1
|
Kuijpers Y, Kaczorowska J, Picavet HSJ, de Zeeuw-Brouwer ML, Kuijer M, Slits I, Gijsbers E, Rutkens R, de Rond L, Verschuren WMM, Buisman AM. Health characteristics associated with persistence of SARS-CoV-2 antibody responses after repeated vaccinations in older persons over time: the Doetinchem cohort study. Immun Ageing 2024; 21:68. [PMID: 39407293 PMCID: PMC11476400 DOI: 10.1186/s12979-024-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND Older persons elicit heterogeneous antibody responses to vaccinations that generally are lower than those in younger, healthier individuals. As older age and certain comorbidities can influence these responses we aimed to identify health-related variables associated with antibody responses after repeated SARS-CoV-2 vaccinations and their persistence thereafter in SARS-CoV-2 infection-naïve and previously infected older persons. METHOD In a large longitudinal study of older persons of the general population 50 years and over, a sub-cohort of the longitudinal Doetinchem cohort study (n = 1374), we measured IgG antibody concentrations in serum to SARS-CoV-2 Spike protein (S1) and Nucleoprotein (N). Samples were taken following primary vaccination with BNT162b2 or AZD1222, pre- and post-vaccination with a third and fourth BNT162b2 or mRNA-1273 (Wuhan), and up to a year after a fifth BNT162b2 bivalent (Wuhan/Omicron BA.1) vaccine. Associations between persistence of antibody concentrations over time and age, sex, health characteristics including cardiometabolic and inflammatory diseases as well as a frailty index were tested using univariable and multivariable models. RESULTS The booster doses substantially increased anti-SARS-CoV-2 Spike S1 (S1) antibody concentrations in older persons against both the Wuhan and Omicron strains. Older age was associated with decreased antibody persistence both after the primary vaccination series and up to 1 year after the fifth vaccine dose. In infection-naïve persons the presence of inflammatory diseases was associated with an increased antibody response to the third vaccine dose (Beta = 1.53) but was also associated with reduced persistence over the 12 months following the fifth (bivalent) vaccine dose (Beta = -1.7). The presence of cardiometabolic disease was associated with reduced antibody persistence following the primary vaccination series (Beta = -1.11), but this was no longer observed after bivalent vaccination. CONCLUSION Although older persons with comorbidities such as inflammatory and cardiometabolic diseases responded well to SARS-CoV-2 booster vaccinations, they showed a reduced persistence of these responses. This might indicate that especially these more vulnerable older persons could benefit from repeated booster vaccinations.
Collapse
Affiliation(s)
- Yunus Kuijpers
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands.
| | - Joanna Kaczorowska
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - H Susan J Picavet
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Marjan Kuijer
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Irene Slits
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Esther Gijsbers
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Ryanne Rutkens
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Lia de Rond
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - W M Monique Verschuren
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, 3508 TC, The Netherlands
| | - Anne-Marie Buisman
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| |
Collapse
|
2
|
Lee B, Bae GE, Jeong IH, Kim JH, Kwon MJ, Kim J, Kim B, Lee JW, Nam JH, Huh HJ, Kang ES. Age-Related Differences in Neutralizing Antibody Responses against SARS-CoV-2 Delta and Omicron Variants in 151 SARS-CoV-2-Naïve Metropolitan Residents Boosted with BNT162b2. J Appl Lab Med 2024; 9:741-751. [PMID: 38531067 DOI: 10.1093/jalm/jfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Although age negatively correlates with vaccine-induced immune responses, whether the vaccine-induced neutralizing effect against variants of concern (VOCs) substantially differs across age remains relatively poorly explored. In addition, the utility of commercial binding assays developed with the wild-type SARS-CoV-2 for predicting the neutralizing effect against VOCs should be revalidated. METHODS We analyzed 151 triple-vaccinated SARS-CoV-2-naïve individuals boosted with BNT162b2 (Pfizer-BioNTech). The study population was divided into young adults (age < 30), middle-aged adults (30 ≤ age < 60), and older adults (age ≥ 60). The plaque reduction neutralization test (PRNT) titers against Delta (B.1.617.2) and Omicron (B.1.1.529) variants were compared across age. Antibody titers measured with commercial binding assays were compared with PRNT titers. RESULTS Age-related decline in neutralizing titers was observed for both Delta and Omicron variants. Neutralizing titers for Omicron were lower than those against Delta in all ages. The multiple linear regression model demonstrated that duration from third dose to sample collection and vaccine types were also significant factors affecting vaccine-induced immunity along with age. The correlation between commercial binding assays and PRNT was acceptable for all age groups with the Delta variant, but relatively poor for middle-aged and older adults with the Omicron variant due to low titers. CONCLUSIONS This study provides insights into the age-related dynamics of vaccine-induced immunity against SARS-CoV-2 VOCs, corroborating the need for age-specific vaccination strategies in the endemic era where new variants continue to evolve. Moreover, commercial binding assays should be used cautiously when estimating neutralizing titers against VOCs, particularly Omicron.
