1
|
Chen HW, Ma CP, Chin E, Chen YT, Wang TC, Kuo YP, Su CH, Huang PJ, Tan BCM. Imbalance in Unc80 RNA Editing Disrupts Dynamic Neuronal Activity and Olfactory Perception. Int J Mol Sci 2024; 25:5985. [PMID: 38892173 PMCID: PMC11172567 DOI: 10.3390/ijms25115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.
Collapse
Affiliation(s)
- Hui-Wen Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
| | - En Chin
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Teh-Cheng Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yu-Ping Kuo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Genomic Medicine Core Laboratory, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Wang W, Li J, Cui S, Li J, Ye X, Wang Z, Zhang T, Jiang X, Kong Y, Chen X, Chen YQ, Zhu S. Microglial Ffar4 deficiency promotes cognitive impairment in the context of metabolic syndrome. SCIENCE ADVANCES 2024; 10:eadj7813. [PMID: 38306420 PMCID: PMC10836723 DOI: 10.1126/sciadv.adj7813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Metabolic syndrome (MetS) is closely associated with an increased risk of dementia and cognitive impairment, and a complex interaction of genetic and environmental dietary factors may be implicated. Free fatty acid receptor 4 (Ffar4) may bridge the genetic and dietary aspects of MetS development. However, the role of Ffar4 in MetS-related cognitive dysfunction is unclear. In this study, we found that Ffar4 expression is down-regulated in MetS mice and MetS patients with cognitive impairment. Conventional and microglial conditional knockout of Ffar4 exacerbated high-fat diet (HFD)-induced cognitive dysfunction and anxiety, whereas microglial Ffar4 overexpression improved HFD-induced cognitive dysfunction and anxiety. Mechanistically, we found that microglial Ffar4 regulated microglial activation through type I interferon signaling. Microglial depletion and NF-κB inhibition partially reversed cognitive dysfunction and anxiety in microglia-specific Ffar4 knockout MetS mice. Together, these findings uncover a previously unappreciated role of Ffar4 in negatively regulating the NF-κB-IFN-β signaling and provide an attractive therapeutic target for delaying MetS-associated cognitive decline.
Collapse
Affiliation(s)
- Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Tingting Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yulin Kong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xin Chen
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
3
|
Wang Z, Li J, Wang L, Liu Y, Wang W, Chen J, Liang H, Chen YQ, Zhu S. FFAR4 activation inhibits lung adenocarcinoma via blocking respiratory chain complex assembly associated mitochondrial metabolism. Cell Mol Biol Lett 2024; 29:17. [PMID: 38243188 PMCID: PMC10799372 DOI: 10.1186/s11658-024-00535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Despite notable advancements in the investigation and management of lung adenocarcinoma (LUAD), the mortality rate for individuals afflicted with LUAD remains elevated, and attaining an accurate prognosis is challenging. LUAD exhibits intricate genetic and environmental components, and it is plausible that free fatty acid receptors (FFARs) may bridge the genetic and dietary aspects. The objective of this study is to ascertain whether a correlation exists between FFAR4, which functions as the primary receptor for dietary fatty acids, and various characteristics of LUAD, while also delving into the potential underlying mechanism. The findings of this study indicate a decrease in FFAR4 expression in LUAD, with a positive correlation (P < 0.01) between FFAR4 levels and overall patient survival (OS). Receiver operating characteristic (ROC) curve analysis demonstrated a significant diagnostic value [area under the curve (AUC) of 0.933] associated with FFAR4 expression. Functional investigations revealed that the FFAR4-specific agonist (TUG891) effectively suppressed cell proliferation and induced cell cycle arrest. Furthermore, FFAR4 activation resulted in significant metabolic shifts, including a decrease in oxygen consumption rate (OCR) and an increase in extracellular acidification rate (ECAR) in A549 cells. In detail, the activation of FFAR4 has been observed to impact the assembly process of the mitochondrial respiratory chain complex and the malate-aspartate shuttle process, resulting in a decrease in the transition of NAD+ to NADH and the inhibition of LUAD. These discoveries reveal a previously unrecognized function of FFAR4 in the negative regulation of mitochondrial metabolism and the inhibition of LUAD, indicating its potential as a promising therapeutic target for the treatment and diagnosis of LUAD.
