1
|
Takei Y. Downregulation of carotid body activity using low-intensity focused ultrasound: a potential treatment option for refractory hypertension. Hypertens Res 2024:10.1038/s41440-024-01977-0. [PMID: 39468315 DOI: 10.1038/s41440-024-01977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Yasuyoshi Takei
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
2
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ren F, Sui Y, Gong X, Xing Q, Wang Z. High-Intensity Focused Ultrasound in Interventricular Septal Myocardial Ablation. Int Heart J 2022; 63:1158-1165. [DOI: 10.1536/ihj.22-162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fei Ren
- Qingdao Women and Children's Hospital, Cheeloo College of Medicine, Shandong University
| | - Yulong Sui
- Qingdao Women and Children's Hospital, Qingdao University
| | - Xiaobo Gong
- National State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University
| | - Quansheng Xing
- Qingdao Women and Children's Hospital, Cheeloo College of Medicine, Shandong University
| | - Zhibiao Wang
- National State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University
| |
Collapse
|
4
|
Tuohy CV, Kaul S, Song HK, Nazer B, Heitner SB. Hypertrophic cardiomyopathy: the future of treatment. Eur J Heart Fail 2020; 22:228-240. [PMID: 31919938 DOI: 10.1002/ejhf.1715] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/19/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic disorder most often caused by sarcomeric mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and reduced compliance. It is the most common inherited monogenic cardiac condition, affecting 0.2% of the population. Whereas currently available therapies for HCM have been effective in reducing morbidity, there remain important unmet needs in the treatment of both the obstructive and non-obstructive phenotypes. Novel pharmacotherapies directly target the molecular underpinnings of HCM, while innovative procedural techniques may soon offer minimally-invasive alternatives to current septal reduction therapy. With the advent of embryonic gene editing, there now exists the potential to correct underlying genetic mutations that may result in disease. This article details the recent developments in the treatment of HCM including pharmacotherapy, septal reduction procedures, mitral valve manipulation, and gene-based therapies.
Collapse
Affiliation(s)
- C Vaughan Tuohy
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Sanjiv Kaul
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Howard K Song
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Babak Nazer
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| | - Stephen B Heitner
- Oregon Health and Sciences University (OHSU), Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Portland, OR, USA
| |
Collapse
|
5
|
Yuejin WMS, Shaobo DMD, Luwen LMS, Shuaiyang WMS, Shuang XMS, Liuwei HBS, Lianzhong ZMD. Inter-ventricular Septum Ablation for the Treatment of Hypertrophic Obstructive Cardiomyopathy. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2020. [DOI: 10.37015/audt.2020.200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Miller DL, Lu X, Dou C, Zhu YI, Fuller R, Fields K, Fabiilli ML, Owens GE, Gordon D, Kripfgans OD. Ultrasonic Cavitation-Enabled Treatment for Therapy of Hypertrophic Cardiomyopathy: Proof of Principle. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1439-1450. [PMID: 29681423 PMCID: PMC5960614 DOI: 10.1016/j.ultrasmedbio.2018.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 05/08/2023]
Abstract
Ultrasound myocardial cavitation-enabled treatment was applied to the SS-16BN rat model of hypertrophic cardiomyopathy for proof of the principle underlying myocardial reduction therapy. A focused ultrasound transducer was targeted using 10-MHz imaging (10 S, GE Vivid 7) to the left ventricular wall of anesthetized rats in a warmed water bath. Pulse bursts of 4-MPa peak rarefactional pressure amplitude were intermittently triggered 1:8 heartbeats during a 10-min infusion of a microbubble suspension. Methylprednisolone was given to reduce initial inflammation, and Losartan was given to reduce fibrosis in the healing tissue. At 28 d post therapy, myocardial cavitation-enabled treatment significantly reduced the targeted wall thickness by 16.2% (p <0.01) relative to shams, with myocardial strain rate and endocardial displacement reduced by 34% and 29%, respectively, which are sufficient for therapeutic treatment. Premature electrocardiogram complexes and plasma troponin measurements were found to identify optimal and suboptimal treatment cohorts and would aid in achieving the desired impact. With clinical translation, myocardial cavitation-enabled treatment should fill the need for a new non-invasive hypertrophic cardiomyopathy therapy option.
