1
|
Bian Y, Cai X, Zhou R, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Sun H, Zhao X, Feng B, Weng X. Advances in meniscus tissue engineering: Towards bridging the gaps from bench to bedside. Biomaterials 2025; 312:122716. [PMID: 39121731 DOI: 10.1016/j.biomaterials.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xuejie Cai
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Runze Zhou
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yiming Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hanyang Sun
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Cheng PSW, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases. Trends Cancer 2024:S2405-8033(24)00260-7. [PMID: 39674792 DOI: 10.1016/j.trecan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.
Collapse
Affiliation(s)
- Priscilla S W Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marta Zaccaria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
3
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
4
|
Singh S, Lokhande KB, Kaushik AC, Singh A, Sahi S. AI screening and molecular dynamic simulation-driven identification of novel inhibitors of TGFßR1 for pancreatic cancer therapy. Comput Biol Chem 2024; 113:108262. [PMID: 39488933 DOI: 10.1016/j.compbiolchem.2024.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Pancreatic cancer, with a 5-year survival rate below 10 %, is one of the deadliest malignancies. The TGF-ß pathway plays a crucial role in this disease, making it a key target for therapeutic intervention. Clinical trials targeting TGF-β have faced challenges of toxicity and limited efficacy, highlighting the need for more potent small molecule inhibitors. We selected TGFßR1 as the drug target to inhibit TGF-ß signaling in pancreatic cancer. A multi-faceted approach was employed, commencing with AI-driven screening techniques to rapidly identify potential TGFßR1 inhibitors from vast compound libraries, including the ZINC and ChEMBL databases. AI-screened compounds were further validated through structure-based high-throughput virtual screening (HTVS) to evaluate their binding affinity to TGFßR1. In addition to this, a dedicated library of anticancer compounds (65,000 compounds) and protein kinase inhibitors (36,324 compounds) were also used for HTVS. Subsequently, pharmacokinetic profiling narrowed the selection to 40 hit compounds. Five hit compounds were chosen based on binding affinity, non-bonded interactions, stereochemistry, and pharmacokinetic profiles for molecular dynamics (MD) simulations. Trajectory analysis showed that residues HIS283, ASP351, LYS232, SER280, ILE211, and LYS213 within TGFßR1's active site are crucial for ligand binding through hydrogen bonds and hydrophobic interactions. Principal component analysis (PCA) and Dynamic cross-correlation matrix (DCCM) analysis were used to evaluate the receptor's dynamic response to the hit compounds. The simulation data revealed that compounds 1, 2, 3, 4, and 5 formed stable complexes with TGFßR1. Notably, post-MDS MM-GBSA analysis showed that compounds 4 and 5 exhibited exceptionally strong binding energies of -81.0 kcal/mol and -85.5 kcal/mol, respectively. The comprehensive computational analysis confirms compounds 4 and 5 as promising TGFßR1 hits with potential therapeutic applications in development of new treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Samvedna Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Aman Chandra Kaushik
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP, India.
| |
Collapse
|
5
|
Barakat R, Chatterjee J, Mu R, Qi X, Gu X, Smirnov I, Cobb O, Gao K, Barnes A, Kipnis J, Gutmann DH. Human single cell RNA-sequencing reveals a targetable CD8 + exhausted T cell population that maintains mouse low-grade glioma growth. Nat Commun 2024; 15:10312. [PMID: 39609412 PMCID: PMC11605098 DOI: 10.1038/s41467-024-54569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
In solid cancers, T cells typically function as cytotoxic effectors to limit tumor growth, prompting therapies that capitalize upon this antineoplastic property (immune checkpoint inhibition; ICI). Unfortunately, ICI treatments have been largely ineffective for high-grade brain tumors (gliomas; HGGs). Leveraging several single-cell RNA sequencing datasets, we report greater CD8+ exhausted T cells in human pediatric low-grade gliomas (LGGs) relative to adult and pediatric HGGs. Using several preclinical mouse LGG models (Nf1-OPG mice), we show that these PD1+/TIGIT+ CD8+ exhausted T cells are restricted to the tumor tissue, where they express paracrine factors necessary for OPG growth. Importantly, ICI treatments with α-PD1 and α-TIGIT antibodies attenuate Nf1-OPG tumor proliferation through suppression of two cytokine (Ccl4 and TGFβ)-mediated mechanisms, rather than by T cell-mediated cytotoxicity, as well as suppress monocyte-controlled T cell chemotaxis. Collectively, these findings establish a previously unrecognized function for CD8+ exhausted T cells as specialized regulators of LGG maintenance.
Collapse
Affiliation(s)
- Rasha Barakat
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Mu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuanhe Qi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xingxing Gu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Igor Smirnov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Karen Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Angelica Barnes
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Lemaitre L, Adeniji N, Suresh A, Reguram R, Zhang J, Park J, Reddy A, Trevino AE, Mayer AT, Deutzmann A, Hansen AS, Tong L, Arjunan V, Kambham N, Visser BC, Dua MM, Bonham CA, Kothary N, D'Angio HB, Preska R, Rosen Y, Zou J, Charu V, Felsher DW, Dhanasekaran R. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. NATURE CANCER 2024; 5:1534-1556. [PMID: 39304772 DOI: 10.1038/s43018-024-00828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Hepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD. Through single-cell high-plex cytometric imaging, we identified a spatial neighborhood within which PD-L1 + M2-like macrophages interact with stem-like tumor cells, correlating with CD8+ T cell exhaustion and poor survival. Further, through spatial transcriptomics of residual HCC, we showed that macrophage-derived TGFβ1 mediates the persistence of stem-like tumor cells. Last, we demonstrate that combined blockade of Pdl1 and Tgfβ excluded immunosuppressive macrophages, recruited activated CD8+ T cells and eliminated residual stem-like tumor cells in two mouse models: a transgenic model of MRD and a syngeneic orthotopic model of doxorubicin-resistant HCC. Thus, our spatial analyses reveal that PD-L1+ macrophages sustain MRD by activating the TGFβ pathway in stem-like cancer cells and targeting this interaction may prevent HCC recurrence from MRD.
