1
|
Palmer D, Henze L, Murua Escobar H, Walter U, Kowald A, Fuellen G. Multicohort study testing the generalisability of the SASKit-ML stroke and PDAC prognostic model pipeline to other chronic diseases. BMJ Open 2024; 14:e088181. [PMID: 39349378 PMCID: PMC11448215 DOI: 10.1136/bmjopen-2024-088181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVES To validate and test the generalisability of the SASKit-ML pipeline, a prepublished feature selection and machine learning pipeline for the prediction of health deterioration after a stroke or pancreatic adenocarcinoma event, by using it to identify biomarkers of health deterioration in chronic disease. DESIGN This is a validation study using a predefined protocol applied to multiple publicly available datasets, including longitudinal data from cohorts with type 2 diabetes (T2D), inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and various cancers. The datasets were chosen to mimic as closely as possible the SASKit cohort, a prospective, longitudinal cohort study. DATA SOURCES Public data were used from the T2D (77 patients with potential pre-diabetes and 18 controls) and IBD (49 patients with IBD and 12 controls) branches of the Human Microbiome Project (HMP), RA Map (RA-MAP, 92 patients with RA, 22 controls) and The Cancer Genome Atlas (TCGA, 16 cancers). METHODS Data integration steps were performed in accordance with the prepublished study protocol, generating features to predict disease outcomes using 10-fold cross-validated random survival forests. OUTCOME MEASURES Health deterioration was assessed using disease-specific clinical markers and endpoints across different cohorts. In the HMP-T2D cohort, the worsening of glycated haemoglobin (HbA1c) levels (5.7% or more HbA1c in the blood), fasting plasma glucose (at least 100 mg/dL) and oral glucose tolerance test (at least 140) results were considered. For the HMP-IBD cohort, a worsening by at least 3 points of a disease-specific severity measure, the "Simple Clinical Colitis Activity Index" or "Harvey-Bradshaw Index" indicated an event. For the RA-MAP cohort, the outcome was defined as the worsening of the "Disease Activity Score 28" or "Simple Disease Activity Index" by at least five points, or the worsening of the "Health Assessment Questionnaire" score or an increase in the number of swollen/tender joints were evaluated. Finally, the outcome for all TCGA datasets was the progression-free interval. RESULTS Models for the prediction of health deterioration in T2D, IBD, RA and 16 cancers were produced. The T2D (C-index of 0.633 and Integrated Brier Score (IBS) of 0.107) and the RA (C-index of 0.654 and IBS of 0.150) models were modestly predictive. The IBD model was uninformative. TCGA models tended towards modest predictive power. CONCLUSIONS The SASKit-ML pipeline produces informative and useful features with the power to predict health deterioration in a variety of diseases and cancers; however, this performance is disease-dependent.
Collapse
Affiliation(s)
- Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
- Department of Internal Medicine II - Hematology, Oncology and Palliative Medicine, Asklepios Hospital Group Harz Mountains, Goslar, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Axel Kowald
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
do Nascimento RRNR, Piotto DGP, Freire EAM, de Souza Neves F, Sztajnbok FR, Bica BERG, Pinheiro FAG, Kozu KT, Pereira IA, Azevedo VF, Cordeiro RA, Giardini HAM, Franco MTM, de Fátima Fernandes Carvalho M, Rosa-Neto NS, Perazzio SF. Rare diseases: What rheumatologists need to know? Adv Rheumatol 2024; 64:74. [PMID: 39334496 DOI: 10.1186/s42358-024-00407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Although the terms "rare diseases" (RD) and "orphan diseases" (OD) are often used interchangeably, specific nuances in definitions should be noted to avoid misconception. RD are characterized by a low prevalence within the population, whereas OD are those inadequately recognized or even neglected by the medical community and drug companies. Despite their rarity, as our ability on discovering novel clinical phenotypes and improving diagnostic tools expand, RD will continue posing a real challenge for rheumatologists. Over the last decade, there has been a growing interest on elucidating mechanisms of rare autoimmune and autoinflammatory rheumatic diseases, allowing a better understanding of the role played by immune dysregulation on granulomatous, histiocytic, and hypereosinophilic disorders, just to name a few. This initiative enabled the rise of innovative targeted therapies for rheumatic RD. In this review, we explore the state-of-the art of rare RD and the critical role played by rheumatologists in healthcare. We also describe the challenges rheumatologists may face in the coming decades.
