed to antiretroviral drugs during pregnancy, especially pre- and post- natal neurodevelopment remain incompletely understood. This is due, in part, to the fact that pregnant women are underrepresented in clinical trials. This is underscored by any potential risks of neural tube defects (NTDs) linked, in measure, to periconceptional usage of dolutegravir (DTG). A potential association between DTG and NTDs was first described in Botswana in 2018. Incidence studies of neurodevelopmental outcomes associated with DTG, and other integrase strand transfer inhibitors (INSTIs) are limited as widespread use of INSTIs has begun only recently in pregnant women. Therefore, any associations between INSTI use during pregnancy, and neurodevelopmental abnormalities remain to be explored. Herein, United States Food and Drug Administration approved ARVs and their use during pregnancy are discussed. We provide updates on INSTI pharmacokinetics and adverse events during pregnancy together with underlying mechanisms which could affect fetal neurodevelopment. Overall, this review seeks to educate both clinical and basic scientists on potential consequences of INSTIs on fetal outcomes as a foundation for future scientific investigations.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Smith MSR, Mohan H, Ajaykumar A, Hsieh AYY, Martineau L, Patel R, Gadawska I, Sherwood C, Serghides L, Piret JM, Côté HCF. Second-Generation Human Immunodeficiency Virus Integrase Inhibitors Induce Differentiation Dysregulation and Exert Toxic Effects in Human Embryonic Stem Cell and Mouse Models. J Infect Dis 2022; 226:1992-2001. [PMID: 36124861 DOI: 10.1093/infdis/jiac386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Each year, approximately 1.1 million children are exposed in utero to human immunodeficiency virus antiretrovirals, yet their safety is often not well characterized during pregnancy. The Tsepamo study reported a neural tube defect signal in infants exposed to the integrase strand transfer inhibitor (InSTI) dolutegravir from conception, suggesting that exposure during early fetal development may be detrimental. METHODS The effects of InSTIs on 2 human embryonic stem cell (hESC) lines were characterized with respect to markers of pluripotency, early differentiation, and cellular health. In addition, fetal resorptions after exposure to InSTIs from conception were analyzed in pregnant mice. RESULTS At subtherapeutic concentrations, second-generation InSTIs bictegravir, cabotegravir, and dolutegravir decreased hESC counts and pluripotency and induced dysregulation of genes involved in early differentiation. At therapeutic concentrations, bictegravir induced substantial hESC death and fetal resorptions. It is notable that first-generation InSTI raltegravir did not induce any hESC toxicity or differentiation, at any concentration tested. CONCLUSIONS Exposure to some InSTIs, even at subtherapeutic concentrations, can induce adverse effects in hESCs and pregnant mice. Given the increasingly prevalent use of second-generation InSTIs, including in women of reproductive age, it is imperative to further elucidate the effect of InSTIs on embryonic development, as well as their long-term safety after in utero exposure.
Collapse
Affiliation(s)
- Marie-Soleil R Smith
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Abhinav Ajaykumar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Anthony Y Y Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Lou Martineau
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ronil Patel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Izabella Gadawska
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | | | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Women's College Research Institute, Toronto, Canada
| | - James M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Hélène C F Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Women's Health Research Institute, Vancouver, Canada
| |
Collapse
|
19
|
Posobiec L. Author reply to Copp et al. (2022) correspondence. Birth Defects Res 2022; 114:682. [PMID: 35694997 DOI: 10.1002/bdr2.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
|
20
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|
21
|
Christensen BL, Tan DH. An up-to-date evaluation of dolutegravir/abacavir/lamivudine for the treatment of HIV. Expert Opin Pharmacother 2022; 23:439-446. [PMID: 35073817 DOI: 10.1080/14656566.2022.2029409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION There are more than 30 agents available for the treatment of HIV with guidelines shifting toward integrase strand transfer inhibitors (INSTIs) as part of first line therapy. The fixed dose combination of dolutegravir (DTG), abacavir (ABC), and lamivudine (3TC) is a convenient, well tolerated, and highly effective option for treating HIV infection and remains a first line therapy across several prominent guidelines. AREAS COVERED In this drug evaluation, the authors provide a comprehensive overview of DTG/ABC/3TC for the treatment of HIV including the pharmacokinetics, pharmacodynamics, efficacy, safety, and tolerability. The authors also provide the reader with their expert perspectives on this particular treatment strategy. EXPERT OPINION While DTG/ABC/3TC remains a valuable HIV treatment option, newer combination regimens have entered the market. Bictegravir with tenofovir alafenamide and emtricitabine offers the benefit of same day initiation and efficacy in hepatitis B co-infection, while new two-drug regimens enhance the simplicity of HIV treatment. Continued study is required into the mechanisms and optimal management strategies for weight gain for many regimens, including DTG/ABC/3TC.