Collapse
Affiliation(s)
- Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Reshma Reguram
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Amit Reddy
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | | | | | - Anja Deutzmann
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Monica M Dua
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - C Andrew Bonham
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Nishita Kothary
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Yanay Rosen
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
7
|
Yan J, Zhou X, Yang H. TGF-β signaling-related signature for predicting prognosis and therapeutic response in lower-grade glioma. Transl Cancer Res 2024; 13:4985-5002. [PMID: 39430851 PMCID: PMC11483406 DOI: 10.21037/tcr-24-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Background Low-grade glioma (LGG) is a tumor that includes World Health Organization (WHO) grade II and III glioma, the treatment of which consistently results in relapse and drug resistance. Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates various cellular processes, which is found to be abnormal in tumors and promotes glioma development and progression. In this study, we aimed to systematically evaluate the importance of the genes associated with TGF-β in LGG and discover the role of these genes in the prognosis and treatment response of LGG. Methods We used the "Bioconductor Limma" and "consensusClusterplus" R packages to screen differential and prognostic TGF-β-related genes. The R package "GSVA" was used to estimate the infiltration of immune cells and metabolism signature. The drug sensitivity for each TGF-β subtype was assessed by the R package "pRRophetic". The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was used to assess the copy number variation (CNV). The onco-print tool of the "complexheatmap package" was employed to visualize the somatic mutation and copy number alteration (CNA) among TGF clusters. Results We reported three subtypes (A, B, and C) of LGG according to the classification of TGF-β-related genes, where subtype A showed the best prognosis. Subtype B was highly enriched in immune cells. Somatic variations were observed to be diverse in all of the three TGF-β subtypes. Furthermore, another three genes (SHA, AC062021.1, and SNCG) related to TGF-β were identified, which can be a superior predictor of prognosis with a risk score. Conclusions LGG can be divided into three subtypes based on TGF-β signaling-related genes with distinct immune infiltration, metabolism, somatic variations, and prognosis.
Collapse
Affiliation(s)
- Jian Yan
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Chelushkin MA, van Dorp J, van Wilpe S, Seignette IM, Mellema JJJ, Alkemade M, Gil-Jimenez A, Peters D, Brugman W, Stockem CF, Hooijberg E, Broeks A, van Rhijn BWG, Mertens LS, van der Heijden AG, Mehra N, van Montfoort ML, Wessels LFA, Vis DJ, van der Heijden MS. Platinum-Based Chemotherapy Induces Opposing Effects on Immunotherapy Response-Related Spatial and Stromal Biomarkers in the Bladder Cancer Microenvironment. Clin Cancer Res 2024; 30:4227-4239. [PMID: 39047168 DOI: 10.1158/1078-0432.ccr-24-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Platinum-based chemotherapy and immune checkpoint inhibitors are key components of systemic treatment for muscle-invasive and advanced urothelial cancer. The ideal integration of these two treatment modalities remains unclear as clinical trials have led to inconsistent results. Modulation of the tumor-immune microenvironment by chemotherapy is poorly characterized. We aimed to investigate this modulation, focusing on potential clinical implications for immune checkpoint inhibitor response. EXPERIMENTAL DESIGN We assessed immune cell densities, spatial relations, and tumor/stromal components from 116 patients with urothelial bladder cancer (paired data for 95 patients) before and after platinum-based chemotherapy. RESULTS Several published biomarkers for immunotherapy response changed upon chemotherapy treatment. The intratumoral CD8+ T-cell percentage increased after treatment and was associated with increased TNFα-via-NF-κB signaling. The percentage of PDL1+ immune cells was higher after chemotherapy. An increase in chemo-induced changes that potentially inhibit an antitumor immune response was also observed, including increased fibroblast-based TGFβ signaling and distances from immune cells to the nearest cancer cell. The latter two parameters correlated significantly in posttreatment samples, suggesting that TGFβ signaling in fibroblasts may play a role in spatially separating immune cells from cancer cells. We examined specific chemotherapy regimens and found that treatment with methotrexate, vinblastine, doxorubicin, and cisplatin was associated with an increase in the macrophage cell percentage. Gemcitabine-containing chemotherapy was associated with upregulation of fibroblast TGFβ signaling. CONCLUSIONS The opposing effects of platinum-based chemotherapy on the immune cell composition and stromal context of the tumor-immune microenvironment may explain the inconsistent results of clinical trials investigating chemotherapy and immune checkpoint inhibitor combinations in bladder cancer.
Collapse
Affiliation(s)
- Maksim A Chelushkin
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jeroen van Dorp
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Iris M Seignette
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan-Jaap J Mellema
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maartje Alkemade
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alberto Gil-Jimenez
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wim Brugman
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chantal F Stockem
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik Hooijberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas W G van Rhijn
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Urology, Caritas St. Josef Medical Center, University of Regensburg, Regensburg, Germany
| | - Laura S Mertens
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Lodewyk F A Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Daniel J Vis
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Michiel S van der Heijden
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Jézéquel P, Lasla H, Gouraud W, Basseville A, Michel B, Frenel JS, Juin PP, Ben Azzouz F, Campone M. Mesenchymal-like immune-altered is the fourth robust triple-negative breast cancer molecular subtype. Breast Cancer 2024; 31:825-840. [PMID: 38777987 DOI: 10.1007/s12282-024-01597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Robust molecular subtyping of triple-negative breast cancer (TNBC) is a prerequisite for the success of precision medicine. Today, there is a clear consensus on three TNBC molecular subtypes: luminal androgen receptor (LAR), basal-like immune-activated (BLIA), and basal-like immune-suppressed (BLIS). However, the debate about the robustness of other subtypes is still open. METHODS An unprecedented number (n = 1942) of TNBC patient data was collected. Microarray- and RNAseq-based cohorts were independently investigated. Unsupervised analyses were conducted using k-means consensus clustering. Clusters of patients were then functionally annotated using different approaches. Prediction of response to chemotherapy and targeted therapies, immune checkpoint blockade, and radiotherapy were also screened for each TNBC subtype. RESULTS Four TNBC subtypes were identified in the cohort: LAR (19.36%); mesenchymal stem-like (MSL/MES) (17.35%); BLIA (31.06%); and BLIS (32.23%). Regarding the MSL/MES subtype, we suggest renaming it to mesenchymal-like immune-altered (MLIA) to emphasize its specific histological background and nature of immune response. Treatment response prediction results show, among other things, that despite immune activation, immune checkpoint blockade is probably less or completely ineffective in MLIA, possibly caused by mesenchymal background and/or an enrichment in dysfunctional cytotoxic T lymphocytes. TNBC subtyping results were included in the bc-GenExMiner v5.0 webtool ( http://bcgenex.ico.unicancer.fr ). CONCLUSION The mesenchymal TNBC subtype is characterized by an exhausted and altered immune response, and resistance to immune checkpoint inhibitors. Consensus for molecular classification of TNBC subtyping and prediction of cancer treatment responses helps usher in the era of precision medicine for TNBC patients.
Collapse
Affiliation(s)
- Pascal Jézéquel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France.
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France.