Collapse
Affiliation(s)
- Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinyou Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - LongFei Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yaowei Liu
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JiaYao Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - HuiJun Liang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Y Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - ShengLong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Di Petrillo A, Kumar A, Onali S, Favale A, Fantini MC. GPR120/FFAR4: A Potential New Therapeutic Target for Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:1981-1989. [PMID: 37542525 DOI: 10.1093/ibd/izad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 08/07/2023]
Abstract
Inflammatory bowel disease, whose major forms are Crohn's disease and ulcerative colitis, is characterized by chronic inflammation of the gut due to the loss of tolerance toward antigens normally contained in the gut lumen. G protein-coupled receptor (GPR) 120 has gained considerable attention as a potential therapeutic target for metabolic disorders due to its implication in the production of the incretin hormone glucagon-like peptide 1 and the secretion of cholecystokinin. Recent studies have also highlighted the role of GPR120 in regulating immune system activity and inflammation. GPR120, expressed by intestinal epithelial cells, proinflammatory macrophages, enteroendocrine L cells, and CD4+ T cells, suppresses proinflammatory and enhances anti-inflammatory cytokine production, suggesting that GPR120 might have a pivotal role in intestinal inflammation and represent a possible therapeutic target in inflammatory bowel disease. This narrative review aims at summarizing the role of GPR120 in the maintenance of intestinal homeostasis through the analysis of the most recent studies.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Sara Onali
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Agnese Favale
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | | |
Collapse
|
5
|
Wang Z, Cui S, Zhang T, Wang W, Li J, Chen YQ, Zhu SL. Akkermansia muciniphila supplementation improves glucose tolerance in intestinal Ffar4 knockout mice during the daily light to dark transition. mSystems 2023; 8:e0057323. [PMID: 37787527 PMCID: PMC10654094 DOI: 10.1128/msystems.00573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Alterations in the intestinal environment are associated with various diseases, and FFAR4 is abundantly enriched in the intestine, where it has been shown to have the ability to regulate intestinal hormone secretion and intestinal microbiota; here, we confirmed previous reports. Meanwhile, we found that intestinal FFAR4 regulates glucagon-like peptide 1 secretion by decreasing Akkermansia muciniphila abundance and show that such change is associated with the level of glucose utilization at ZT12 in mice. Intestinal FFAR4 deficiency leads to severely impaired glucose tolerance at the ZT12 moment in mice, and Akkermansia muciniphila supplementation ameliorates the abnormal glucose utilization at the ZT12 moment caused by FFAR4 deficiency, which is very similar to the dawn phenomenon in diabetic patients. Collectively, our data suggest that intestinal Ffar4 deteriorates glucose tolerance at the daily light to dark transition by affecting Akkermansia muciniphila.