Collapse
Affiliation(s)
| | - Darrell Hs Tan
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Infectious Diseases, St Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
22
|
Copp AJ, Greene ND, Jao J, Zash R, Mohan H, Dontsova V, Serghides L. Dolutegravir and rat whole embryo culture. Birth Defects Res 2022; 114:23-24. [PMID: 34851540 PMCID: PMC7614169 DOI: 10.1002/bdr2.1969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew J. Copp
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicholas D.E. Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jennifer Jao
- Department of Pediatrics, Division of Infectious Diseases, Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Rebecca Zash
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, USA
| | - Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Valeriya Dontsova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Gilmore JC, Hoque MT, Dai W, Mohan H, Dunk C, Serghides L, Bendayan R. Interaction between dolutegravir and folate transporters and receptor in human and rodent placenta. EBioMedicine 2021; 75:103771. [PMID: 34954655 PMCID: PMC8715299 DOI: 10.1016/j.ebiom.2021.103771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background Due to the critical role of folates in neurodevelopment, it is important to understand potential interactions between anti-HIV drugs used during pregnancy, and folate delivery pathways in the placenta. This study investigates the effect of dolutegravir (DTG) exposure on the functional expression of the reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptor-α (FRα) in the placenta. Methods Human placental cell lines, human placental explants, and a pregnant mouse model treated with clinically relevant concentrations of DTG were used. Gene and protein expression were assessed by qPCR, immunoblot and immunohistochemical assays. Folate transport function was measured by applying radioisotope-based transport assays. Findings In placental cells, clinically relevant DTG exposure for 3h or 6h was associated with a modest but significant reduction in the expression of RFC and PCFT both at the mRNA and protein levels, as well as decreased uptake of RFC and PCFT substrates [3H]-methotrexate and [3H]-folic acid, respectively. In pregnant mice, DTG administration was associated with an increase in both placental RFC and PCFT mRNA expression, accompanied by a decrease in placental FRα mRNA under folate-deficient dietary conditions. Interpretation These findings demonstrate a potential interaction between DTG and folate transport pathways in the placenta, particularly in vivo, under folate deficient conditions, potentially impacting folate delivery to the foetus in the context of DTG-based ART during pregnancy. Funding Funded by Ontario HIV Treatment Network, grant #506657; and Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health, award #R01HD104553.