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France.
| | - Hamza Lasla
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Wilfried Gouraud
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Agnès Basseville
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Bertrand Michel
- Nantes Université, École Centrale Nantes, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, 44000, Nantes, France
| | - Jean-Sébastien Frenel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | - Philippe P Juin
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
- Université d'Angers, 49000, Angers, France
| |
Collapse
|
10
|
Heim K, Sagar, Sogukpinar Ö, Llewellyn-Lacey S, Price DA, Emmerich F, Kraft ARM, Cornberg M, Kielbassa S, Knolle P, Wohlleber D, Bengsch B, Boettler T, Neumann-Haefelin C, Thimme R, Hofmann M. Attenuated effector T cells are linked to control of chronic HBV infection. Nat Immunol 2024; 25:1650-1662. [PMID: 39198634 PMCID: PMC11362014 DOI: 10.1038/s41590-024-01928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
Hepatitis B virus (HBV)-specific CD8+ T cells play a dominant role during acute-resolving HBV infection but are functionally impaired during chronic HBV infection in humans. These functional deficits have been linked with metabolic and phenotypic heterogeneity, but it has remained unclear to what extent different subsets of HBV-specific CD8+ T cells still suppress viral replication. We addressed this issue by deep profiling, functional testing and perturbation of HBV-specific CD8+ T cells during different phases of chronic HBV infection. Our data revealed a mechanism of effector CD8+ T cell attenuation that emerges alongside classical CD8+ T cell exhaustion. Attenuated HBV-specific CD8+ T cells were characterized by cytotoxic properties and a dampened effector differentiation program, determined by antigen recognition and TGFβ signaling, and were associated with viral control during chronic HBV infection. These observations identify a distinct subset of CD8+ T cells linked with immune efficacy in the context of a chronic human viral infection with immunotherapeutic potential.
Collapse
Affiliation(s)
- Kathrin Heim
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Özlem Sogukpinar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Florian Emmerich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Sophie Kielbassa
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research, Munich, Germany
- Institute of Molecular Immunology, School of Life Science, TUM, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Malek E, Rana PS, Swamydas M, Daunov M, Miyagi M, Murphy E, Ignatz-Hoover JJ, Metheny L, Kim SJ, Driscoll JJ. The TGFβ type I receptor kinase inhibitor vactosertib in combination with pomalidomide in relapsed/refractory multiple myeloma: a phase 1b trial. Nat Commun 2024; 15:7388. [PMID: 39191755 PMCID: PMC11350185 DOI: 10.1038/s41467-024-51442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Functional blockade of the transforming growth factor-beta (TGFβ) signalling pathway improves the efficacy of cytotoxic and immunotherapies. Here, we conducted a phase 1b study (ClinicalTrials.gov., NCT03143985) to determine the primary endpoints of safety, tolerability, and maximal tolerated dose (200 mg twice daily) for the orally-available TGFβ type I receptor kinase inhibitor vactosertib in combination with pomalidomide in relapsed and/or refractory multiple myeloma (RRMM) patients who had received ≥2 lines of chemoimmunotherapy. Secondary endpoints demonstrated sustained clinical responses, favorable pharmacokinetic parameters and a 6-month progression-free survival of 82%. Vactosertib combined with pomalidomide was well-tolerated at all dose levels and displayed a manageable adverse event profile. Exploratory analysis indicated that vactosertib co-treatment with pomalidomide also reduced TGFβ levels in patient bone marrow as well as the level of CD8+ T-cells that expressed the immunoinhibitory marker PD-1. In vitro experiments indicated that vactosertib+pomalidomide co-treatment decreased the viability of MM cell lines and patient tumor cells, and increased CD8+ T-cell cytotoxic activity. Vactosertib is a safe therapeutic that demonstrates tumor-intrinsic activity and can overcome immunosuppressive challenges within the tumor microenvironment to reinvigorate T-cell fitness. Vactosertib offers promise to improve immunotherapeutic responses in heavily-pretreated MM patients refractory to conventional agents.
Collapse
Affiliation(s)
- Ehsan Malek
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Priyanka S Rana
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Muthulekha Swamydas
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Daunov
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Masaru Miyagi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Elena Murphy
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Leland Metheny
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | | | - James J Driscoll
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Weissenrieder JS, Peura J, Paudel U, Bhalerao N, Weinmann N, Johnson C, Wengyn M, Drager R, Furth EE, Simin K, Ruscetti M, Stanger BZ, Rustgi AK, Pitarresi JR, Foskett JK. Mitochondrial Ca 2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607195. [PMID: 39149344 PMCID: PMC11326289 DOI: 10.1101/2024.08.08.607195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in PDAC patients. In isogenic murine PDAC models, Mcu deletion (Mcu KO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGFβ. Snail re-expression and TGFβ treatment rescued deficits in Mcu KO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Peura
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Usha Paudel
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nikita Bhalerao
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie Weinmann
- Department of Chemistry, Millersville University, Millersville, PA, USA
| | - Calvin Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maximilian Wengyn
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rebecca Drager
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Emma Elizabeth Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jason R Pitarresi
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Lewis RI, Vom Stein AF, Hallek M. Targeting the tumor microenvironment for treating double-refractory chronic lymphocytic leukemia. Blood 2024; 144:601-614. [PMID: 38776510 DOI: 10.1182/blood.2023022861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT The introduction of BTK inhibitors and BCL2 antagonists to the treatment of chronic lymphocytic leukemia (CLL) has revolutionized therapy and improved patient outcomes. These agents have replaced chemoimmunotherapy as standard of care. Despite this progress, a new group of patients is currently emerging, which has become refractory or intolerant to both classes of agents, creating an unmet medical need. Here, we propose that the targeted modulation of the tumor microenvironment provides new therapeutic options for this group of double-refractory patients. Furthermore, we outline a sequential strategy for tumor microenvironment-directed combination therapies in CLL that can be tested in clinical protocols.
Collapse
Affiliation(s)
- Richard I Lewis
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Alexander F Vom Stein
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| |
Collapse
|
14
|
Xu X, Lu Y, Cao L, Miao Y, Li Y, Cui Y, Han T. Tumor-intrinsic P2RY6 drives immunosuppression by enhancing PGE 2 production. Cell Rep 2024; 43:114469. [PMID: 38996067 DOI: 10.1016/j.celrep.2024.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Despite the success of anti-programmed cell death-1 (anti-PD-1) immunotherapy, many cancer patients remain unresponsive, and reliable predictive biomarkers are lacking. Here, we show that aberrant expression of the pyrimidinergic receptor P2RY6 is frequent in human cancers and causes immune evasion. In mouse syngeneic and human xenograft tumor models, ectopic expression of P2RY6 shapes an immunosuppressive tumor microenvironment (TME) to enhance tumor growth and resistance to immunotherapy, whereas deletion of P2RY6 from tumors with high P2RY6 expression inflames the TME to inhibit tumor growth. As a G protein-coupled receptor, P2RY6 activates Gq/phospholipase C-β signaling and stimulates the synthesis of prostaglandin E2, which is a key mediator of immunosuppression in the TME. In contrast to the essential role of P2RY6 in tumors, global deletion of P2ry6 from mice does not compromise viability. Our study thus nominates P2RY6 as a precision immunotherapy target for patients with high tumor-intrinsic P2RY6 expression.
