2
|
Oh JM, Shen K. Cleanroom-Free Microfluidic Device for Natural Induction of Hypoxia in 2D and 3D Tumor Models. Methods Mol Biol 2024; 2755:227-247. [PMID: 38319582 DOI: 10.1007/978-1-0716-3633-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia is a common and critical feature of solid tumors that contributes to the plasticity and heterogeneity of the cancer cells. Cancer cell populations take on a region-specific adaptation induced by hypoxia, and each cancer cell population will show different levels of sensitivity and resistance to cancer therapeutics. Therefore, a faithful recapitulation of tumor hypoxia that allows for accurate assessments of hypoxia-induced adaptations, heterogeneity, and response to therapy is needed to develop new therapeutic approaches. The existing hypoxic tumor models rely on complex fabrication methods and external gas sources that make them unfavorable for the early-stage screening of new therapeutics. Here, we demonstrate how to establish a cleanroom-free microfluidic device that supports both 2D and 3D hypoxic tumor modeling through natural cancer cell metabolism and confirm the induction of the hypoxic gradient.
Collapse
Affiliation(s)
- Jeong Min Oh
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Keyue Shen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Bouquerel C, Dubrova A, Hofer I, Phan DTT, Bernheim M, Ladaigue S, Cavaniol C, Maddalo D, Cabel L, Mechta-Grigoriou F, Wilhelm C, Zalcman G, Parrini MC, Descroix S. Bridging the gap between tumor-on-chip and clinics: a systematic review of 15 years of studies. LAB ON A CHIP 2023; 23:3906-3935. [PMID: 37592893 DOI: 10.1039/d3lc00531c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Over the past 15 years, the field of oncology research has witnessed significant progress in the development of new cell culture models, such as tumor-on-chip (ToC) systems. In this comprehensive overview, we present a multidisciplinary perspective by bringing together physicists, biologists, clinicians, and experts from pharmaceutical companies to highlight the current state of ToC research, its unique features, and the challenges it faces. To offer readers a clear and quantitative understanding of the ToC field, we conducted an extensive systematic analysis of more than 300 publications related to ToC from 2005 to 2022. ToC offer key advantages over other in vitro models by enabling precise control over various parameters. These parameters include the properties of the extracellular matrix, mechanical forces exerted on cells, the physico-chemical environment, cell composition, and the architecture of the tumor microenvironment. Such fine control allows ToC to closely replicate the complex microenvironment and interactions within tumors, facilitating the study of cancer progression and therapeutic responses in a highly representative manner. Importantly, by incorporating patient-derived cells or tumor xenografts, ToC models have demonstrated promising results in terms of clinical validation. We also examined the potential of ToC for pharmaceutical industries in which ToC adoption is expected to occur gradually. Looking ahead, given the high failure rate of clinical trials and the increasing emphasis on the 3Rs principles (replacement, reduction, refinement of animal experimentation), ToC models hold immense potential for cancer research. In the next decade, data generated from ToC models could potentially be employed for discovering new therapeutic targets, contributing to regulatory purposes, refining preclinical drug testing and reducing reliance on animal models.
Collapse
Affiliation(s)
- Charlotte Bouquerel
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Fluigent, 67 avenue de Fontainebleau, 94270, Le Kremlin-Bicêtre, France
| | - Anastasiia Dubrova
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Isabella Hofer
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Duc T T Phan
- Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | - Moencopi Bernheim
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Ségolène Ladaigue
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Charles Cavaniol
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Luc Cabel
- Institut Curie, Department of Medical Oncology, 26 rue d'Ulm, 75005, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Claire Wilhelm
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Gérard Zalcman
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Université Paris Cité, Thoracic Oncology Department, INSERM CIC1425, Bichat Hospital, Cancer Institute AP-HP. Nord, Paris, France.
| | - Maria Carla Parrini
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Stéphanie Descroix
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| |
Collapse
|
4
|
Gil JF, Moura CS, Silverio V, Gonçalves G, Santos HA. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300692. [PMID: 37103886 DOI: 10.1002/adma.202300692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Cancer kills millions of individuals every year all over the world (Global Cancer Observatory). The physiological and biomechanical processes underlying the tumor are still poorly understood, hindering researchers from creating new, effective therapies. Inconsistent results of preclinical research, in vivo testing, and clinical trials decrease drug approval rates. 3D tumor-on-a-chip (ToC) models integrate biomaterials, tissue engineering, fabrication of microarchitectures, and sensory and actuation systems in a single device, enabling reliable studies in fundamental oncology and pharmacology. This review includes a critical discussion about their ability to reproduce the tumor microenvironment (TME), the advantages and drawbacks of existing tumor models and architectures, major components and fabrication techniques. The focus is on current materials and micro/nanofabrication techniques used to manufacture reliable and reproducible microfluidic ToC models for large-scale trial applications.
Collapse
Affiliation(s)
- João Ferreira Gil
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Sofia Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, 3045-093, Portugal
| | - Vania Silverio
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- Department of Physics, Instituto Superior Técnico, Lisbon, 1049-001, Portugal
- Associate Laboratory Institute for Health and Bioeconomy - i4HB, Lisbon, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
5
|
Zhang L, Liao W, Chen S, Chen Y, Cheng P, Lu X, Ma Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front Oncol 2023; 13:1146477. [PMID: 37077835 PMCID: PMC10106600 DOI: 10.3389/fonc.2023.1146477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Three-dimensional cell culture technology (3DCC) sits between two-dimensional cell culture (2DCC) and animal models and is widely used in oncology research. Compared to 2DCC, 3DCC allows cells to grow in a three-dimensional space, better simulating the in vivo growth environment of tumors, including hypoxia, nutrient concentration gradients, micro angiogenesis mimicism, and the interaction between tumor cells and the tumor microenvironment matrix. 3DCC has unparalleled advantages when compared to animal models, being more controllable, operable, and convenient. This review summarizes the comparison between 2DCC and 3DCC, as well as recent advances in different methods to obtain 3D models and their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Long Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Liao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yukun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
The Effect of Dynamic, In Vivo-like Oxaliplatin on HCT116 Spheroids in a Cancer-on-Chip Model Is Representative of the Response in Xenografts. MICROMACHINES 2022; 13:mi13050739. [PMID: 35630206 PMCID: PMC9146796 DOI: 10.3390/mi13050739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
The cancer xenograft model in which human cancer cells are implanted in a mouse is one of the most used preclinical models to test the efficacy of novel cancer drugs. However, the model is imperfect; animal models are ethically burdened, and the imperfect efficacy predictions contribute to high clinical attrition of novel drugs. If microfluidic cancer-on-chip models could recapitulate key elements of the xenograft model, then these models could substitute the xenograft model and subsequently surpass the xenograft model by reducing variation, increasing sensitivity and scale, and adding human factors. Here, we exposed HCT116 colorectal cancer spheroids to dynamic, in vivo-like, concentrations of oxaliplatin, including a 5 day drug-free period, on-chip. Growth inhibition on-chip was comparable to existing xenograft studies. Furthermore, immunohistochemistry showed a similar response in proliferation and apoptosis markers. While small volume changes in xenografts are hard to detect, in the chip-system, we could observe a temporary growth delay. Lastly, histopathology and a pharmacodynamic model showed that the cancer spheroid-on-chip was representative of the proliferating outer part of a HCT116 xenograft, thereby capturing the major driver of the drug response of the xenograft. Hence, the cancer-on-chip model recapitulated the response of HCT116 xenografts to oxaliplatin and provided additional drug efficacy information.
Collapse
|