Collapse
Affiliation(s)
- Julian C Gilmore
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Wanying Dai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto Canada
| | - Caroline Dunk
- Toronto General Hospital Research Institute, University Health Network, Toronto Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
24
|
Ikumi NM, Anumba D, Matjila M. Pharmacokinetics and placental transfer of dolutegravir in pregnancy. J Antimicrob Chemother 2021; 77:283-289. [PMID: 34618029 DOI: 10.1093/jac/dkab365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dolutegravir is currently recommended by the WHO as the preferred first-line treatment for all people with HIV, including pregnant women. Estimates indicate that, by 2024, nearly 22 million adults in low- and middle-income countries will have transitioned to dolutegravir-based ART. It is therefore critical that there is a clear appreciation and understanding of the risks that may be associated with in utero exposure to dolutegravir. In this review we consolidate data from studies on dolutegravir and the placenta. The studies have largely focused on the pharmacokinetics and placental transfer of dolutegravir in pregnancy. These include studies on transplacental transfer of dolutegravir, ex vivo placenta perfusion models, physiologically based pharmacokinetic (PBPK) models and animal studies. The data available clearly demonstrate that placental transfer of dolutegravir occurs in moderate to high concentrations. Intracellular placental dolutegravir has been demonstrated in the placental villous tissue. There are limited data suggesting that pregnancy is associated with decreased maternal dolutegravir levels. In addition, PBPK models have great potential in predicting the passage of drugs through the placenta and further contributing towards the elucidation of fetal exposure. The animal studies available demonstrate that in utero dolutegravir exposure can be associated with neural tube defects. Taking into consideration that antiretroviral exposure may be associated with poor placental development or function and increased risk of adverse effects to the fetus, it is crucially important that these risks are evaluated, especially with the rapid scale up of dolutegravir-based ART into national treatment programmes.
Collapse
Affiliation(s)
- Nadia M Ikumi
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Dilly Anumba
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Posobiec LM, Chapman SP, Murzyn SF, Rendemonti JE, Stanislaus DJ, Romach EH. No developmental toxicity observed with dolutegravir in rat whole embryo culture. Birth Defects Res 2021; 113:1190-1197. [PMID: 34453500 DOI: 10.1002/bdr2.1949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND An in vitro rat whole embryo culture study investigated whether direct exposure to dolutegravir (TivicayTM ) during the critical period for neural tube development would result in abnormal development. METHODS Dolutegravir (DTG), and HIV integrase inhibitor, was administered at 0 (vehicle), 5.3 μg/mL and 9.3 μg/mL on Gestation Day (GD) 9 through 11 (approximate 40 hour exposure period) along with positive (Valproic Acid) and negative (Penicillin G) controls. The DTG concentrations tested were selected based on clinical exposure at the maximum human recommended dose and maximum feasible concentration that could be formulated under the experimental conditions. RESULTS Approximately 6% of DTG present in the culture media was absorbed into the embryos, demonstrating embryonic exposure at a similar level to that observed in a rat DTG placental transfer study. There was no effect in either the DTG or Penicillin G groups on visceral yolk sac size/morphology, embryo size, somite number and embryo morphology at any concentration tested. Valproic Acid, by contrast, produced statistically significant decreases in visceral yolk sac size, embryo size and somite number along with defects in visceral yolk sac and embryonic morphology, including neural tube defects (NTDs), in all embryos. CONCLUSION DTG at the maximum human recommended dose administered to rats in a whole embryo culture assay did not produce any abnormal effects, while the positive control Valproic Acid produced abnormal effects, including neural tube defects.