Collapse
Affiliation(s)
- Xilong Xu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yi Lu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Miao
- National Institute of Biological Sciences, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yamei Li
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Cui
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Ting Han
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
15
|
Bell HN, Zou W. Beyond the Barrier: Unraveling the Mechanisms of Immunotherapy Resistance. Annu Rev Immunol 2024; 42:521-550. [PMID: 38382538 PMCID: PMC11213679 DOI: 10.1146/annurev-immunol-101819-024752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.
Collapse
Affiliation(s)
- Hannah N Bell
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
| | - Weiping Zou
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Zhang H, Chen J, Bai J, Zhang J, Huang S, Zeng L, Zhou P, Shen Q, Yin T. Single dual-specific anti-PD-L1/TGF-β antibody synergizes with chemotherapy as neoadjuvant treatment for pancreatic ductal adenocarcinoma: a preclinical experimental study. Int J Surg 2024; 110:2679-2691. [PMID: 38489548 PMCID: PMC11093442 DOI: 10.1097/js9.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024]
Abstract
AIMS Chemotherapy resistance is an important cause of neoadjuvant therapy failure in pancreatic ductal adenocarcinoma (PDAC). BiTP (anti-PD-L1/TGF-β bispecific antibody) is a single antibody that can simultaneously and dually target transforming growth factor-beta (TGF-β) and programmed cell death ligand 1 (PD-L1). We attempted in this study to investigate the efficacy of BiTP in combination with first-line chemotherapy in PDAC. METHODS Preclinical assessments of BiTP plus gemcitabine and nab-paclitaxel were completed through a resectable KPC mouse model (C57BL/6J). Spectral flow cytometry, tissue section staining, enzyme-linked immunosorbent assays, Counting Kit-8, transwell, and Western blot assays were used to investigate the synergistic effects. RESULTS BiTP combinatorial chemotherapy in neoadjuvant settings significantly downstaged PDAC tumors, enhanced survival, and had a higher resectability for mice with PDAC. BiTP was high affinity binding to targets and reverse chemotherapy resistance of PDAC cells. The combination overcame immune evasion through reprogramming tumor microenvironment via increasing penetration and function of T cells, natural killer cells, and dendritic cells and decreasing the function of immunosuppression-related cells as regulatory T cells, M2 macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts. CONCLUSION Our results suggest that the BiTP combinatorial chemotherapy is a promising neoadjuvant therapy for PDAC.
Collapse
Affiliation(s)
- Haoxiang Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Hepatopancreatobiliary Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jianwei Bai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Shaoyi Huang
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Liang Zeng
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Qiang Shen
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
17
|
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris PC, Pearson MJ, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely MD, Zhang Y, Zhang JP, Ji L, Flies DB, Liu L, Langermann S, LaRochelle WJ, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper KA, Sanmamed MF, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Sci Immunol 2024; 9:eadh2334. [PMID: 38669316 DOI: 10.1126/sciimmunol.adh2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/19/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiwei Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoxiao Cheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Viviana Ahumada
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Xuan Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Christina Halcovich
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ala Nassar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D. Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-Ping Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Ji
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Qiuyu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jindong Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Ouyang W, Li Q, Niu Q, Qui M, Fu H, Du Y, Mo X. A multiplexed time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting the SMAD4-SMAD3-DNA complex. J Mol Cell Biol 2024; 15:mjad068. [PMID: 37968137 PMCID: PMC11063955 DOI: 10.1093/jmcb/mjad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023] Open
Abstract
The transforming growth factor-beta (TGFβ) signaling pathway plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFβ agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFβ agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small-molecule inhibitors specifically targeting SMAD4, the downstream master regulator of the TGFβ pathway, would offer an alternative approach with significant therapeutic potential for anti-TGFβ signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein‒protein interaction between SMAD4 and SMAD3, as well as the protein‒DNA interaction between SMADs and their consensus DNA-binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single-amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small-molecule inhibitors. Through a pilot screening of an FDA-approved bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small-molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFβ signaling agents.
Collapse
Affiliation(s)
- Wukun Ouyang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qianjin Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
DeVito NC, Nguyen YV, Sturdivant M, Plebanek MP, Howell K, Yarla N, Jain V, Aksu M, Beasley G, Theivanthiran B, Hanks BA. Gli2 Facilitates Tumor Immune Evasion and Immunotherapeutic Resistance by Coordinating Wnt Ligand and Prostaglandin Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587500. [PMID: 38617347 PMCID: PMC11014473 DOI: 10.1101/2024.03.31.587500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Therapeutic resistance to immune checkpoint blockade has been commonly linked to the process of mesenchymal transformation (MT) and remains a prevalent obstacle across many cancer types. An improved mechanistic understanding for MT-mediated immune evasion promises to lead to more effective combination therapeutic regimens. Herein, we identify the Hedgehog transcription factor, Gli2, as a key node of tumor-mediated immune evasion and immunotherapy resistance during MT. Mechanistic studies reveal that Gli2 generates an immunotolerant tumor microenvironment through the upregulation of Wnt ligand production and increased prostaglandin synthesis. This pathway drives the recruitment, viability, and function of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) while also impairing type I conventional dendritic cell, CD8 + T cell, and NK cell functionality. Pharmacologic EP2/EP4 prostaglandin receptor inhibition and Wnt ligand inhibition each reverses a subset of these effects, while preventing primary and adaptive resistance to anti-PD-1 immunotherapy, respectively. A transcriptional Gli2 signature correlates with resistance to anti-PD-1 immunotherapy in stage IV melanoma patients, providing a translational roadmap to direct combination immunotherapeutics in the clinic. SIGNIFICANCE Gli2-induced EMT promotes immune evasion and immunotherapeutic resistance via coordinated prostaglandin and Wnt signaling.