Collapse
Affiliation(s)
- Zhe Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - TingTing Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JiaYu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Y. Q. Chen
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sheng long Zhu
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Liu H, Pan D, Li P, Wang D, Xia B, Zhang R, Lu J, Xing X, Du J, Zhang X, Jin L, Jiang L, Yao L, Li M, Wu J. Loss of ZBED6 Protects Against Sepsis-Induced Muscle Atrophy by Upregulating DOCK3-Mediated RAC1/PI3K/AKT Signaling Pathway in Pigs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302298. [PMID: 37551034 PMCID: PMC10582467 DOI: 10.1002/advs.202302298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/12/2023] [Indexed: 08/09/2023]
Abstract
Sepsis-induced muscle atrophy often increases morbidity and mortality in intensive care unit (ICU) patients, yet neither therapeutic target nor optimal animal model is available for this disease. Here, by modifying the surgical strategy of cecal ligation and puncture (CLP), a novel sepsis pig model is created that for the first time recapitulates the whole course of sepsis in humans. With this model and sepsis patients, increased levels of the transcription factor zinc finger BED-type containing 6 (ZBED6) in skeletal muscle are shown. Protection against sepsis-induced muscle wasting in ZBED6-deficient pigs is further demonstrated. Mechanistically, integrated analysis of RNA-seq and ChIP-seq reveals dedicator of cytokinesis 3 (DOCK3) as the direct target of ZBED6. In septic ZBED6-deficient pigs, DOCK3 expression is increased in skeletal muscle and myocytes, activating the RAC1/PI3K/AKT pathway and protecting against sepsis-induced muscle wasting. Conversely, opposite gene expression patterns and exacerbated muscle wasting are observed in septic ZBED6-overexpressing myotubes. Notably, sepsis patients show increased ZBED6 expression along with reduced DOCK3 and downregulated RAC1/PI3K/AKT pathway. These findings suggest that ZBED6 is a potential therapeutic target for sepsis-induced muscle atrophy, and the established sepsis pig model is a valuable tool for understanding sepsis pathogenesis and developing its therapeutics.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuan610072China
| | - Pu Li
- Department of Critical Care Medicinethe Second Affiliated Hospital of Air Force Medical UniversityNo.569, Xinsi RoadXi'anShaanxi710038China
| | - Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and ReproductionMinistry of AgricultureInstitute of Animal SciencesChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
| | - Bo Xia
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Ruixin Zhang
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Junfeng Lu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xiangyang Xing
- Chengdu Clonorgan Biotechnology Co. LTDChengduSichuan610041China
| | - Jiaxiang Du
- Chengdu Clonorgan Biotechnology Co. LTDChengduSichuan610041China
| | - Xiao Zhang
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Long Jin
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengduSichuan611130China
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and ReproductionMinistry of AgricultureInstitute of Animal SciencesChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
| | - Linong Yao
- Department of Critical Care Medicinethe Second Affiliated Hospital of Air Force Medical UniversityNo.569, Xinsi RoadXi'anShaanxi710038China
| | - Mingzhou Li
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengduSichuan611130China
| | - Jiangwei Wu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
7
|
Wang W, Kong Y, Wang X, Wang Z, Tang C, Li J, Yang Q, Chen YQ, Zhu S. Identification of novel SCD1 inhibitor alleviates nonalcoholic fatty liver disease: critical role of liver-adipose axis. Cell Commun Signal 2023; 21:268. [PMID: 37777801 PMCID: PMC10544195 DOI: 10.1186/s12964-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023] Open
Abstract
Due to the complexity and incomplete understanding of the crosstalk between liver and adipose tissue, especially the processes of hepatic lipogenesis and adipogenic differentiation, there are currently no effective drugs for the treatment of nonalcoholic fatty liver disease (NAFLD). Stearoyl-coenzyme A desaturase 1 (SCD1), which is abundantly expressed in liver and adipose tissue, may mediate the cross-talk between liver and adipose tissue. Thus, it is essential to develop specific SCD1 inhibitors that target the liver-adipose axis. Herein, we identified a novel SCD1 inhibitor, E6446, through a high-throughput virtual screen. E6646 significantly inhibited adipogenic differentiation and hepatic lipogenesis via SCD1-ATF3 signaling. The SPR results showed that E6446 had a strong interaction ability with SCD1 (KD:4.61 μM). Additionally, E6646 significantly decreased hepatic steatosis, hepatic lipid droplet accumulation and insulin resistance in high-fat diet (HFD)-fed mice. Taken together, our findings not only suggest that E6446 can serve as a new, safe and highly effective anti-NAFLD agent for future clinical use but also provide a molecular basis for the future development of SCD1 inhibitors that inhibit both adipogenic differentiation and hepatic lipogenesis. Video Abstract.