Collapse
Affiliation(s)
- Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Go Eun Bae
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Hwa Jeong
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Dong-A University Hospital, Busan, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jayoung Kim
- Department of Laboratory Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jeong-Hyun Nam
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Liu HH, Xie Y, Yang BP, Wen HY, Yang PH, Lu JE, Liu Y, Chen X, Qu MM, Zhang Y, Hong WG, Li YG, Fu J, Wang FS. Safety, immunogenicity and protective effect of sequential vaccination with inactivated and recombinant protein COVID-19 vaccine in the elderly: a prospective longitudinal study. Signal Transduct Target Ther 2024; 9:129. [PMID: 38740763 DOI: 10.1038/s41392-024-01846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
The safety and efficacy of COVID-19 vaccines in the elderly, a high-risk group for severe COVID-19 infection, have not been fully understood. To clarify these issues, this prospective study followed up 157 elderly and 73 young participants for 16 months and compared the safety, immunogenicity, and efficacy of two doses of the inactivated vaccine BBIBP-CorV followed by a booster dose of the recombinant protein vaccine ZF2001. The results showed that this vaccination protocol was safe and tolerable in the elderly. After administering two doses of the BBIBP-CorV, the positivity rates and titers of neutralizing and anti-RBD antibodies in the elderly were significantly lower than those in the young individuals. After the ZF2001 booster dose, the antibody-positive rates in the elderly were comparable to those in the young; however, the antibody titers remained lower. Gender, age, and underlying diseases were independently associated with vaccine immunogenicity in elderly individuals. The pseudovirus neutralization assay showed that, compared with those after receiving two doses of BBIBP-CorV priming, some participants obtained immunological protection against BA.5 and BF.7 after receiving the ZF2001 booster. Breakthrough infection symptoms last longer in the infected elderly and pre-infection antibody titers were negatively associated with the severity of post-infection symptoms. The antibody levels in the elderly increased significantly after breakthrough infection but were still lower than those in the young. Our data suggest that multiple booster vaccinations at short intervals to maintain high antibody levels may be an effective strategy for protecting the elderly against COVID-19.