Collapse
|
20
|
Guo J, Niu Z, Lv R, Yuan J, Zhang Z, Guan X, Li D, Zhang H, Zhao A, Feng J, Liu D, Zhou X, Gong J. A novel GARP humanized mouse model for efficacy assessment of GARP-targeting therapies. Int Immunopharmacol 2024; 130:111782. [PMID: 38442579 DOI: 10.1016/j.intimp.2024.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Although breakthroughs have been achieved with immune checkpoint inhibitors (ICI) therapy, some tumors do not respond to those therapies due to primary or acquired resistance. GARP, a type I transmembrane cell surface docking receptor mediating latent transforming growth factor-β (TGF-β) and abundantly expressed on regulatory T lymphocytes and platelets, is a potential target to render these tumors responsive to ICI therapy, and enhancing anti-tumor response especially combined with ICI. To facilitate these research efforts, we developed humanized mouse models expressing humanized GARP (hGARP) instead of their mouse counterparts, enabling in vivo assessment of GARP-targeting agents. We created GARP-humanized mice by replacing the mouse Garp gene with its human homolog. Then, comprehensive experiments, including expression analysis, immunophenotyping, functional assessments, and pharmacologic assays, were performed to characterize the mouse model accurately. The Tregs and platelets in the B-hGARP mice (The letter B is the first letter of the company's English name, Biocytogen.) expressed human GARP, without expression of mouse GARP. Similar T, B, NK, DCs, monocytes and macrophages frequencies were identified in the spleen and blood of B-hGARP and WT mice, indicating that the humanization of GARP did not change the distribution of immune cell in these compartments. When combined with anti-PD-1, monoclonal antibodies (mAbs) against GARP/TGF-β1 complexes demonstrated enhanced in vivo anti-tumor activity compared to monotherapy with either agent. The novel hGARP model serves as a valuable tool for evaluating human GARP-targeting antibodies in immuno-oncology, which may enable preclinical studies to assess and validate new therapeutics targeting GARP. Furthermore, intercrosses of this model with ICI humanized models could facilitate the evaluation of combination therapies.
Collapse
Affiliation(s)
- Jing Guo
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China; Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Zhenlan Niu
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Ruili Lv
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Jiangfeng Yuan
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Zhi Zhang
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Xuewa Guan
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Dirui Li
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Haichao Zhang
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Ang Zhao
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Jia Feng
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China.
| | - Xiaofei Zhou
- Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China.
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China.
| |
Collapse
|
21
|
Niu L, Liu Y, Li N, Wang Y, Kang L, Su X, Xu C, Sun Z, Sang W, Xu J, Guo H, Shen S. Oral probiotics microgel plus Galunisertib reduced TGF-β blockade resistance and enhanced anti-tumor immune responses in colorectal cancer. Int J Pharm 2024; 652:123810. [PMID: 38244648 DOI: 10.1016/j.ijpharm.2024.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Transforming growth factor β (TGF-β), a versatile immunosuppressive cytokine, has gained increasing attention as a potential target for cancer immunotherapy. However, current strategies are constrained by tumor heterogeneity and drug resistance. Therapeutic probiotics, such as Escherichia coli Nissle1917 (EcN), not only regulate the gut microbiota to increase beneficial bacteria with anti-tumor effects, but also modulate immune factors within the body, thereby enhancing immunity. In this study, we developed an oral microgel delivery system of EcN@(CS-SA)2 by electrostatic interaction between chitosan (CS) and sodium alginate (SA), aiming to enhance its bioavailability in the gastrointestinal tract (GIT). Notably, EcN@(CS-SA)2 microgel showed a synergistic enhancement of the anti-tumor efficacy of Galunisertib (Gal, a TGF-β inhibitor) by inducing apoptosis and immunogenic cell death (ICD) in tumor cells, as well as promoting increased infiltration of CD8+ T cells into the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Lili Niu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yao Liu
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Nannan Li
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yang Wang
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Lin Kang
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiaomin Su
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Ce Xu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Zanya Sun
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Weicong Sang
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Jingyuan Xu
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Huishu Guo
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China.
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| |
Collapse
|
22
|
Honda CK, Kurozumi S, Fujii T, Pourquier D, Khellaf L, Boissiere F, Horiguchi J, Oyama T, Shirabe K, Colinge J, Yokobori T, Turtoi A. Cancer-associated fibroblast spatial heterogeneity and EMILIN1 expression in the tumor microenvironment modulate TGF-β activity and CD8 + T-cell infiltration in breast cancer. Theranostics 2024; 14:1873-1885. [PMID: 38505604 PMCID: PMC10945331 DOI: 10.7150/thno.90627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: The tumor microenvironment (TME) and its multifaceted interactions with cancer cells are major targets for cancer treatment. Single-cell technologies have brought major insights into the TME, but the resulting complexity often precludes conclusions on function. Methods: We combined single-cell RNA sequencing and spatial transcriptomic data to explore the relationship between different cancer-associated fibroblast (CAF) populations and immune cell exclusion in breast tumors. The significance of the findings was then evaluated in a cohort of tumors (N=75) from breast cancer patients using immunohistochemistry analysis. Results: Our data show for the first time the degree of spatial organization of different CAF populations in breast cancer. We found that IL-iCAFs, Detox-iCAFs, and IFNγ-iCAFs tended to cluster together, while Wound-myCAFs, TGFβ-myCAFs, and ECM-myCAFs formed another group that overlapped with elevated TGF-β signaling. Differential gene expression analysis of areas with CD8+ T-cell infiltration/exclusion within the TGF-β signaling-rich zones identified elastin microfibrillar interface protein 1 (EMILIN1) as a top modulated gene. EMILIN1, a TGF-β inhibitor, was upregulated in IFNγ-iCAFs directly modulating TGFβ immunosuppressive function. Histological analysis of 75 breast cancer samples confirmed that high EMILIN1 expression in the tumor margins was related to high CD8+ T-cell infiltration, consistent with our spatial gene expression analysis. High EMILIN1 expression was also associated with better prognosis of patients with breast cancer, underscoring its functional significance for the recruitment of cytotoxic T cells into the tumor area. Conclusion: Our data show that correlating TGF-β signaling to a CAF subpopulation is not enough because proteins with TGF-β-modulating activity originating from other CAF subpopulations can alter its activity. Therefore, therapeutic targeting should remain focused on biological processes rather than on specific CAF subtypes.