Collapse
Affiliation(s)
- Wei Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yulin Kong
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xia Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhe Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qin Yang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
8
|
Sung CH, Pilla R, Marsilio S, Chow B, Zornow KA, Slovak JE, Lidbury JA, Steiner JM, Hill SL, Suchodolski JS. Fecal Concentrations of Long-Chain Fatty Acids, Sterols, and Unconjugated Bile Acids in Cats with Chronic Enteropathy. Animals (Basel) 2023; 13:2753. [PMID: 37685017 PMCID: PMC10486672 DOI: 10.3390/ani13172753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic enteropathy (CE) in cats encompasses food-responsive enteropathy, chronic inflammatory enteropathy (or inflammatory bowel disease), and low-grade intestinal T-cell lymphoma. While alterations in the gut metabolome have been extensively studied in humans and dogs with gastrointestinal disorders, little is known about the specific metabolic profile of cats with CE. As lipids take part in energy storage, inflammation, and cellular structure, investigating the lipid profile in cats with CE is crucial. This study aimed to measure fecal concentrations of various fatty acids, sterols, and bile acids. Fecal samples from 56 cats with CE and 77 healthy control cats were analyzed using gas chromatography-mass spectrometry, targeting 12 fatty acids, 10 sterols, and 5 unconjugated bile acids. Fecal concentrations of nine targeted fatty acids and animal-derived sterols were significantly increased in cats with CE. However, fecal concentrations of plant-derived sterols were significantly decreased in cats with CE. Additionally, an increased percentage of primary bile acids was observed in a subset of cats with CE. These findings suggest the presence of lipid maldigestion, malabsorption, and inflammation in the gastrointestinal tract of cats with CE. Understanding the lipid alterations in cats with CE can provide insights into the disease mechanisms and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Sina Marsilio
- UC Davis School of Veterinary Medicine, Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA 95616, USA
| | - Betty Chow
- Veterinary Specialty Hospital, San Diego, CA 92121, USA
- VCA Animal Specialty and Emergency Center, Los Angeles, CA 90025, USA
| | | | | | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| | - Steve L. Hill
- Veterinary Specialty Hospital, San Diego, CA 92121, USA
- Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, AZ 86004, USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.)
| |
Collapse
|
9
|
Jiang X, Ji S, Yuan F, Li T, Cui S, Wang W, Ye X, Wang R, Chen Y, Zhu S. Pyruvate dehydrogenase B regulates myogenic differentiation via the FoxP1-Arih2 axis. J Cachexia Sarcopenia Muscle 2023; 14:606-621. [PMID: 36564038 PMCID: PMC9891931 DOI: 10.1002/jcsm.13166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown. METHODS The human Gene Expression Omnibus database, aged mice and primary skeletal muscle cells were used to assess the expression level of pyruvate dehydrogenase B (PDHB) in human and mouse aged state. d-Galactose (d-gal)-induced sarcopenia mouse model and two classic cell models (C2C12 and HSkMC) were used to assess the myogenic effect of PDHB and the underlying mechanisms via immunocytochemistry, western blotting, quantitative real-time polymerase chain reaction, RNA interference or overexpression, dual-luciferase reporter assay, RNA sequencing and untargeted metabolomics. RESULTS We identified that a novel target PDHB promoted myogenic differentiation. PDHB expression decreased in aged mouse muscle relative to the young state (-50% of mRNA level, P < 0.01) and increased during mouse and primary human muscle cell differentiation (+3.97-fold, P < 0.001 and +3.79-fold, P < 0.001). Knockdown or overexpression of PDHB modulated the expression of genes related to muscle differentiation, namely, myogenic factor 5 (Myf5) (-46%, P < 0.01 and -27%, P < 0.05; +1.8-fold, P < 0.01), myogenic differentiation (MyoD) (-55%, P < 0.001 and -34%, P < 0.01; +2.27-fold, P < 0.001), myogenin (MyoG) (-60%, P < 0.001 and -70%, P < 0.001; +5.46-fold, P < 0.001) and myosin heavy chain (MyHC) (-70%, P < 0.001 and -69%, P < 0.001; +3.44-fold, P < 0.001) in both C2C12 cells and HSkMC. Metabolomic and transcriptomic analyses revealed that PDHB knockdown suppressed pyruvate metabolism (P < 0.001) and up-regulated ariadne RBR E3 ubiquitin protein ligase 2 (Arih2) (+7.23-fold, P < 0.001) in cellular catabolic pathways. The role of forkhead box P1 (FoxP1) (+4.18-fold, P < 0.001)-mediated Arih2 transcription was the key downstream regulator of PDHB in muscle differentiation. PDHB overexpression improved d-gal-induced muscle atrophy in mice, which was characterized by significant increases in grip strength, muscle mass and mean muscle cross-sectional area (1.19-fold to 1.5-fold, P < 0.01, P < 0.05 and P < 0.001). CONCLUSIONS The comprehensive results show that PDHB plays a sarcoprotective role by suppressing the FoxP1-Arih2 axis and may serve as a therapeutic target in sarcopenia.