Collapse
Affiliation(s)
| | - Daniela Gerent Petry Piotto
- Universidade Federal de Sao Paulo - Escola Paulista de Medicina, Rua Botucatu, 740, 3º andar, São Paulo, SP, 04023-062, Brazil
| | | | - Fabricio de Souza Neves
- Federal University of Santa Catarina (Universidade Federal de Santa Catarina), Florianópolis, Brazil
| | - Flavio Roberto Sztajnbok
- Federal University of Rio de Janeiro (Universidade Federal do Rio de Janeiro), Rio de Janeiro, Brazil
| | | | | | - Katia Tomie Kozu
- USP FM (Universidade de Sao Paulo Faculdade de Medicina), Pacaembu, Brazil
| | | | | | | | | | | | | | | | - Sandro Félix Perazzio
- Universidade Federal de Sao Paulo - Escola Paulista de Medicina, Rua Botucatu, 740, 3º andar, São Paulo, SP, 04023-062, Brazil.
- USP FM (Universidade de Sao Paulo Faculdade de Medicina), Pacaembu, Brazil.
- Fleury Laboratories, Av. Morumbi, 8860, Sao Paulo, SP, 04580-060, Brazil.
| |
Collapse
|
3
|
Casey A, Fiorino EK, Wambach J. Innovations in Childhood Interstitial and Diffuse Lung Disease. Clin Chest Med 2024; 45:695-715. [PMID: 39069332 PMCID: PMC11366208 DOI: 10.1016/j.ccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Children's interstitial and diffuse lung diseases (chILDs) are a heterogenous and diverse group of lung disorders presenting during childhood. Infants and children with chILD disorders present with respiratory signs and symptoms as well as diffuse lung imaging abnormalities. ChILD disorders are associated with significant health care resource utilization and high morbidity and mortality. The care of patients with chILD has been improved through multidisciplinary care, multicenter collaboration, and the establishment of patient research networks in the United Stated and abroad. This review details past and current innovations in the diagnosis and clinical care of children with chILD.
Collapse
Affiliation(s)
- Alicia Casey
- Department of Pediatrics, Division of Pulmonary Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Elizabeth K Fiorino
- Department of Science Education and Pediatrics, Donald and Barabara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Samad A, Wobma H, Casey A. Innovations in the care of childhood interstitial lung disease associated with connective tissue disease and immune-mediated disorders. Pediatr Pulmonol 2024; 59:2321-2337. [PMID: 38837875 DOI: 10.1002/ppul.27068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Childhood interstitial lung disease (chILD) associated with connective tissue and immune mediated disorders is the second most common chILD diagnostic category. As knowledge of the molecular and genetic underpinnings of these rare disorders advances, the recognized clinical spectrum of associated pulmonary manifestations continues to expand. Pulmonary complications of these diseases, including ILD, confer increased risk for morbidity and mortality and contribute to increased complexity for providers tasked with managing the multiple organ systems that can be impacted in these systemic disorders. While pulmonologists play an important role in diagnosis and management of these conditions, thankfully they do not have to work alone. In collaboration with a multidisciplinary team of subspecialists, the pulmonary and other systemic manifestations of these conditions can be managed effectively together. The goal of this review is to familiarize the reader with the classic patterns of chILD and other pulmonary complications associated with primary immune-mediated disorders (monogenic inborn errors of immunity) and acquired systemic autoimmune and autoinflammatory diseases. In addition, this review will highlight current, emerging, and innovative therapeutic strategies and will underscore the important role of multidisciplinary management to improving outcomes for these patients.