Collapse
Affiliation(s)
- Chikako Kanno Honda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Sasagu Kurozumi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Breast Surgery, International University of Health and Welfare, Chiba, Japan
| | - Takaaki Fujii
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Didier Pourquier
- Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, Montpellier, France
- Tumor Microenvironment and Resistance to Treatment Lab, INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Lakhdar Khellaf
- Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, Montpellier, France
- Tumor Microenvironment and Resistance to Treatment Lab, INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Florence Boissiere
- Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, Montpellier, France
| | - Jun Horiguchi
- Department of Breast Surgery, International University of Health and Welfare, Chiba, Japan
| | - Tetsunari Oyama
- Department of Pathology and Diagnostics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Jacques Colinge
- Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, Montpellier, France
- Université de Montpellier, Montpellier, France
- Cancer Bioinformatics and Systems Biology Team, INSERM U1194, Montpellier, France
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Andrei Turtoi
- Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, Montpellier, France
- Tumor Microenvironment and Resistance to Treatment Lab, INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| |
Collapse
|
23
|
Li K, Liu W, Yu H, Chen J, Tang W, Wang J, Qi M, Sun Y, Xu X, Zhang J, Li X, Guo W, Li X, Song S, Tang S. 68Ga-FAPI PET imaging monitors response to combined TGF-βR inhibition and immunotherapy in metastatic colorectal cancer. J Clin Invest 2024; 134:e170490. [PMID: 38175716 PMCID: PMC10866654 DOI: 10.1172/jci170490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUNDImproving and predicting tumor response to immunotherapy remains challenging. Combination therapy with a transforming growth factor-β receptor (TGF-βR) inhibitor that targets cancer-associated fibroblasts (CAFs) is promising for the enhancement of efficacy of immunotherapies. However, the effect of this approach in clinical trials is limited, requiring in vivo methods to better assess tumor responses to combination therapy.METHODSWe measured CAFs in vivo using the 68Ga-labeled fibroblast activation protein inhibitor-04 (68Ga-FAPI-04) for PET/CT imaging to guide the combination of TGF-β inhibition and immunotherapy. One hundred thirty-one patients with metastatic colorectal cancer (CRC) underwent 68Ga-FAPI and 18F-fluorodeoxyglucose (18F-FDG) PET/CT imaging. The relationship between uptake of 68Ga-FAPI and tumor immunity was analyzed in patients. Mouse cohorts of metastatic CRC were treated with the TGF-βR inhibitor combined with KN046, which blocks programmed death ligand 1 (PD-L1) and CTLA-4, followed by 68Ga-FAPI and 18F-FDG micro-PET/CT imaging to assess tumor responses.RESULTSPatients with metastatic CRC demonstrated high uptake rates of 68Ga-FAPI, along with suppressive tumor immunity and poor prognosis. The TGF-βR inhibitor enhanced tumor-infiltrating T cells and significantly sensitized metastatic CRC to KN046. 68Ga-FAPI PET/CT imaging accurately monitored the dynamic changes of CAFs and tumor response to combined the TGF-βR inhibitor with immunotherapy.CONCLUSION68Ga-FAPI PET/CT imaging is powerful in assessing tumor immunity and the response to immunotherapy in metastatic CRC. This study supports future clinical application of 68Ga-FAPI PET/CT to guide precise TGF-β inhibition plus immunotherapy in CRC patients, recommending 68Ga-FAPI and 18F-FDG dual PET/CT for CRC management.TRIAL REGISTRATIONCFFSTS Trial, ChiCTR2100053984, Chinese Clinical Trial Registry.FUNDINGNational Natural Science Foundation of China (82072695, 32270767, 82272035, 81972260).
Collapse
Affiliation(s)
- Ke Li
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Wei Liu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Hang Yu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Jiwei Chen
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenxuan Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Qi
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Yuyun Sun
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xiaoping Xu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Ji Zhang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xinxiang Li
- Department of Oncology and
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Oncology and
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shaoli Song
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Shuang Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| |
Collapse
|
24
|
Hassouneh Z, Huang G, Zhang N, Rao M, Mukherjee N. Commentary: On the Emerging Role of Innate Lymphoid Cells in Bladder Cancer. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:125-134. [PMID: 39574565 PMCID: PMC11580033 DOI: 10.33696/cancerimmunol.6.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Affiliation(s)
- Zaineb Hassouneh
- Department of Urology, University of Texas Health San Antonio (UTHSA), USA
- Department of Microbiology, Immunology & Molecular Genetics, UTHSA, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, UTHSA, USA
| | - Nu Zhang
- Department of Microbiology, Immunology & Molecular Genetics, UTHSA, USA
| | - Manjeet Rao
- Department of Cell Systems and Anatomy, UTHSA, USA
- Greehey Children’s Cancer Research Institute, UTHSA, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio (UTHSA), USA
| |
Collapse
|
25
|
Tokizaki S, Podyma‐Inoue KA, Matsumoto T, Takahashi K, Kobayashi M, Ibi H, Uchida S, Iwabuchi S, Harada H, Hashimoto S, Miyazono K, Shirouzu M, Watabe T. Inhibition of transforming growth factor-β signals suppresses tumor formation by regulation of tumor microenvironment networks. Cancer Sci 2024; 115:211-226. [PMID: 37972575 PMCID: PMC10823284 DOI: 10.1111/cas.16006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-β (TGF-β) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-β receptor containing both TGF-β type I (TβRI) and type II (TβRII) receptors (TβRI-TβRII-Fc), which trapped all TGF-β isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TβRI-TβRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TβRI-TβRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TβRI-TβRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1β (IL-1β) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1β and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-β signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1β/EREG pathways and that TβRI-TβRII-Fc protein is a promising tool for targeting the TME networks.
Collapse
Affiliation(s)
- Shiori Tokizaki
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | | | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Haruka Ibi
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical MedicineAalborg UniversityCopenhagenDenmark
| | - Sadahiro Iwabuchi
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinichi Hashimoto
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
- RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | | | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
26
|
Yao L, Wang Q, Ma W. Navigating the Immune Maze: Pioneering Strategies for Unshackling Cancer Immunotherapy Resistance. Cancers (Basel) 2023; 15:5857. [PMID: 38136402 PMCID: PMC10742031 DOI: 10.3390/cancers15245857] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer immunotherapy has ushered in a transformative era in oncology, offering unprecedented promise and opportunities. Despite its remarkable breakthroughs, the field continues to grapple with the persistent challenge of treatment resistance. This resistance not only undermines the widespread efficacy of these pioneering treatments, but also underscores the pressing need for further research. Our exploration into the intricate realm of cancer immunotherapy resistance reveals various mechanisms at play, from primary and secondary resistance to the significant impact of genetic and epigenetic factors, as well as the crucial role of the tumor microenvironment (TME). Furthermore, we stress the importance of devising innovative strategies to counteract this resistance, such as employing combination therapies, tailoring immune checkpoints, and implementing real-time monitoring. By championing these state-of-the-art methods, we anticipate a paradigm that blends personalized healthcare with improved treatment options and is firmly committed to patient welfare. Through a comprehensive and multifaceted approach, we strive to tackle the challenges of resistance, aspiring to elevate cancer immunotherapy as a beacon of hope for patients around the world.