Collapse
Affiliation(s)
| | - Xiaofang Lu
- University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Chunyan Dou
- University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Yiying I Zhu
- University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Rachael Fuller
- University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Kristina Fields
- University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | - Gabe E Owens
- University of Michigan Health System, Ann Arbor, Michigan, USA
| | - David Gordon
- University of Michigan Health System, Ann Arbor, Michigan, USA
| | | |
Collapse
|
7
|
Lü F, Huang W, Benditt DG. A feasibility study of noninvasive ablation of ventricular tachycardia using high-intensity focused ultrasound. J Cardiovasc Electrophysiol 2018; 29:788-794. [PMID: 29431260 DOI: 10.1111/jce.13459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/07/2017] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Current transcatheter ablation of ventricular tachycardia (VT) techniques is limited in part by its invasive nature and superficial depth of ablation lesions. OBJECTIVES This study was aimed at evaluating the feasibility of targeted ablation of cardiac tissues using high-intensity focused ultrasound (HIFU) as a potential means for noninvasive ablation of VT. METHODS Ablation of ventricular myocardium was performed in anesthetized closed-chest dogs using a HIFU therapeutic system that is currently used clinically for ablation of human solid tumors. Ventricular pacing using a bipolar catheter was performed at a rate slightly higher than intrinsic sinus rate to mimic VT. The myocardium at the tip of the pacing catheter was targeted for ablation. Ablation endpoint was loss of ventricular capture first and confirmed by electrical nonexcitation with 10-mA, 2-ms pulse-width unipolar stimulation. RESULTS Optimal ablation energy was identified at 400 W for 2-4 seconds. In five separate experimental preparations, pacing could be terminated successfully during HIFU energy delivery, which was further confirmed by electrical nonexcitation. However, capture could be obtained at other nonablated locations using the same pacing catheter. Both transmural and localized lesions could be created in a controlled fashion without apparent injury to skin, lung, or pericardium on postmortem examination. CONCLUSION This pilot study suggests that HIFU is potentially useful for noninvasive ablation of targeted, localized myocardial tissues, and it may be potentially applicable for VT ablation, particularly for those with intramyocardial/epicardial origins.
Collapse
Affiliation(s)
- Fei Lü
- Deborah Heart and Lung Center, Browns Mills, New Jersey, USA
| | - Wei Huang
- Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
8
|
Miller DL, Dou C, Lu X, Zhu YI, Fabiilli ML, Owens GE, Kripfgans OD. Use of Theranostic Strategies in Myocardial Cavitation-Enabled Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1865-75. [PMID: 25890888 PMCID: PMC4461496 DOI: 10.1016/j.ultrasmedbio.2015.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/27/2015] [Accepted: 03/12/2015] [Indexed: 05/04/2023]
Abstract
The accumulation of microlesions induced by ultrasound interaction with contrast microbubbles in the myocardium potentially represents a new method of tissue reduction therapy. Anesthetized rats were treated in a heated water bath with 1.5-MHz focused ultrasound pulses triggered once every four heartbeats from the electrocardiogram during infusion of microbubble contrast agent. Treatment was guided by an 8-MHz B-mode imaging transducer, which also was used to provide estimates of left ventricular echogenicity as a possible predictor of efficacy during treatment. Strategies to reduce prospective clinical treatment durations were tested, including pulse modulation to simulate a theranostic scanning strategy and an increased agent infusion rate over shorter durations. Sources of variability, including ultrasound path variation and venous catheter placement, also were investigated. Electrocardiographic premature complexes were monitored, and Evans-blue stained cardiomyocyte scores were obtained from frozen sections. Left ventricular echogenicity reflected variations in the infused microbubble concentration, but failed to predict efficacy. Comparison of suspensions of varied microbubble size revealed that left ventricular echogenicity was dominated by larger bubbles, whereas efficacy appeared to be dependent on smaller sizes. Simulated scanning was as effective as the normal fixed-beam treatment, and high agent infusion allowed reduced treatment duration. The success of these theranostic strategies may increase the prospects for realistic clinical translation of myocardial cavitation-enabled therapy.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA.