Collapse
MESH Headings
- Humans
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- Male
- Aged
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- SARS-CoV-2/immunology
- Prospective Studies
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Aged, 80 and over
- Adult
- Vaccination
- Longitudinal Studies
- Middle Aged
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/administration & dosage
- Immunogenicity, Vaccine/immunology
- Immunization, Secondary
Collapse
Affiliation(s)
- Hong-Hong Liu
- Out-patient Department of Day Diagnosis and Treatment, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yunbo Xie
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China
| | - Bao-Peng Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Huan-Yue Wen
- Hunyuan County People's Hospital, Datong, 037499, Shanxi Province, China
| | - Peng-Hui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin-E Lu
- Hunyuan County People's Hospital, Datong, 037499, Shanxi Province, China
| | - Yan Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xi Chen
- Out-patient Department of Day Diagnosis and Treatment, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Meng-Meng Qu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yang Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Wei-Guo Hong
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yong-Gang Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
4
|
Lingas G, Planas D, Péré H, Porrot F, Guivel-Benhassine F, Staropoli I, Duffy D, Chapuis N, Gobeaux C, Veyer D, Delaugerre C, Le Goff J, Getten P, Hadjadj J, Bellino A, Parfait B, Treluyer JM, Schwartz O, Guedj J, Kernéis S, Terrier B. Neutralizing Antibody Levels as a Correlate of Protection Against SARS-CoV-2 Infection: A Modeling Analysis. Clin Pharmacol Ther 2024; 115:86-94. [PMID: 37795693 DOI: 10.1002/cpt.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Although anti-severe acute respiratory syndrome-coronavirus 2 antibody kinetics have been described in large populations of vaccinated individuals, we still poorly understand how they evolve during a natural infection and how this impacts viral clearance. For that purpose, we analyzed the kinetics of both viral load and neutralizing antibody levels in a prospective cohort of individuals during acute infection with alpha variant. Using a mathematical model, we show that the progressive increase in neutralizing antibodies leads to a shortening of the half-life of both infected cells and infectious viral particles. We estimated that the neutralizing activity reached 90% of its maximal level within 11 days after symptom onset and could reduce the half-life of both infected cells and circulating virus by a 6-fold factor, thus playing a key role to achieve rapid viral clearance. Using this model, we conducted a simulation study to predict in a more general context the protection conferred by pre-existing neutralization titers, due to either vaccination or prior infection. We predicted that a neutralizing activity, as measured by 50% effective dose > 103 , could reduce by 46% the risk of having viral load detectable by standard polymerase chain reaction assays and by 98% the risk of having viral load above the threshold of infectiousness. Our model shows that neutralizing activity could be used to define correlates of protection against infection and transmission.
Collapse
Affiliation(s)
| | - Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Hélène Péré
- Virology Unit, Microbiology Department, APHP, Hôpital Européen Georges-Pompidou, Paris, France
- Université Paris Cité, INSERM UMRS1138 Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicolas Chapuis
- Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Service d'hématologie biologique, Hôpital Cochin, Paris, France
| | - Camille Gobeaux
- Department of Automated Biology, CHU de Cochin, AP-HP, Paris, France
| | - David Veyer
- Virology Unit, Microbiology Department, APHP, Hôpital Européen Georges-Pompidou, Paris, France
- Université Paris Cité, INSERM UMRS1138 Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Constance Delaugerre
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Inserm U944, Biology of Emerging Viruses, Paris, France
| | - Jérôme Le Goff
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, France
| | | | - Jérôme Hadjadj
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France
| | - Adèle Bellino
- URC-CIC Paris Centre Necker/Cochin, AP-HP, Hôpital Cochin, Paris, France
| | - Béatrice Parfait
- Fédération des Centres de Ressources Biologiques - Plateformes de Ressources Biologiques AP-HP.Centre-Université Paris Cité, Centre de Ressources Biologiques Cochin, Hôpital Cochin, Paris, France
| | - Jean-Marc Treluyer
- Unité de Recherche clinique, Hôpital Cochin, AP-HP.Centre - Université de Paris, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | | | - Solen Kernéis
- Université Paris Cité, IAME, INSERM, Paris, France
- Equipe de Prévention du Risque Infectieux (EPRI), AP-HP, Hôpital Bichat, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
