1
|
Amoriello R, Maghrebi O, Ballerini C. Computational Analysis of T-Cell Receptor Repertoire Workflow: From T-Cell Isolation to Bioinformatics Analysis. Methods Mol Biol 2025; 2857:127-135. [PMID: 39348061 DOI: 10.1007/978-1-0716-4128-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The T-cell receptor (TCR) is the key molecule involved in the adaptive immune response. It is generated by the V(D)J recombination, responsible of the enormous diversity of the TCR repertoire, a crucial feature determining the individual capability to response to antigens and to build immunological memory. A pivotal role in the recognition of antigen is played by the hypervariable complementarity-determining region 3 (CDR3) of the V-beta chain of TCR. Investigating the CDR3 supports the understanding of the adaptive immune system dynamics in physiological processes, such as immune aging, and in disease, especially autoimmune disorders in which T cells are main actors. High-throughput sequencing (HTS) paved the way for a great progress in the investigation of TCR repertoire, enhancing the read depth in the process of library generation of sequencing and the number of samples that can be analyzed simultaneously. Therefore, the leverage of big datasets stressed the need to develop computational approach, by bioinformatics, to unravel the characteristics of the TCR repertoire.
Collapse
Affiliation(s)
- Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Vegesana K, Thomas PG. Cracking the code of adaptive immunity: The role of computational tools. Cell Syst 2024; 15:1156-1167. [PMID: 39701033 DOI: 10.1016/j.cels.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
In recent years, the advances in high-throughput and deep sequencing have generated a diverse amount of adaptive immune repertoire data. This surge in data has seen a proportional increase in computational methods aimed to characterize T cell receptor (TCR) repertoires. In this perspective, we will provide a brief commentary on the various domains of TCR repertoire analysis, their respective computational methods, and the ongoing challenges. Given the breadth of methods and applications of TCR analysis, we will focus our perspective on sequence-based computational methods.
Collapse
Affiliation(s)
- Kasi Vegesana
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Csepregi L, Hoehn K, Neumeier D, Taft JM, Friedensohn S, Weber CR, Kummer A, Sesterhenn F, Correia BE, Reddy ST. The physiological landscape and specificity of antibody repertoires are consolidated by multiple immunizations. eLife 2024; 13:e92718. [PMID: 39693231 DOI: 10.7554/elife.92718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kenneth Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Arkadij Kummer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
4
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
5
|
Mhanna V, Barennes P, Vantomme H, Fourcade G, Coatnoan N, Six A, Klatzmann D, Mariotti-Ferrandiz E. Enhancing comparative T cell receptor repertoire analysis in small biological samples through pooling homologous cell samples from multiple mice. CELL REPORTS METHODS 2024; 4:100753. [PMID: 38614088 PMCID: PMC11045977 DOI: 10.1016/j.crmeth.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
Accurate characterization and comparison of T cell receptor (TCR) repertoires from small biological samples present significant challenges. The main challenge is the low material input, which compromises the quality of bulk sequencing and hinders the recovery of sufficient TCR sequences for robust analyses. We aimed to address this limitation by implementing a strategic approach to pool homologous biological samples. Our findings demonstrate that such pooling indeed enhances the TCR repertoire coverage, particularly for cell subsets of constrained sizes, and enables accurate comparisons of TCR repertoires at different levels of complexity across T cell subsets with different sizes. This methodology holds promise for advancing our understanding of T cell repertoires in scenarios where sample size constraints are a prevailing concern.
Collapse
Affiliation(s)
- Vanessa Mhanna
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Hélène Vantomme
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Gwladys Fourcade
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France
| | - Nicolas Coatnoan
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Adrien Six
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
6
|
Dibble JJ, Ferneyhough B, Roddis M, Millington S, Fischer MD, Parkinson NJ, Ponting CP. Comparison of T-cell receptor diversity of people with myalgic encephalomyelitis versus controls. BMC Res Notes 2024; 17:17. [PMID: 38178251 PMCID: PMC10768444 DOI: 10.1186/s13104-023-06616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVE Myalgic Encephalomyelitis (ME; sometimes referred to as Chronic Fatigue Syndrome) is a chronic disease without laboratory test, detailed aetiological understanding or effective therapy. Its symptoms are diverse, but it is distinguished from other fatiguing illnesses by the experience of post-exertional malaise, the worsening of symptoms even after minor physical or mental exertion. Its frequent onset after infection suggests autoimmune involvement or that it arises from abnormal T-cell activation. RESULTS To test this hypothesis, we sequenced the genomic loci of α/δ, β and γ T-cell receptors (TCR) from 40 human blood samples from each of four groups: severely affected people with ME; mildly or moderately affected people with ME; people diagnosed with Multiple Sclerosis, as disease controls; and, healthy controls. Seeking to automatically classify these individuals' samples by their TCR repertoires, we applied P-SVM, a machine learning method. However, despite working well on a simulated data set, this approach did not allow statistically significant partitioning of samples into the four subgroups. Our findings do not support the hypothesis that blood samples from people with ME frequently contain altered T-cell receptor diversity.