| | - Chunyan Dou
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Xiaofang Lu
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Yiying I Zhu
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Gabe E Owens
- Department of Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Hooks DA, Berte B, Yamashita S, Mahida S, Sellal JM, Aljefairi N, Frontera A, Derval N, Denis A, Hocini M, Haïssaguerre M, Jaïs P, Sacher F. New strategies for ventricular tachycardia and ventricular fibrillation ablation. Expert Rev Cardiovasc Ther 2015; 13:263-76. [DOI: 10.1586/14779072.2015.1009039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Zhu YI, Miller DL, Dou C, Kripfgans OD. Characterization of macrolesions induced by myocardial cavitation-enabled therapy. IEEE Trans Biomed Eng 2014; 62:717-27. [PMID: 25347871 DOI: 10.1109/tbme.2014.2364263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intermittent high intensity ultrasound pulses with circulating contrast agent microbubbles can induce scattered cavitation caused myocardial microlesions of potential value for tissue reduction therapy. Here, computer-aided histological evaluation of the effective treated volume was implemented to optimize ultrasound pulse parameters, exposure duration, and contrast agent dose. Rats were treated with 1.5 MHz focused ultrasound bursts and Evans blue staining indicates lethal cardiomyocytic injury. Each heart was sectioned to provide samples covering the entire exposed myocardial volume. Both brightfield and fluorescence images were taken for up to 40 tissue sections. Tissue identification and microlesion detection were first done based on 2-D images to form microlesion masks containing the outline of the heart and the stained cell regions. Image registration was then performed on the microlesion masks to reconstruct a volume-based model according to the morphology of the heart. The therapeutic beam path was estimated from the 3-D stacked microlesions, and finally the total microlesion volume, here termed macrolesion, was characterized along the therapeutic beam axis. Radially symmetric fractional macrolesions were characterized via stepping disks of variable radius determined by the local distribution of microlesions. Treated groups showed significant macrolesions of a median volume of 87.3 μL, 2.7 mm radius, 4.8 mm length, and 14.0% lesion density compared to zero radius, length, and lesion density for sham. The proposed radially symmetric lesion model is a robust evaluation for myocardial cavitation-enabled therapy. Future work will include validating the proposed method with varying acoustic exposures and optimizing involved parameters to provide macrolesion characterization.
Collapse
|
11
|
Miller DL, Dou C, Owens GE, Kripfgans OD. Optimization of ultrasound parameters of myocardial cavitation microlesions for therapeutic application. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1228-36. [PMID: 24613640 PMCID: PMC4011951 DOI: 10.1016/j.ultrasmedbio.2014.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 05/11/2023]
Abstract
Intermittent high intensity ultrasound scanning with contrast microbubbles can induce scattered cavitation microlesions in the myocardium, which may be of value for tissue reduction therapy. Anesthetized rats were treated in a heated water bath with 1.5 MHz focused ultrasound pulses, guided by an 8 MHz imaging transducer. The relative efficacy with 2 or 4 MPa pulses, 1:4 or 1:8 trigger intervals and 5 or 10 cycle pulses was explored in six groups. Electrocardiogram premature complexes (PCs) induced by the triggered pulse bursts were counted, and Evans blue stained cardiomyocyte scores (SCSs) were obtained. The increase from 2 to 4 MPa produced significant increases in PCs and SCSs and eliminated an anticipated decline in the rate of PC induction with time, which might hinder therapeutic efficacy. Increased intervals and pulse durations did not yield significant increases in the effects. The results suggest that cavitation microlesion production can be refined and potentially lead to a clinically robust therapeutic method.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA.
| | - Chunyan Dou
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Gabe E Owens
- Department of Pediatrics, University of Michigan Health System, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Zheng M, Shentu W, Chen D, Sahn DJ, Zhou X. High-intensity focused ultrasound ablation of myocardium in vivo and instantaneous biological response. Echocardiography 2014; 31:1146-53. [PMID: 24506293 DOI: 10.1111/echo.12526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the instantaneous biological response of canine myocardium in vivo to high-intensity focused ultrasound (HIFU) ablation, and thereby determine the feasibility of this method. METHODS Left ventricle myocardium HIFU ablation was performed on six dogs at four levels of HIFU energy (acoustic intensity was 3000 W/cm2 ; ablation durations were 1.2, 2.4, 3.6, and 4.8 sec, respectively). Gross lesion volumes were confirmed and assessed by tetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and electron microscopy. Global cardiac function and focal wall motion were evaluated by echocardiography. Blood enzymes and cardiac troponin T (CTnT) were tested after ablation. HIFU ablation was repeated on another set of six fresh canine hearts in vitro at the same four energy levels. Focal maximum temperatures were detected both in vivo and in vitro. RESULTS Different sizes of ablation via HIFU can be created in beating hearts using controlled energy emission. Focal maximum temperatures varied from 62 ± 4.8 °C to 81 ± 12.9 °C. The lesion sizes were significantly smaller in vivo than in vitro, as verified by TTC and HE staining. Focal wall motion immediately decreased after ablation (P < 0.05), although the ejection fraction (EF) and E/A ratio were unchanged (P > 0.05). Enzymes and CTnT immediately increased. CONCLUSION HIFU can be used for the controllable ablation of myocardial tissue, with instantly increased serum markers, decreased regional wall motion, and unaffected left ventricular global function.