Collapse
Affiliation(s)
- Aaida Samad
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Holly Wobma
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Atschekzei F, Traidl S, Carlens J, Schütz K, von Hardenberg S, Elsayed A, Ernst D, Risser L, Thiele T, Graalmann T, Raab J, Baumann U, Witte T, Sogkas G. JAK inhibitors to treat STAT3 gain-of-function: a single-center report and literature review. Front Immunol 2024; 15:1400348. [PMID: 39247195 PMCID: PMC11377292 DOI: 10.3389/fimmu.2024.1400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Objective The signal transducer and activator of transcription 3 (STAT3) gain-of-function (GOF) syndrome (STAT3-GOF) is an inborn error of immunity (IEI) characterized by diverse manifestations of immune dysregulation that necessitate systemic immunomodulatory treatment. The blockade of the interleukin-6 receptor and/or the inhibition of the Janus kinases has been commonly employed to treat diverse STAT3-GOF-associated manifestations. However, evidence on long-term treatment outcome, especially in the case of adult patients, is scarce. Methods Clinical data, including laboratory findings and medical imaging, were collected from all seven patients, diagnosed with STAT3-GOF, who have been treated at the Hannover University School, focusing on those who received a Janus kinase (JAK) inhibitor (JAKi). Previously published cases of STAT3-GOF patients who received a JAKi were evaluated, focusing on reported treatment efficacy with respect to diverse STAT3-GOF-associated manifestations of immune dysregulation and safety. Results Five out of seven patients diagnosed with STAT3-GOF were treated with a JAKi, each for a different indication. Including these patients, outcomes of JAKi treatment have been reported for a total of 41 patients. Treatment with a JAKi led to improvement of diverse autoimmune, inflammatory, or lymphoproliferative manifestations of STAT3-GOF and a therapeutic benefit could be documented for all except two patients. Considering all reported manifestations of immune dysregulation in each patient, complete remission was achieved in 10/41 (24.4%) treated patients. Conclusions JAKi treatment improved diverse manifestations of immune dysregulation in the majority of STAT3-GOF patients, representing a promising therapeutic approach. Long-term follow-up data are needed to evaluate possible risks of prolonged treatment with a JAKi.
Collapse
Affiliation(s)
- Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Julia Carlens
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Katharina Schütz
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Abdulwahab Elsayed
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Diana Ernst
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Linus Risser
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Thea Thiele
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Theresa Graalmann
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Junior Research Group for Translational Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Juliana Raab
- Institute for Diagnostic and Interventional Radiology, Hannover Medical University, Hannover, Germany
| | - Ulrich Baumann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
do Nascimento RRNR, Quaio CRDC, Chung CH, de Moraes Vasconcelos D, Sztajnbok FR, Rosa Neto NS, Perazzio SF. Principles of clinical genetics for rheumatologists: clinical indications and interpretation of broad-based genetic testing. Adv Rheumatol 2024; 64:59. [PMID: 39143637 DOI: 10.1186/s42358-024-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in DNA sequencing technologies, especially next-generation sequencing (NGS), which is the basis for whole-exome sequencing (WES) and whole-genome sequencing (WGS), have profoundly transformed immune-mediated rheumatic disease diagnosis. Recently, substantial cost reductions have facilitated access to these diagnostic tools, expanded the capacity of molecular diagnostics and enabled the pursuit of precision medicine in rheumatology. Understanding the fundamental principles of genetics and diversity in genetic variant classification is a crucial milestone in rheumatology. However, despite the growing availability of DNA sequencing platforms, a significant number of autoinflammatory diseases (AIDs), neuromuscular disorders, hereditary collagen diseases, and monogenic bone diseases remain unsolved, and variants of uncertain significance (VUS) pose a formidable challenge to addressing these unmet needs in the coming decades. This article aims to provide an overview of the clinical indications and interpretation of comprehensive genetic testing in the medical field, addressing the related complexities and implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandro Félix Perazzio
- Disciplina de Reumatologia, Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Rua Otonis, 863, Sao Paulo, SP, 04025-002, Brazil.
- Fleury Medicina e Saude, Sao Paulo, Brazil.