Collapse
Affiliation(s)
- Joshua J Dibble
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Ben Ferneyhough
- Systems Biology Laboratory UK, Abingdon, Oxfordshire, OX14 4SA, UK
| | - Matthew Roddis
- Systems Biology Laboratory UK, Abingdon, Oxfordshire, OX14 4SA, UK
| | - Sam Millington
- Systems Biology Laboratory UK, Abingdon, Oxfordshire, OX14 4SA, UK
| | | | - Nick J Parkinson
- Systems Biology Laboratory UK, Abingdon, Oxfordshire, OX14 4SA, UK.
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
7
|
Elster C, Ommer-Bläsius M, Lang A, Vajen T, Pfeiler S, Feige M, Yau Pang T, Böttenberg M, Verheyen S, Lê Quý K, Chernigovskaya M, Kelm M, Winkels H, Schmidt SV, Greiff V, Gerdes N. Application and challenges of TCR and BCR sequencing to investigate T- and B-cell clonality in elastase-induced experimental murine abdominal aortic aneurysm. Front Cardiovasc Med 2023; 10:1221620. [PMID: 38034381 PMCID: PMC10686233 DOI: 10.3389/fcvm.2023.1221620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Background An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Although its pathogenesis is still poorly understood, recent evidence suggests that AAA displays autoimmune disease characteristics. Particularly, T cells responding to AAA-related antigens in the aortic wall may contribute to an initial immune response. Single-cell RNA (scRNA) T cell receptor (TCR) and B cell receptor (BCR) sequencing is a powerful tool for investigating clonality. However, difficulties such as limited numbers of isolated cells must be considered during implementation and data analysis, making biological interpretation challenging. Here, we perform a representative single-cell immune repertoire analysis in experimental murine AAA and show a reliable bioinformatic processing pipeline highlighting opportunities and limitations of this approach. Methods We performed scRNA TCR and BCR sequencing of isolated lymphocytes from the infrarenal aorta of male C57BL/6J mice 3, 7, 14, and 28 days after AAA induction via elastase perfusion of the aorta. Sham-operated mice at days 3 and 28 and non-operated mice served as controls. Results Comparison of complementarity-determining region (CDR3) length distribution of 179 B cells and 796 T cells revealed neither differences between AAA and control nor between the disease stages. We found no clonal expansion of B cells in AAA. For T cells, we identified several clones in 11 of 16 AAA samples and one of eight control samples. Immune receptor repertoire comparison indicated that only a few clones were shared between the individual AAA samples. The most frequently used V-genes in the TCR beta chain in AAA were TRBV3, TRBV19, and the splicing variant TRBV12-2 + TRBV13-2. Conclusion We found no clonal expansion of B cells but evidence for clonal expansion of T cells in elastase-induced AAA in mice. Our findings imply that a more precise characterization of TCR and BCR distribution requires a more extensive number of lymphocytes to prevent undersampling and potentially detect rare clones. Thus, further experiments are necessary to confirm our findings. In summary, this paper examines TCR and BCR sequencing results, identifies limitations and pitfalls, and offers guidance for future studies.