Collapse
Affiliation(s)
- Minjuan Zheng
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | |
Collapse
|
13
|
Rong S, Woo K, Zhou Q, Zhu Q, Wu Q, Wang Q, Deng C, Liu D, Yang G, Jiang Y, Wang Z, Huang J. Septal Ablation Induced by Transthoracic High-Intensity Focused Ultrasound in Canines. J Am Soc Echocardiogr 2013; 26:1228-1234. [DOI: 10.1016/j.echo.2013.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Indexed: 10/26/2022]
|
14
|
Couppis A, Damianou C, Kyriacou P, Lafon C, Chavrier F, Chapelon JY, Birer A. Heart ablation using a planar rectangular high intensity ultrasound transducer and MRI guidance. ULTRASONICS 2012; 52:821-829. [PMID: 22525419 DOI: 10.1016/j.ultras.2012.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/31/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to evaluate a flat rectangular (3×10mm(2)) MRI compatible transducer operating at 5MHz. The main task was to explore the feasibility of creating deep lesions in heart at a depth of at least 15mm. The size of thermal necrosis in heart tissue was estimated as a function of power and time using a simulation model. The system was then tested in an excised lamb heart. In this study, we were able to create lesions of 15mm deep with acoustic power of 6W for an exposure of approximately 1min. The contrast to noise ratio (CNR) between lesion and heart tissue was evaluated using fast spin echo (FSE). The CNR value was approximately 22 using T1W FSE. Maximum CNR was achieved with repetition time (TR) between 300 and 800ms. Using T2W FSE, the corresponding CNR was approximately 13 for the 14 in vivo experiments. The average lesion depth was 11.93mm with a standard deviation of 0.62mm. In vivo irradiation conditions were 6W for 60s. The size of the lesion in the other two dimensions was close to 3×10mm(2) (size of the transducer element).
Collapse
|
15
|
Kumon RE, Gudur MSR, Zhou Y, Deng CX. High-frequency ultrasound m-mode imaging for identifying lesion and bubble activity during high-intensity focused ultrasound ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:626-41. [PMID: 22341055 PMCID: PMC3295907 DOI: 10.1016/j.ultrasmedbio.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/25/2011] [Accepted: 01/05/2012] [Indexed: 05/10/2023]
Abstract
Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600‒6100 W/cm²) was applied to ex vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radio-frequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, compared with macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies.
Collapse
Affiliation(s)
- Ronald E Kumon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
16
|
Takei Y, Muratore R, Kalisz A, Okajima K, Fujimoto K, Hasegawa T, Arai K, Rekhtman Y, Berry G, Di Tullio MR, Homma S. In Vitro Atrial Septal Ablation Using High-Intensity Focused Ultrasound. J Am Soc Echocardiogr 2012; 25:467-72. [DOI: 10.1016/j.echo.2011.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Indexed: 11/25/2022]
|
17
|
Koruth JS, Dukkipati S, Carrillo RG, Coffey J, Teng J, Eby TB, Reddy VY, D'Avila A. Safety and efficacy of high-intensity focused ultrasound atop coronary arteries during epicardial catheter ablation. J Cardiovasc Electrophysiol 2011; 22:1274-80. [PMID: 21676047 DOI: 10.1111/j.1540-8167.2011.02084.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Coronary arterial injury continues to be a limitation of epicardial catheter ablation using currently available energy sources. Application of high intensity focused ultrasound (HIFU) energy may avoid such injury due to its theoretical ability to focus energy beyond the ablation element and create lesions at depth. OBJECTIVE This study evaluated the safety of HIFU applications delivered directly over the left anterior descending (LAD) artery in an open-chest swine model. METHODS Ten swine underwent median sternotomy. A prototype HIFU probe was placed atop the LAD. Forty-three therapies along the LAD (60-seconds/6 watt) were analyzed. Three, 3, and 4 swine were studied at 2, 4, and 8 weeks and subsequently sacrificed. Lesions were scored (0-4) depending on the percent circumferential involvement of arteries. RESULTS Lesion area increased minimally from 54.5 ± 18.0 mm(2) at 2 weeks to 56.9 ± 20.6 mm(2) at 8 weeks, and depth increased moderately from 13.2 ± 2.5 mm to 15.5 ± 3.4 mm. At 2, 4, and 8 weeks, the mean injury score of the LAD was 0.8 ± 0.3, 1.5 ± 0.9, and 2.0 ± 0.7. No/minimal arterial injury was seen in 64% of all sections. However, a progressive increase in injury resulted in 89% of all sections showing any injury at 8 weeks. One animal developed occlusion of the distal LAD. CONCLUSIONS HIFU has the potential to create deep ventricular lesions with relative sparing of the LAD. The incremental arterial damage noted over time warrants further evaluation to support the viability of focusing ultrasound energy beyond vulnerable critical structures to ablate deeper targets.