Collapse
Affiliation(s)
- Liqin Yao
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou 313000, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Katagata M, Okayama H, Nakajima S, Saito K, Sato T, Sakuma M, Fukai S, Endo E, Sakamoto W, Saito M, Saze Z, Momma T, Mimura K, Kono K. TIM-3 Expression and M2 Polarization of Macrophages in the TGFβ-Activated Tumor Microenvironment in Colorectal Cancer. Cancers (Basel) 2023; 15:4943. [PMID: 37894310 PMCID: PMC10605063 DOI: 10.3390/cancers15204943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
TGFβ signaling in the tumor microenvironment (TME) drives immune evasion and is a negative predictor of immune checkpoint inhibitor (ICI) efficacy in colorectal cancer (CRC). TIM-3, an inhibitory receptor implicated in anti-tumor immune responses and ICI resistance, has emerged as an immunotherapeutic target. This study investigated TIM-3, M2 macrophages and the TGFβ-activated TME, in association with microsatellite instability (MSI) status and consensus molecular subtypes (CMSs). Transcriptomic cohorts of CRC tissues, organoids and xenografts were examined (n = 2240). TIM-3 and a TGFβ-inducible stromal protein, VCAN, were evaluated in CRC specimens using immunohistochemistry (n = 45). TIM-3 expression on monocytes and generated M2 macrophages was examined by flow cytometry. We found that the expression of HAVCR2 (TIM-3) significantly correlated with the transcriptional signatures of TGFβ, TGFβ-dependent stromal activation and M2 macrophage, each of which were co-upregulated in CMS4, CMS1 and MSI CRCs across all datasets. Tumor-infiltrating TIM-3+ immune cells accumulated in TGFβ-responsive cancer stroma. TIM-3 was increased on M2-polarized macrophages, and on monocytes in response to TGFβ treatment. In conclusion, we identified a close association between TIM-3 and M2-like polarization of macrophages in the TGFβ-rich TME. Our findings provide new insights into personalized immunotherapeutic strategies based on the TME for CRCs.
Collapse
Affiliation(s)
- Masanori Katagata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Takahiro Sato
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| |
Collapse
|
28
|
Katano A, Minamitani M, Ohira S, Yamashita H. Failure Patterns of Recurrence in Patients With Localized Esthesioneuroblastoma Following Surgery and Adjuvant Radiotherapy Without Elective Nodal Irradiation. Cureus 2023; 15:e46523. [PMID: 37927675 PMCID: PMC10625395 DOI: 10.7759/cureus.46523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Esthesioneuroblastoma (ENB), a rare malignancy arising from the olfactory epithelium, poses clinical challenges owing to its propensity for local invasion and recurrence. Its management typically involves surgical resection and adjuvant radiotherapy. However, debate persists regarding the optimal treatment strategy, particularly the use of elective nodal irradiation (ENI). This study aimed to investigate recurrence patterns in patients with localized ENB treated with surgery and adjuvant radiotherapy without ENI. METHODS Our retrospective analysis included patients who underwent surgery followed by adjuvant radiotherapy for treatment of ENB between January 2011 and November 2022. Patients with incomplete data or who had received neoadjuvant radiotherapy were excluded. Patient characteristics, radiotherapy data (type, dose, and duration), and follow-up data were collected. Recurrence patterns were evaluated, and overall survival (OS), disease-free survival (DFS), and local control rates were determined using the Kaplan-Meier method. RESULTS Twelve patients with ENB (median age, 56 years) were included. Most had stage C disease. The median radiation dose was 60 Gy, and the median treatment duration was six weeks. Only one death was confirmed during the observation period, and the five-year DFS rates were 64.3%. Local control was achieved in 11 patients, with only one experiencing local recurrence. Regional lymph node recurrence occurred in three patients and was successfully managed via neck dissection. The timing of recurrence varied, emphasizing the importance of long-term surveillance. CONCLUSION Adjuvant radiotherapy without ENI is a viable treatment option for ENB, resulting in favorable local control and OS outcomes. Regional lymph node metastases were observed but effectively managed via salvage therapy. Prospective studies with larger cohorts are warranted to confirm the effectiveness of this treatment strategy and to define optimal radiotherapy fields.
Collapse
Affiliation(s)
- Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, JPN
| | - Masanari Minamitani
- Department of Comprehensive Radiation Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, JPN
| | - Shingo Ohira
- Department of Comprehensive Radiation Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, JPN
| | - Hideomi Yamashita
- Department of Radiology, The University of Tokyo Hospital, Tokyo, JPN
| |
Collapse
|
29
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Int J Nanomedicine 2023; 18:5531-5559. [PMID: 37795042 PMCID: PMC10547015 DOI: 10.2147/ijn.s424872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
30
|
Huang B, Chen Q, Ye Z, Zeng L, Huang C, Xie Y, Zhang R, Shen H. Construction of a Matrix Cancer-Associated Fibroblast Signature Gene-Based Risk Prognostic Signature for Directing Immunotherapy in Patients with Breast Cancer Using Single-Cell Analysis and Machine Learning. Int J Mol Sci 2023; 24:13175. [PMID: 37685980 PMCID: PMC10487765 DOI: 10.3390/ijms241713175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are heterogeneous constituents of the tumor microenvironment involved in the tumorigenesis, progression, and therapeutic responses of tumors. This study identified four distinct CAF subtypes of breast cancer (BRCA) using single-cell RNA sequencing (RNA-seq) data. Of these, matrix CAFs (mCAFs) were significantly associated with tumor matrix remodeling and strongly correlated with the transforming growth factor (TGF)-β signaling pathway. Consensus clustering of The Cancer Genome Atlas (TCGA) BRCA dataset using mCAF single-cell characteristic gene signatures segregated samples into high-fibrotic and low-fibrotic groups. Patients in the high-fibrotic group exhibited a significantly poor prognosis. A weighted gene co-expression network analysis and univariate Cox analysis of bulk RNA-seq data revealed 17 differential genes with prognostic values. The mCAF risk prognosis signature (mRPS) was developed using 10 machine learning algorithms. The clinical outcome predictive accuracy of the mRPS was higher than that of the conventional TNM staging system. mRPS was correlated with the infiltration level of anti-tumor effector immune cells. Based on consensus prognostic genes, BRCA samples were classified into the following two subtypes using six machine learning algorithms (accuracy > 90%): interferon (IFN)-γ-dominant (immune C2) and TGF-β-dominant (immune C6) subtypes. Patients with mRPS downregulation were associated with improved prognosis, suggesting that they can potentially benefit from immunotherapy. Thus, the mRPS model can stably predict BRCA prognosis, reflect the local immune status of the tumor, and aid clinical decisions on tumor immunotherapy.
Collapse
Affiliation(s)
- Biaojie Huang
- College of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Qiurui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.C.); (Z.Y.); (L.Z.); (C.H.); (Y.X.)
| | - Zhiyun Ye
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.C.); (Z.Y.); (L.Z.); (C.H.); (Y.X.)
| | - Lin Zeng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.C.); (Z.Y.); (L.Z.); (C.H.); (Y.X.)
| | - Cuibing Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.C.); (Z.Y.); (L.Z.); (C.H.); (Y.X.)
| | - Yuting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.C.); (Z.Y.); (L.Z.); (C.H.); (Y.X.)
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.C.); (Z.Y.); (L.Z.); (C.H.); (Y.X.)
- Institute of Biopharmaceutical Research, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.C.); (Z.Y.); (L.Z.); (C.H.); (Y.X.)