Collapse
Affiliation(s)
- Christin Elster
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Miriam Ommer-Bläsius
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Tanja Vajen
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Milena Feige
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Tin Yau Pang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Department of Biology, Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Marius Böttenberg
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Verheyen
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanne V. Schmidt
- Institute of Innate Immunity, Medical Faculty and University Hospital, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Heimli M, Tennebø Flåm S, Sagsveen Hjorthaug H, Bjørnstad PM, Chernigovskaya M, Le QK, Tekpli X, Greiff V, Lie BA. Human thymic putative CD8αα precursors exhibit a biased TCR repertoire in single cell AIRR-seq. Sci Rep 2023; 13:17714. [PMID: 37853083 PMCID: PMC10584817 DOI: 10.1038/s41598-023-44693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Thymic T cell development comprises T cell receptor (TCR) recombination and assessment of TCR avidity towards self-peptide-MHC complexes presented by antigen-presenting cells. Self-reactivity may lead to negative selection, or to agonist selection and differentiation into unconventional lineages such as regulatory T cells and CD8[Formula: see text] T cells. To explore the effect of the adaptive immune receptor repertoire on thymocyte developmental decisions, we performed single cell adaptive immune receptor repertoire sequencing (scAIRR-seq) of thymocytes from human young paediatric thymi and blood. Thymic PDCD1+ cells, a putative CD8[Formula: see text] T cell precursor population, exhibited several TCR features previously associated with thymic and peripheral ZNF683+ CD8[Formula: see text] T cells, including enrichment of large and positively charged complementarity-determining region 3 (CDR3) amino acids. Thus, the TCR repertoire may partially explain the decision between conventional vs. agonist selected thymocyte differentiation, an aspect of importance for the development of therapies for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Hanne Sagsveen Hjorthaug
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Quy Khang Le
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
9
|
Tereshchenko V, Shevyrev D, Fisher M, Bulygin A, Khantakova J, Sennikov S. TCR Sequencing in Mouse Models of Allorecognition Unveils the Features of Directly and Indirectly Activated Clonotypes. Int J Mol Sci 2023; 24:12075. [PMID: 37569450 PMCID: PMC10418307 DOI: 10.3390/ijms241512075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Allorecognition is known to involve a large number of lymphocytes carrying diverse T-cell receptor repertoire. Thus, one way to understand allorecognition and rejection mechanisms is via high-throughput sequencing of T-cell receptors. In this study, in order to explore and systematize the properties of the alloreactive T-cell receptor repertoire, we modeled direct and indirect allorecognition pathways using material from inbred mice in vitro and in vivo. Decoding of the obtained T-cell receptor genes using high-throughput sequencing revealed some features of the alloreactive repertoires. Thus, alloreactive T-cell receptor repertoires were characterized by specific V-gene usage patterns, changes in CDR3 loop length, and some amino acid occurrence probabilities in the CDR3 loop. Particularly pronounced changes were observed for directly alloreactive clonotypes. We also revealed a clustering of directly and indirectly alloreactive clonotypes by their ability to bind a single antigen; amino acid patterns of the CDR3 loop of alloreactive clonotypes; and the presence in alloreactive repertoires of clonotypes also associated with infectious, autoimmune, and tumor diseases. The obtained results were determined by the modeling of the simplified allorecognition reaction in inbred mice in which stimulation was performed with a single MHCII molecule. We suppose that the decomposition of the diverse alloreactive TCR repertoire observed in humans with transplants into such simple reactions will help to find alloreactive repertoire features; e.g., a dominant clonotype or V-gene usage pattern, which may be targeted to correct the entire rejection reaction in patients. In this work, we propose several technical ways for such decomposition analysis, including separate modeling of the indirect alloreaction pathway and clustering of alloreactive clonotypes according to their ability to bind a single antigen, among others.