Collapse
Affiliation(s)
- Jacob S Koruth
- Helmsley Cardiac Arrhythmia Service, Mount Sinai Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu Z, Owens G, Gordon D, Cain C, Ludomirsky A. Noninvasive creation of an atrial septal defect by histotripsy in a canine model. Circulation 2010; 121:742-9. [PMID: 20124126 DOI: 10.1161/circulationaha.109.889071] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The primary objective of this study was to develop an image-guided, noninvasive procedure to create or enlarge an atrial septal defect for the treatment of neonates with hypoplastic left heart syndrome and an intact or restrictive atrial septum. Histotripsy is an innovative ultrasonic technique that produces nonthermal, mechanical tissue fractionation through the use of high-intensity ultrasound pulses. This article reports the pilot in vivo study to create an atrial septal defect through the use of extracardiac application of histotripsy in an open-chest canine model. METHODS AND RESULTS In 10 canines, the atrial septum was exposed to histotripsy by an ultrasound transducer positioned outside the heart. Ultrasound pulses of 6-microsecond duration at a peak negative pressure of 15 MPa and a pulse repetition frequency of 3.3 kHz were generated by a 1-MHz focused transducer. The procedure was guided and monitored by real-time ultrasound imaging. In 9 of 10 canines, an atrial septal defect was produced, and shunting across the atrial septum was visualized. Pathology of the hearts showed atrial septal defects with minimal damage to surrounding tissue. No damage was found on the epicardial surface of the heart or other structures. CONCLUSIONS Under real-time ultrasound guidance, atrial septal defects were successfully created with extracardiac histotripsy in a live canine model. Although further studies in an intact animal model are needed, these results provide promise of histotripsy becoming a valuable clinical tool.
Collapse
Affiliation(s)
- Zhen Xu
- Departments of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
19
|
Abe Y, Otsuka R, Muratore R, Fujikura K, Okajima K, Suzuki K, Wang J, Marboe C, Kalisz A, Ketterling JA, Lizzi FL, Homma S. In vitro mitral chordal cutting by high intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:400-405. [PMID: 17988790 DOI: 10.1016/j.ultrasmedbio.2007.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/16/2007] [Accepted: 09/05/2007] [Indexed: 05/25/2023]
Abstract
Mitral regurgitation, when it arises from functional restriction of mitral leaflet closure, can be relieved by surgical cutting of the mitral tendineae chordae. We hypothesized that high intensity focused ultrasound (HIFU) might be useful as a noninvasive extracorporeal technique for cutting mitral chordae. As a pilot study to test this hypothesis, we examined the in vitro feasibility of using HIFU to cut calf mitral chordae with diameters from 0.2 to 1.6 mm. Sixty-seven percent of chordae were completely cut with HIFU, operated at 4.67 MHz and 45 W acoustic power, with up to 120 pulses of 0.3-s duration at 2-s intervals. Forty-five percent were completely cut when the pulse duration was reduced to 0.2 s. The average diameter of those chordae, which were completely cut, was significantly smaller than that of incompletely cut chordae (0.59 +/- 0.30 versus 1.14 +/- 0.30 mm with a pulse duration of 0.2 s, p < 0.0001; 0.68 +/- 0.29 versus 1.32 +/- 0.20 mm with a pulse duration of 0.3 s, p < 0.0001). For each pulse duration, the number of pulses required for complete cutting exhibited a strong positive correlation with the chordae diameter. In conclusion, in vitro feasibility of mitral chordal cutting by HIFU depended on the diameter of chordae but was controllable by HIFU settings. (E-mail: abeyukio@aol.com).
Collapse
Affiliation(s)
- Yukio Abe
- Department of Medicine Cardiology Division, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|