- Universidade de Sao Paulo Faculdade de Medicina (USP FM), Sao Paulo, Brazil.
| |
Collapse
|
7
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
8
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
9
|
Oprea Y, Kody S, Shakshouk H, Greiling TM, Anstey KM, Ortega-Loayza AG. What can inherited immunodeficiencies reveal about pyoderma gangrenosum? Exp Dermatol 2024; 33:e14954. [PMID: 37846943 PMCID: PMC10841371 DOI: 10.1111/exd.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Pyoderma gangrenosum (PG) is a rare ulcerative neutrophilic dermatosis that is occasionally associated with primary immunodeficiency. Though contributions from dysregulation of the innate immune system, neutrophil dysfunction and genetic predisposition have been postulated, the precise pathogenesis of PG has not yet been elucidated. This article reviews reported cases of coexisting PG and primary immunodeficiency in order to gain insight into the complex pathophysiology of PG. Our findings suggest that variations in genes such as RAG1, ITGB2, IRF2BP2 and NFκB1 might play a role in genetically predisposing patients to develop PG. These studies support the feasibility of the role of somatic gene variation in the pathogenesis of PG which warrants further exploration to guide targeted therapeutics.
Collapse
Affiliation(s)
- Yasmine Oprea
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shannon Kody
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Hadir Shakshouk
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Dermatology and Andrology, Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Teri M Greiling
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Karen M Anstey
- Department of Medicine, Section of Allergy and Clinical Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alex G. Ortega-Loayza
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Atschekzei F, Fedchenko M, Elsayed A, Dubrowinskaja N, Graalmann T, Ringshausen FC, Witte T, Sogkas G. Rituximab to treat prolidase deficiency due to a novel pathogenic copy number variation in PEPD. RMD Open 2023; 9:e003507. [PMID: 38088248 PMCID: PMC10711922 DOI: 10.1136/rmdopen-2023-003507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prolidase deficiency (PD) is a rare autosomal recessive inborn error of immunity caused by biallelic homozygous or compound heterozygous loss-of-function mutations in PEPD, the gene that encodes prolidase. PD typically manifests with variable dysmorphic features, chronic cutaneous ulcers, recurrent infections and autoimmune features, including systemic lupus erythematosus. So far, there is no consensus regarding treatment of PD and its autoimmune manifestations. Here, we present a 28-year-old female patient with PD due to a novel homozygous intragenic deletion in PEPD, diagnosed at the age of 6 years and 7 months with an undifferentiated connective tissue disease that, apart from its very early onset, would be consistent with the diagnosis of Sjögren's syndrome. Steroids and diverse conventional synthetic disease-modifying antirheumatic drugs failed to control PD-associated vasculitis and mucocutaneous ulcerations and led to infectious complications, including cytomegalovirus colitis. Introduction of rituximab (RTX) treatment in this patient led to sustained recession of mucocutaneous ulceration, enabling tapering of steroids. High interleukin-1β (IL-1β) production by this patient's monocytes, together with the detection of both IL-1β and interleukin-18 (IL-18) in her serum, suggest enhanced inflammasome activation in PD, whereas the therapeutic efficacy of RTX implies a role for CD20 positive B cells in the complex immunopathogenesis of PD.
Collapse
Affiliation(s)
- Faranaz Atschekzei
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Mykola Fedchenko
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Abdulwahab Elsayed
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | | | - Theresa Graalmann
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Junior Research Group for Translational Immunology, TWINCORE, Center for Infection Research and the Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Felix C Ringshausen
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Torsten Witte
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Shah I, Chiang S, Yang L, Akeno N, Kelly A, White J, Caywood E, Hwang S, Le T. γδ CD8+ T cells and novel genetic variants in ZAP70 deficiency. Pediatr Allergy Immunol 2023; 34:e14035. [PMID: 37877847 DOI: 10.1111/pai.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Affiliation(s)
- Isma Shah
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Samuel Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Li Yang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nagako Akeno
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Allison Kelly
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jason White
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Emi Caywood
- Division of Pediatric Hematology/Oncology, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Sharon Hwang
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Trong Le
- Division of Allergy & Immunology, Nemours Children's Hospital, Wilmington, Delaware, USA
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|