Collapse
Affiliation(s)
- Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Resource Center for Cellular Technologies and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Daniil Shevyrev
- Resource Center for Cellular Technologies and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Marina Fisher
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Aleksei Bulygin
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Julia Khantakova
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| |
Collapse
|
10
|
Malik A, Sayed AA, Han P, Tan MMH, Watt E, Constantinescu-Bercu A, Cocker ATH, Khoder A, Saputil RC, Thorley E, Teklemichael A, Ding Y, Hart ACJ, Zhang H, Mitchell WA, Imami N, Crawley JTB, Salles-Crawley II, Bussel JB, Zehnder JL, Adams S, Zhang BM, Cooper N. The role of CD8+ T-cell clones in immune thrombocytopenia. Blood 2023; 141:2417-2429. [PMID: 36749920 PMCID: PMC10329190 DOI: 10.1182/blood.2022018380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Immune thrombocytopenia (ITP) is traditionally considered an antibody-mediated disease. However, a number of features suggest alternative mechanisms of platelet destruction. In this study, we use a multidimensional approach to explore the role of cytotoxic CD8+ T cells in ITP. We characterized patients with ITP and compared them with age-matched controls using immunophenotyping, next-generation sequencing of T-cell receptor (TCR) genes, single-cell RNA sequencing, and functional T-cell and platelet assays. We found that adults with chronic ITP have increased polyfunctional, terminally differentiated effector memory CD8+ T cells (CD45RA+CD62L-) expressing intracellular interferon gamma, tumor necrosis factor α, and granzyme B, defining them as TEMRA cells. These TEMRA cells expand when the platelet count falls and show no evidence of physiological exhaustion. Deep sequencing of the TCR showed expanded T-cell clones in patients with ITP. T-cell clones persisted over many years, were more prominent in patients with refractory disease, and expanded when the platelet count was low. Combined single-cell RNA and TCR sequencing of CD8+ T cells confirmed that the expanded clones are TEMRA cells. Using in vitro model systems, we show that CD8+ T cells from patients with ITP form aggregates with autologous platelets, release interferon gamma, and trigger platelet activation and apoptosis via the TCR-mediated release of cytotoxic granules. These findings of clonally expanded CD8+ T cells causing platelet activation and apoptosis provide an antibody-independent mechanism of platelet destruction, indicating that targeting specific T-cell clones could be a novel therapeutic approach for patients with refractory ITP.
Collapse
Affiliation(s)
- Amna Malik
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Anwar A. Sayed
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Department of Medical Microbiology and Immunology, Taibah University, Medina, Saudi Arabia
| | - Panpan Han
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Department of Hematology, Shandong Province Hospital, Shandong First Medical University, Jinan, China
| | - Michelle M. H. Tan
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Eleanor Watt
- Specialist Integrated Haematology and Malignancy Diagnostic Service–Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Adela Constantinescu-Bercu
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | | | - Ahmad Khoder
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Rocel C. Saputil
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Emma Thorley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Ariam Teklemichael
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Yunchuan Ding
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice C. J. Hart
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Wayne A. Mitchell
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| | - James T. B. Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Isabelle I. Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, United Kingdom
| | - James B. Bussel
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - James L. Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Stuart Adams
- Specialist Integrated Haematology and Malignancy Diagnostic Service–Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Bing M. Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Nichola Cooper
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Vujović M, Marcatili P, Chain B, Kaplinsky J, Andresen TL. Signatures of T cell immunity revealed using sequence similarity with TCRDivER algorithm. Commun Biol 2023; 6:357. [PMID: 37002292 PMCID: PMC10066310 DOI: 10.1038/s42003-023-04702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Changes in the T cell receptor (TCR) repertoires have become important markers for monitoring disease or therapy progression. With the rise of immunotherapy usage in cancer, infectious and autoimmune disease, accurate assessment and comparison of the "state" of the TCR repertoire has become paramount. One important driver of change within the repertoire is T cell proliferation following immunisation. A way of monitoring this is by investigating large clones of individual T cells believed to bind epitopes connected to the disease. However, as a single target can be bound by many different TCRs, monitoring individual clones cannot fully account for T cell cross-reactivity. Moreover, T cells responding to the same target often exhibit higher sequence similarity, which highlights the importance of accounting for TCR similarity within the repertoire. This complexity of binding relationships between a TCR and its target convolutes comparison of immune responses between individuals or comparisons of TCR repertoires at different timepoints. Here we propose TCRDivER algorithm (T cell Receptor Diversity Estimates for Repertoires), a global method of T cell repertoire comparison using diversity profiles sensitive to both clone size and sequence similarity. This approach allowed for distinction between spleen TCR repertoires of immunised and non-immunised mice, showing the need for including both facets of repertoire changes simultaneously. The analysis revealed biologically interpretable relationships between sequence similarity and clonality. These aid in understanding differences and separation of repertoires stemming from different biological context. With the rise of availability of sequencing data we expect our tool to find broad usage in clinical and research applications.