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fenglai Yuan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Jiang X, Yang Q, Qu H, Chen Y, Zhu S. Endogenous n-3 PUFAs Improve Non-Alcoholic Fatty Liver Disease through FFAR4-Mediated Gut-Liver Crosstalk. Nutrients 2023; 15:nu15030586. [PMID: 36771292 PMCID: PMC9919706 DOI: 10.3390/nu15030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The gut-liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, β-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Jiang X, Ji S, Cui S, Wang R, Wang W, Chen Y, Zhu S. Apol9a regulates myogenic differentiation via the ERK1/2 pathway in C2C12 cells. Front Pharmacol 2022; 13:942061. [PMID: 36506560 PMCID: PMC9727217 DOI: 10.3389/fphar.2022.942061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The rising prevalence of obesity and its complications is a big challenge for the global public health. Obesity is accompanied by biological dysfunction of skeletal muscle and the development of muscle atrophy. The deep knowledge of key molecular mechanisms underlying myogenic differentiation is crucial for discovering novel targets for the treatment of obesity and obesity-related muscle atrophy. However, no effective target is currently known for obesity-induced skeletal muscle atrophy. Methods: Transcriptomic analyses were performed to identify genes associated with the regulation of myogenic differentiation and their potential mechanisms of action. C2C12 cells were used to assess the myogenic effect of Apol9a through immunocytochemistry, western blotting, quantitative polymerase chain reaction, RNA interference or overexpression, and lipidomics. Results: RNA-seq of differentiated and undifferentiated C2C12 cells revealed that Apol9a expression significantly increased following myogenic differentiation and decreased during obesity-induced muscle atrophy. Apol9a silencing in these C2C12 cells suppressed the expression of myogenesis-related genes and reduced the accumulation of intracellular triglycerides. Furthermore, RNA-seq and western blot results suggest that Apol9a regulates myogenic differentiation through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). This assumption was subsequently confirmed by intervention with PD98059. Conclusion: In this study, we found that Apol9a regulates myogenic differentiation via the ERK1/2 pathway. These results broaden the putative function of Apol9a during myogenic differentiation and provide a promising therapeutic target for intervention in obesity and obesity-induced muscle atrophy.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- The Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China,*Correspondence: Shenglong Zhu,
| |
Collapse
|
12
|
How Arrestins and GRKs Regulate the Function of Long Chain Fatty Acid Receptors. Int J Mol Sci 2022; 23:ijms232012237. [PMID: 36293091 PMCID: PMC9602559 DOI: 10.3390/ijms232012237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
FFA1 and FFA4, two G protein-coupled receptors that are activated by long chain fatty acids, play crucial roles in mediating many biological functions in the body. As a result, these fatty acid receptors have gained considerable attention due to their potential to be targeted for the treatment of type-2 diabetes. However, the relative contribution of canonical G protein-mediated signalling versus the effects of agonist-induced phosphorylation and interactions with β-arrestins have yet to be fully defined. Recently, several reports have highlighted the ability of β-arrestins and GRKs to interact with and modulate different functions of both FFA1 and FFA4, suggesting that it is indeed important to consider these interactions when studying the roles of FFA1 and FFA4 in both normal physiology and in different disease settings. Here, we discuss what is currently known and show the importance of understanding fully how β-arrestins and GRKs regulate the function of long chain fatty acid receptors.
Collapse
|