Collapse
Affiliation(s)
- Lorraine M Posobiec
- Department of Reproductive Toxicology, GlaxoSmithKline USA, Collegeville, Pennsylvania, USA
| | - Sharon P Chapman
- Department of Reproductive Toxicology, GlaxoSmithKline USA, Collegeville, Pennsylvania, USA
| | - Stacia F Murzyn
- Department of Reproductive Toxicology, GlaxoSmithKline USA, Collegeville, Pennsylvania, USA
| | - Joyce E Rendemonti
- Department of Reproductive Toxicology, GlaxoSmithKline USA, Collegeville, Pennsylvania, USA
| | - Dinesh J Stanislaus
- Department of Safety Assessment, GlaxoSmithKline USA, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
26
|
Kirkwood-Johnson L, Katayama N, Marikawa Y. Dolutegravir impairs stem cell-based 3D morphogenesis models in a manner dependent on dose and timing of exposure: an implication for its developmental toxicity. Toxicol Sci 2021; 184:191-203. [PMID: 34515794 DOI: 10.1093/toxsci/kfab112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dolutegravir is an anti-retroviral drug of the integrase strand transfer inhibitor class used to treat HIV infection. It is the recommended first-line regimen for most people, including women of childbearing age. However, some human and animal studies have suggested that dolutegravir causes birth defects, although its developmental toxicity remains controversial. Here, we investigated the adverse effects of dolutegravir using pluripotent stem cell-based in vitro morphogenesis models that have previously been validated as effective tools to assess the developmental toxicity of various chemicals. Dolutegravir diminished the growth and axial elongation of the morphogenesis model of mouse pluripotent stem cells at exposures of 2 μM and above in a concentration-dependent manner. Concomitantly, dolutegravir altered the expression profiles of developmental regulator genes involved in embryonic patterning. The adverse effects were observed when the morphogenesis model was exposed to dolutegravir at early stages of development, but not at later stages. The potency and molecular impact of dolutegravir on the morphogenesis model were distinct from other integrase strand transfer inhibitors. Lastly, dolutegravir altered the growth and gene expression profiles of the morphogenesis model of human embryonic stem cells at 1 μM and above. These studies demonstrate that dolutegravir impairs morphological and molecular aspects of the in vitro morphogenesis models in a manner dependent on dose and timing of exposure through mechanisms that are unrelated to its action as an integrase strand transfer inhibitor. This finding will be useful for interpreting the conflicting outcomes regarding the developmental toxicity of dolutegravir in human and animal studies.
Collapse
Affiliation(s)
- Lauren Kirkwood-Johnson
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Nana Katayama
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
27
|
Bade AN, McMillan JM, Liu Y, Edagwa BJ, Gendelman HE. Dolutegravir Inhibition of Matrix Metalloproteinases Affects Mouse Neurodevelopment. Mol Neurobiol 2021; 58:5703-5721. [PMID: 34390469 PMCID: PMC8599359 DOI: 10.1007/s12035-021-02508-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
Dolutegravir (DTG) is a first-line antiretroviral drug (ARV) used in combination therapy for the treatment of human immunodeficiency virus type-1 (HIV-1) infection. The drug is effective, safe, and well tolerated. Nonetheless, concerns have recently emerged for its usage in pregnant women or those of child-bearing age. Notably, DTG-based ARV regimens have been linked to birth defects seen as a consequence of periconceptional usages. To this end, uncovering an underlying mechanism for DTG-associated adverse fetal development outcomes has gained clinical and basic research interest. We now report that DTG inhibits matrix metalloproteinases (MMPs) activities that could affect fetal neurodevelopment. DTG is a broad-spectrum MMPs inhibitor and binds to Zn++ at the enzyme’s catalytic domain. Studies performed in pregnant mice show that DTG readily reaches the fetal central nervous system during gestation and inhibits MMP activity. Postnatal screenings of brain health in mice pups identified neuroinflammation and neuronal impairment. These abnormalities persist as a consequence of in utero DTG exposure. We conclude that DTG inhibition of MMPs activities during gestation has the potential to affect prenatal and postnatal neurodevelopment.
Collapse
Affiliation(s)
- Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA.
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA.,Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA. .,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
28
|
Mohan H, Guzman Lenis M, Laurette EY, Tejada O, Sanghvi T, Leung KY, Cahill LS, Sled JG, Delgado-Olguín P, Greene NDE, Copp AJ, Serghides L. In response to the Letter to the Editor by Romach et al. re our publication "Dolutegravir in pregnant mice is associated with increased rates of fetal defects at therapeutic but not at supratherapeutic levels". EBioMedicine 2021; 66:103334. [PMID: 33862586 PMCID: PMC8054139 DOI: 10.1016/j.ebiom.2021.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- H Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - M Guzman Lenis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - E Y Laurette
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - O Tejada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - T Sanghvi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - K-Y Leung
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - L S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - J G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - P Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Heart & Stroke Richard Lewar Centre of Excellence, Toronto, Ontario M5S 3H2, Canada
| | - N D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - A J Copp
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - L Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|