Collapse
Affiliation(s)
- Milena Vujović
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Paolo Marcatili
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Benny Chain
- UCL Division of Infection and Immunity, University College London, London, UK.
| | - Joseph Kaplinsky
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Medicine, Oxford, UK.
| | - Thomas Lars Andresen
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
12
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
13
|
Høye E, Dagenborg VJ, Torgunrud A, Lund-Andersen C, Fretland ÅA, Lorenz S, Edwin B, Hovig E, Fromm B, Inderberg EM, Greiff V, Ree AH, Flatmark K. T cell receptor repertoire sequencing reveals chemotherapy-driven clonal expansion in colorectal liver metastases. Gigascience 2022; 12:giad032. [PMID: 37161965 PMCID: PMC10170408 DOI: 10.1093/gigascience/giad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Colorectal liver metastasis (CLM) is a leading cause of colorectal cancer mortality, and the response to immune checkpoint inhibition (ICI) in microsatellite-stable CRC has been disappointing. Administration of cytotoxic chemotherapy may cause increased density of tumor-infiltrating T cells, which has been associated with improved response to ICI. This study aimed to quantify and characterize T-cell infiltration in CLM using T-cell receptor (TCR) repertoire sequencing. Eighty-five resected CLMs from patients included in the Oslo CoMet study were subjected to TCR repertoire sequencing. Thirty-five and 15 patients had received neoadjuvant chemotherapy (NACT) within a short or long interval, respectively, prior to resection, while 35 patients had not been exposed to NACT. T-cell fractions were calculated, repertoire clonality was analyzed based on Hill evenness curves, and TCR sequence convergence was assessed using network analysis. RESULTS Increased T-cell fractions (10.6% vs. 6.3%) were detected in CLMs exposed to NACT within a short interval prior to resection, while modestly increased clonality was observed in NACT-exposed tumors independently of the timing of NACT administration and surgery. While private clones made up >90% of detected clones, network connectivity analysis revealed that public clones contributed the majority of TCR sequence convergence. CONCLUSIONS TCR repertoire sequencing can be used to quantify T-cell infiltration and clonality in clinical samples. This study provides evidence to support chemotherapy-driven T-cell clonal expansion in CLM in a clinical context.
Collapse
Affiliation(s)
- Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Vegar J Dagenborg
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Annette Torgunrud
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Christin Lund-Andersen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Åsmund A Fretland
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Susanne Lorenz
- Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Eivind Hovig
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Else M Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Anne H Ree
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| |
Collapse
|
14
|
Weber CR, Rubio T, Wang L, Zhang W, Robert PA, Akbar R, Snapkov I, Wu J, Kuijjer ML, Tarazona S, Conesa A, Sandve GK, Liu X, Reddy ST, Greiff V. Reference-based comparison of adaptive immune receptor repertoires. CELL REPORTS METHODS 2022; 2:100269. [PMID: 36046619 PMCID: PMC9421535 DOI: 10.1016/j.crmeth.2022.100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.
Collapse
Affiliation(s)
- Cédric R. Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Teresa Rubio
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Longlong Wang
- BGI-Shenzhen, Shenzhen, China
- BGI-Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Philippe A. Robert
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Igor Snapkov
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sonia Tarazona
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Valencia, Spain
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Relevance of Pathogenetic Mechanisms to Clinical Effectiveness of B-Cell-Depleting Monoclonal Antibodies in Multiple Sclerosis. J Clin Med 2022; 11:jcm11154288. [PMID: 35893382 PMCID: PMC9332715 DOI: 10.3390/jcm11154288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Evidence of the effectiveness of B-cell-depleting monoclonal antibodies (mAbs) in multiple sclerosis (MS) prompted a partial revisitation of the pathogenetic paradigm of the disease, which was, so far, considered a T-cell-mediated autoimmune disorder. Mechanisms underlying the efficacy of B-cell-depleting mAbs in MS are still unknown. However, they likely involve the impairment of pleiotropic B-cell functions different from antibody secretion, such as their role as antigen-presenting cells during both the primary immune response in the periphery and the secondary response within the central nervous system (CNS). A potential impact of B-cell-depleting mAbs on inflammation compartmentalised within the CNS was also suggested, but little is known about the mechanism underlying this latter phenomenon as no definite evidence was provided so far on the ability of mAbs to cross the blood–brain barrier and reliable biomarkers of compartmentalised inflammation are lacking. The present paper briefly summarises the immunopathogenesis of MS with a focus on onset of autoimmunity and compartmentalisation of the immune response; mechanisms mediating B-cell depletion and underlying the effectiveness of B-cell-depleting mAbs are also discussed.