- Institute of Biopharmaceutical Research, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
31
|
Ouyang W, Niu Q, Qui M, Fu H, Du Y, Mo X. A multiplexed time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting SMAD4-SMAD3-DNA complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549169. [PMID: 37503208 PMCID: PMC10370110 DOI: 10.1101/2023.07.15.549169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The signaling pathway of transforming growth factor-beta (TGFβ) plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFβ agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFβ agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small molecule inhibitors specifically targeting SMAD4, the downstream master regulator of TGFβ pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-β signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein-protein interaction (PPI) between SMAD4 and SMAD3, as well as the protein-DNA interaction (PDI) between SMADs and their consensus DNA binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small molecule inhibitors. Through a pilot screening of an FDA-approved and bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFβ signaling agents.
Collapse
|
32
|
Lo JH, Agarwal R, Goff LW, Heumann TR. Immunotherapy in Biliary Tract Cancers: Current Standard-of-Care and Emerging Strategies. Cancers (Basel) 2023; 15:3312. [PMID: 37444422 PMCID: PMC10340362 DOI: 10.3390/cancers15133312] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Biliary tract cancers (BTCs), comprising intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder adenocarcinoma, continue to be challenging to manage. Conventional chemotherapy regimens for advanced disease are limited in both options and benefits, and more effective perioperative regimens are also needed. Over the last decade, immunotherapy has had a profound impact on the management of many solid tumor types, particularly in using immune checkpoint inhibition to enable a tumor-directed T cell response. Immunotherapy administered on its own has had limited utility in BTCs, in part due to a hostile immune microenvironment and the relative infrequency of biomarker-based tumor-agnostic indications for immunotherapy. However, immunotherapy in conjunction with chemotherapy, molecularly targeted therapies, and/or anti-angiogenic therapies has gained traction, supported by evidence that these agents can impart favorable immunomodulatory effects on the tumor microenvironment. The TOPAZ-1 trial led to the first BTC-specific immunotherapy approval, establishing the combination of durvalumab with gemcitabine and cisplatin as the preferred first-line treatment for advanced or metastatic disease. Recently, the KEYNOTE-966 trial showed positive results for the combination of pembrolizumab with gemcitabine and cisplatin in the same setting, adding further evidence for the addition of immune checkpoint inhibition to the standard chemotherapy backbone. Meanwhile, advances in the molecular profiling of BTCs has contributed to the recent proliferation of molecularly targeted therapeutics for the subset of BTCs harboring alterations in IDH1, FGFR2, MAP kinase signaling, HER2, and beyond, and there has been great interest in investigating combinations of these agents with immunotherapy. Emerging immunotherapy strategies beyond immune checkpoint inhibition are also being studied in BTCs, and these include immunostimulatory receptor agonists, Wnt signaling modulators, adoptive cell therapy, and cancer vaccines. A large number of trials are underway to explore promising new combinations and immune-targeted strategies, offering opportunities to expand the role of immunotherapy in BTC management in the near future.
Collapse
Affiliation(s)
| | | | | | - Thatcher R. Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
33
|
Alifu M, Tao M, Chen X, Chen J, Tang K, Tang Y. Checkpoint inhibitors as dual immunotherapy in advanced non-small cell lung cancer: a meta-analysis. Front Oncol 2023; 13:1146905. [PMID: 37397392 PMCID: PMC10311062 DOI: 10.3389/fonc.2023.1146905] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Recent clinical trials have confirmed that anti-programmed cell death-1/ligand 1 (anti-PD-1/L1) combined with either anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibodies (dual immunotherapy) produced significant benefits as first-line therapies for patients with advanced non-small cell lung cancer (NSCLC). However, it also increased the incidence of adverse reactions, which cannot be ignored. Our study aims to explore the efficacy and safety of dual immunotherapies in advanced NSCLC. Methods This meta-analysis ultimately included nine first-line randomized controlled trials collected from PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases until 13 August 2022. Efficacy was measured as the hazard ratio (HR) and 95% confidence interval (CI) for progression-free survival (PFS), overall survival (OS), and risk ratio (RR) for the objective response rates (ORRs). Treatment safety was assessed by RR of any grade of treatment-related adverse events (TRAEs) and grade ≥ 3 TRAEs. Results Our results demonstrated that, compared to chemotherapy, dual immunotherapy shows durable benefits in OS (HR = 0.76, 95% CI: 0.69-0.82) and PFS (HR = 0.75, 95% CI: 0.67-0.83) across all levels of PD-L1 expression. Subgroup analysis also presented that dual immunotherapy resulted in improved long-term survival compared with chemotherapy in patients with a high tumor mutational burden (TMB) (OS: HR = 0.76, p = 0.0009; PFS: HR = 0.72, p < 0.0001) and squamous cell histology (OS: HR = 0.64, p < 0.00001; PFS: HR = 0.66, p < 0.001). However, compared with immune checkpoint inhibitor (ICI) monotherapy, dual immunotherapy shows some advantages in terms of OS and ORR and only improved PFS (HR = 0.77, p = 0.005) in PD-L1 < 25%. With regard to safety, there was no significant difference in any grade TRAEs (p = 0.05) and grade ≥ 3 TRAEs (p = 0.31) between the dual immunotherapy and chemotherapy groups. However, compared with ICI monotherapy, dual immunotherapy significantly increased the incidence of any grade TRAEs (p = 0.03) and grade ≥ 3 TRAEs (p < 0.0001). Conclusions As for the efficacy and safety outcome, compared with standard chemotherapy, dual immunotherapy remains an effective first-line therapy for patients with advanced NSCLC, especially for patients with high TMB levels and squamous cell histology. Furthermore, compared to single-agent immunotherapy, dual immunotherapy is only considered for use in patients with low PD-L1 expression in order to reduce the emergence of resistance to immunotherapy.Systematic Review Registation: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022336614.
Collapse
Affiliation(s)
- Muyesar Alifu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Tao
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kejing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Wakefield L, Agarwal S, Tanner K. Preclinical models for drug discovery for metastatic disease. Cell 2023; 186:1792-1813. [PMID: 37059072 DOI: 10.1016/j.cell.2023.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Despite many advances, metastatic disease remains essentially uncurable. Thus, there is an urgent need to better understand mechanisms that promote metastasis, drive tumor evolution, and underlie innate and acquired drug resistance. Sophisticated preclinical models that recapitulate the complex tumor ecosystem are key to this process. We begin with syngeneic and patient-derived mouse models that are the backbone of most preclinical studies. Second, we present some unique advantages of fish and fly models. Third, we consider the strengths of 3D culture models for resolving remaining knowledge gaps. Finally, we provide vignettes on multiplexed technologies to advance our understanding of metastatic disease.
Collapse
Affiliation(s)
- Lalage Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
36
|
Targeting the JMJD6/TGF-β Axis in Prostate Cancer by Immunotherapy: A Potential Treatment Based on RNA Splicing. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|