2
|
Zheng X, Zhou F, Fu M, Xu L, Wang J, Li J, Li K, Sindermann C, Montag C, Becker B, Zhan Y, Kendrick KM. Patterns of neural activity in response to threatening faces are predictive of autistic traits: modulatory effects of oxytocin receptor genotype. Transl Psychiatry 2024; 14:168. [PMID: 38553454 PMCID: PMC10980722 DOI: 10.1038/s41398-024-02889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion recognition task together with functional MRI in a large cohort of neurotypical adult participants (N = 255, male = 131, aged 17-29 years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group. Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory influences of OXTR genotype need to be taken into account.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zhou
- Southwest University, Chongqing, China
| | - Meina Fu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Normal University, Chengdu, Sichuan, China
| | - Jiayuan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Keshuang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cornelia Sindermann
- University of Stuttgart, Computational Digital Psychology, Interchange Forum for Reflecting on Intelligent Systems, Stuttgart, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hongkong, Hongkong, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Szabó J, Mlynár M, Feješ A, Renczés E, Borbélyová V, Ostatníková D, Celec P. Intranasal oxytocin in a genetic animal model of autism. Mol Psychiatry 2024; 29:342-347. [PMID: 38102481 PMCID: PMC11116098 DOI: 10.1038/s41380-023-02330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders mainly characterized by deficient sociability and repetitive behaviors. Effective treatment for the core symptoms of ASD is still lacking. Behavioral interventions show limited effectiveness, while pharmacotherapy focuses on the amelioration of secondary symptomatology. Oxytocin (OXT) is a neuropeptide known for its prosocial impact, making it a candidate drug for ASD treatment. Its alleviating effect has been and still is widely researched, but outcomes reported by clinical studies are ambiguous. We examined the effect of daily intranasal OXT (0.8 IU/kg) administration for 4 weeks on the ASD-like phenotype in Shank3-/- adult mice. Animals treated with OXT spent twice as much time interacting with the social partner as early as after 2 weeks of treatment. Furthermore, OXT-treated mice exhibited reduced explorative behavior by 50%, after 4 weeks of treatment, and a 30% reduction in repetitive behavior, 4 weeks after treatment termination. One-fold higher sociability and 30% reduced exploration due to OXT lasted up to 4 weeks following the treatment termination. However, social disinterest was elevated by roughly 10% as well, indicating a form of social ambivalence. Obtained results support the therapeutic potential of intranasally administered OXT in alleviating social shortfalls in a genetic model of ASD. Subsequent research is necessary to elucidate the benefits and risks of the long-term OXT administration, as well as its applicability in other ASD models and the potential treatment effect on social communication, which was not measured in the present study.
Collapse
Affiliation(s)
- Jakub Szabó
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Matúš Mlynár
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Andrej Feješ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
4
|
Li K, Xiao J, Ling Z, Luo T, Xiong J, Chen Q, Dong L, Wang Y, Wang X, Jiang Z, Xia L, Yu Z, Hua R, Guo R, Tang D, Lv M, Lian A, Li B, Zhao G, He X, Xia K, Cao Y, Li J. Prioritizing de novo potential non-canonical splicing variants in neurodevelopmental disorders. EBioMedicine 2024; 99:104928. [PMID: 38113761 PMCID: PMC10767160 DOI: 10.1016/j.ebiom.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Genomic variants outside of the canonical splicing site (±2) may generate abnormal mRNA splicing, which are defined as non-canonical splicing variants (NCSVs). However, the clinical interpretation of NCSVs in neurodevelopmental disorders (NDDs) is largely unknown. METHODS We investigated the contribution of NCSVs to NDDs from 345,787 de novo variants (DNVs) in 47,574 patients with NDDs. We performed functional enrichment and protein-protein interaction analysis to assess the association between genes carrying prioritised NCSVs and NDDs. Minigene was used to validate the impact of NCSVs on mRNA splicing. FINDINGS We observed significantly more NCSVs (p = 0.02, odds ratio [OR] = 2.05) among patients with NDD than in controls. Both canonical splicing variants (CSVs) and NCSVs contributed to an equal proportion of patients with NDD (0.76% vs. 0.82%). The candidate genes carrying NCSVs were associated with glutamatergic synapse and chromatin remodelling. Minigene successfully validated 59 of 79 (74.68%) NCSVs that led to abnormal splicing in 40 candidate genes, and 9 of the genes (ARID1B, KAT6B, TCF4, SMARCA2, SHANK3, PDHA1, WDR45, SCN2A, SYNGAP1) harboured recurrent NCSVs with the same variant present in more than two unrelated patients with NDD. Moreover, 36 of 59 (61.02%) NCSVs are novel clinically relevant variants, including 34 unreported and 2 clinically conflicting interpretations or of uncertain significance NCSVs in the ClinVar database. INTERPRETATION This study highlights the common pathology and clinical importance of NCSVs in unsolved patients with NDD. FUNDING The present study was funded by grants from the National Natural Science Foundation of China, China Postdoctoral Science Foundation, the Hunan Youth Science and Technology Innovation Talent Project, the Provincial Natural Science Foundation of Hunan, The Scientific Research Program of FuRong laboratory, and the Natural Science Project of the University of Anhui Province.
Collapse
Affiliation(s)
- Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jifang Xiao
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Zhengbao Ling
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Luo
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jingyu Xiong
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Lijie Dong
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Yijing Wang
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Xiaomeng Wang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Zhaowei Jiang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhen Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Bin Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - GuiHu Zhao
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Human Sperm Bank, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Wang T, Liu L, Fan T, Xia K, Sun Z. Shared and divergent contribution of vitamin A and oxytocin to the aetiology of autism spectrum disorder. Comput Struct Biotechnol J 2023; 21:3109-3123. [PMID: 38213898 PMCID: PMC10782014 DOI: 10.1016/j.csbj.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 01/13/2024] Open
Abstract
Rare genetic variations contribute to the heterogeneity of autism spectrum disorder (ASD) and the responses to various interventions for ASD probands. However, the associated molecular underpinnings remain unclear. Herein, we estimated the association between rare genetic variations in 410 vitamin A (VA)-related genes (VARGs) and ASD aetiology using publicly available de novo mutations (DNMs), rare inherited variants, and copy number variations (CNVs) from about 50,000 ASD probands and 20,000 normal controls (discovery and validation cohorts). Additionally, given the functional relevance of VA and oxytocin, we systematically compared the similarities and differences between VA and oxytocin with respect to ASD aetiology and evaluated their potential for clinical applications. Functional DNMs and pathogenic CNVs in VARGs contributed to ASD pathogenesis in the discovery and validation cohorts. Additionally, 324 potential VA-related biomarkers were identified, 243 of which were shared with previously identified oxytocin-related biomarkers, while 81 were unique VA biomarkers. Moreover, multivariable logistic regression analysis revealed that both VA- and oxytocin-related biomarkers were able to predict ASD aetiology for individuals carrying functional DNM in corresponding biomarkers with an average precision of 0.94. As well as, convergent and divergent functions were also identified between VA- and oxytocin-related biomarkers. The findings of this study provide a basis for future studies aimed at understanding the pathophysiological mechanisms underlying ASD while also defining a set of potential molecular biomarkers for adjuvant diagnosis and intervention in ASD.
Collapse
Affiliation(s)
- Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Liqiu Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianda Fan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai 200031, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410078, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|