Collapse
|
16
|
Ballerini C, Njamnshi AK, Juliano SL, Kalaria RN, Furlan R, Akinyemi RO. Non-Communicable Neurological Disorders and Neuroinflammation. Front Immunol 2022; 13:834424. [PMID: 35769472 PMCID: PMC9235309 DOI: 10.3389/fimmu.2022.834424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Traumatic brain injury, stroke, and neurodegenerative diseases represent a major cause of morbidity and mortality in Africa, as in the rest of the world. Traumatic brain and spinal cord injuries specifically represent a leading cause of disability in the younger population. Stroke and neurodegenerative disorders predominantly target the elderly and are a major concern in Africa, since their rate of increase among the ageing is the fastest in the world. Neuroimmunology is usually not associated with non-communicable neurological disorders, as the role of neuroinflammation is not often considered when evaluating their cause and pathogenesis. However, substantial evidence indicates that neuroinflammation is extremely relevant in determining the consequences of non-communicable neurological disorders, both for its protective abilities as well as for its destructive capacity. We review here current knowledge on the contribution of neuroinflammation and neuroimmunology to the pathogenesis of traumatic injuries, stroke and neurodegenerative diseases, with a particular focus on problems that are already a major issue in Africa, like traumatic brain injury, and on emerging disorders such as dementias.
Collapse
Affiliation(s)
- Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN); Neurology Department, Central Hospital Yaounde/Faculty of Medicine and Biomedical Sciences (FMBS), The University of Yaounde 1, Yaounde, Cameroon
| | - Sharon L. Juliano
- Neuroscience, Uniformed Services University Hebert School (USUHS), Bethesda, MD, United States
| | - Rajesh N. Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| | - Rufus O. Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| |
Collapse
|
17
|
Towlerton AMH, Ravishankar S, Coffey DG, Puronen CE, Warren EH. Serial Analysis of the T-Cell Receptor β-Chain Repertoire in People Living With HIV Reveals Incomplete Recovery After Long-Term Antiretroviral Therapy. Front Immunol 2022; 13:879190. [PMID: 35585986 PMCID: PMC9108698 DOI: 10.3389/fimmu.2022.879190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term antiretroviral therapy (ART) in people living with HIV (PLHIV) is associated with sustained increases in CD4+ T-cell count, but its effect on the peripheral blood T-cell repertoire has not been comprehensively evaluated. In this study, we performed serial profiling of the composition and diversity of the T-cell receptor β-chain (TRB) repertoire in 30 adults with HIV infection before and after the initiation of ART to define its long-term impact on the TRB repertoire. Serially acquired blood samples from 30 adults with HIV infection collected over a mean of 6 years (range, 1-12) years, with 1-4 samples collected before and 2-8 samples collected after the initiation of ART, were available for analysis. TRB repertoires were characterized via high-throughput sequencing of the TRB variable region performed on genomic DNA extracted from unsorted peripheral blood mononuclear cells. Additional laboratory and clinical metadata including serial measurements of HIV viral load and CD4 + T-cell count were available for all individuals in the cohort. A previously published control group of 189 TRB repertoires from peripheral blood samples of adult bone marrow transplant donors was evaluated for comparison. ART initiation in PLHIV was associated with a sustained reduction in viral load and a significant increase in TRB repertoire diversity. However, repertoire diversity in PLHIV remained significantly lower than in the control group even after long-term ART. The composition of TRB repertoires of PLHIV after ART also remained perturbed compared to the control cohort, as evidenced by large persistent private clonal expansions, reduced efficiency in the generation of TRB CDR3 amino acid sequences, and a narrower range of CDR3 lengths. Network analysis revealed an antigen-experienced structure in the TRB repertoire of PLHIV both before and after ART initiation that was quite distinct from the structure of control repertoires, with a slight shift toward a more naïve structure observed after ART initiation. Though we observe significant improvement in TRB repertoire diversity with durable viral suppression in PLHIV on long-term ART, the composition and structure of these repertoires remain significantly perturbed compared to the control cohort of adult bone marrow transplant donors.
Collapse
Affiliation(s)
- Andrea M. H. Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Shashidhar Ravishankar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David G. Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
- Division of Hematology, University of Miami, Miami, FL, United States
| | - Camille E. Puronen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
| | - Edus H. Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Massey J, Jackson K, Singh M, Hughes B, Withers B, Ford C, Khoo M, Hendrawan K, Zaunders J, Charmeteau-De Muylder B, Cheynier R, Luciani F, Ma D, Moore J, Sutton I. Haematopoietic Stem Cell Transplantation Results in Extensive Remodelling of the Clonal T Cell Repertoire in Multiple Sclerosis. Front Immunol 2022; 13:798300. [PMID: 35197974 PMCID: PMC8859174 DOI: 10.3389/fimmu.2022.798300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a vital therapeutic option for patients with highly active multiple sclerosis (MS). Rates of remission suggest AHSCT is the most effective form of immunotherapy in controlling the disease. Despite an evolving understanding of the biology of immune reconstitution following AHSCT, the mechanism by which AHSCT enables sustained disease remission beyond the period of lymphopenia remains to be elucidated. Auto-reactive T cells are considered central to MS pathogenesis. Here, we analyse T cell reconstitution for 36 months following AHSCT in a cohort of highly active MS patients. Through longitudinal analysis of sorted naïve and memory T cell clones, we establish that AHSCT induces profound changes in the dominant T cell landscape of both CD4+ and CD8+ memory T cell clones. Lymphopenia induced homeostatic proliferation is followed by clonal attrition; with only 19% of dominant CD4 (p <0.025) and 13% of dominant CD8 (p <0.005) clones from the pre-transplant repertoire detected at 36 months. Recovery of a thymically-derived CD4 naïve T cell repertoire occurs at 12 months and is ongoing at 36 months, however diversity of the naïve populations is not increased from baseline suggesting the principal mechanism of durable remission from MS after AHSCT relates to depletion of putative auto-reactive clones. In a cohort of MS patients expressing the MS risk allele HLA DRB1*15:01, public clones are probed as potential biomarkers of disease. AHSCT appears to induce sustained periods of disease remission with dynamic changes in the clonal T cell repertoire out to 36 months post-transplant.
Collapse
Affiliation(s)
- Jennifer Massey
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
- *Correspondence: Jennifer Massey,
| | - Katherine Jackson
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Mandeep Singh
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Brendan Hughes
- School of Medical Sciences and Kirby Institute for Infection and Immunity, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Barbara Withers
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
| | - Carole Ford
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Melissa Khoo
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Kevin Hendrawan
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - John Zaunders
- Immunology Laboratory, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | | | - Rémi Cheynier
- Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - David Ma
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
| | - John Moore
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Blood Stem Cell and Cancer Research Group, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
| | - Ian Sutton
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Darlinghurst, NSW, Australia
- Department of Neurology, St Vincent’s Clinic, Darlinghurst, NSW, Australia
| |
Collapse
|
19
|
Amoriello R, Mariottini A, Ballerini C. Immunosenescence and Autoimmunity: Exploiting the T-Cell Receptor Repertoire to Investigate the Impact of Aging on Multiple Sclerosis. Front Immunol 2021; 12:799380. [PMID: 34925384 PMCID: PMC8673061 DOI: 10.3389/fimmu.2021.799380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
T-cell receptor (TCR) repertoire diversity is a determining factor for the immune system capability in fighting infections and preventing autoimmunity. During life, the TCR repertoire diversity progressively declines as a physiological aging progress. The investigation of TCR repertoire dynamics over life represents a powerful tool unraveling the impact of immunosenescence in health and disease. Multiple Sclerosis (MS) is a demyelinating, inflammatory, T-cell mediated autoimmune disease of the Central Nervous System in which age is crucial: it is the most widespread neurological disease among young adults and, furthermore, patients age may impact on MS progression and treatments outcome. Crossing knowledge on the TCR repertoire dynamics over MS patients' life is fundamental to investigate disease mechanisms, and the advent of high- throughput sequencing (HTS) has significantly increased our knowledge on the topic. Here we report an overview of current literature about the impact of immunosenescence and age-related TCR dynamics variation in autoimmunity, including MS.
Collapse
Affiliation(s)
- Roberta Amoriello
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| | - Alice Mariottini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| |
Collapse
|