5
|
Perrig L, Abela IA, Banholzer N, Audigé A, Epp S, Mugglin C, Zürcher K, Egger M, Trkola A, Fenner L. Long-term course of neutralising antibodies against SARS-CoV-2 in vaccinated and unvaccinated staff and residents in a Swiss nursing home: a cohort study 2021-2022. Swiss Med Wkly 2023; 153:3502. [PMID: 38579325 DOI: 10.57187/s.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Given their high-risk resident population, nursing homes were critical institutions in the COVID-19 pandemic, calling for continued monitoring and vaccine administration to healthcare workers and residents. Here, we studied long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in vaccinated and unvaccinated healthcare workers and residents of a nursing home in Switzerland between February 2021 and June 2022. METHODS Our study comprised 45 participants, of which 39 were healthcare workers and six were residents. All participants were offered a maximum of three mRNA vaccine doses (Pfizer/BioNTech, BNT162b2) in December 2020, January 2021, and November/December 2021. Thirty-five participants received three vaccinations, seven either one or two, and three remained unvaccinated. We collected four blood samples: one in March 2021 and three during follow-ups in November 2021, February 2022, and June 2022. We performed a multifactorial serological SARS-CoV-2 assay (ABCORA) for immunoglobulin G, A, and M responses to spike (receptor-binding domain, S1, and S2) and nucleocapsid (N) proteins. Furthermore, we assessed predicted neutralisation activity based on signal over cutoff in ABCORA. We collected epidemiological data from participants via a standardised questionnaire. RESULTS Thirty-two (71%) of the 45 participants showed hybrid immunity from combined vaccination and previous infection; 10 (22%) had only vaccine-induced immunity; and three (7%) had only post-infection immunity. Participants with hybrid immunity showed the highest predicted neutralisation activity at the end of the study period (median Sum S1 = 273), and unvaccinated participants showed the lowest (median Sum S1 = 41). Amongst participants who reported a SARS-CoV-2 infection, median Sum S1 levels increased with the number of vaccinations (p = 0.077). The healthcare worker group showed a significant time-dependent decrease in median Sum S1 after base immunisation (93% decrease, p = 0.0005) and the booster dose (26% decrease, p = 0.010). Predicted neutralisation activity was lower amongst residents (adjusted ratio of means [AM] = 0.7, 95% confidence interval [CI] = 0.3-1.0) and amongst smokers (AM = 0.5, 95% CI 0.3-0.8). Activity increased with the number of vaccinations (booster: AM = 3.6, 95% CI 1.5-8.8; no booster: AM = 2.3, 95% CI 0.9-2.5). Positive SARS-CoV-2 infection status tended to confer higher predicted neutralisation levels (AM = 1.5, 95% CI 0.9-2.5). CONCLUSIONS Our study of the long-term serological course of SARS-CoV-2 in a nursing home showed that the first SARS-CoV-2 booster vaccine was essential for maintaining antiviral antibody levels. Hybrid immunity sustained SARS-CoV-2 immunity at the highest level. In critical settings such as nursing homes, monitoring the SARS-CoV-2 immune status may guide booster vaccinations.
Collapse
Affiliation(s)
- Lisa Perrig
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolas Banholzer
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Catrina Mugglin
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathrin Zürcher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
O’Reilly S, Kenny G, Alrawahneh T, Francois N, Gu L, Angeliadis M, de Masson d’Autume V, Garcia Leon A, Feeney ER, Yousif O, Cotter A, de Barra E, Horgan M, Mallon PWG, Gautier V. Development of a novel medium throughput flow-cytometry based micro-neutralisation test for SARS-CoV-2 with applications in clinical vaccine trials and antibody screening. PLoS One 2023; 18:e0294262. [PMID: 38033116 PMCID: PMC10688860 DOI: 10.1371/journal.pone.0294262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Quantifying neutralising capacity of circulating SARS-COV-2 antibodies is critical in evaluating protective humoral immune responses generated post-infection/post-vaccination. Here we describe a novel medium-throughput flow cytometry-based micro-neutralisation test to evaluate Neutralising Antibody (NAb) responses against live SARS-CoV-2 Wild Type and Variants of Concern (VOC) in convalescent/vaccinated populations. Flow Cytometry-Based Micro-Neutralisation Test (Micro-NT) was performed in 96-well plates using clinical isolates WT-B, WT-B.1.177.18 and/or VOCs Beta and Omicron. Plasma samples (All Ireland Infectious Diseases (AIID) Cohort) were serially diluted (8 points, half-log) from 1:20 and pre-incubated with SARS-CoV-2 (1h, 37°C). Virus-plasma mixture were added onto Vero E6 or Vero E6/TMPRSS2 cells for 18h. Percentage infected cells was analysed by automated flow cytometry following trypsinisation, fixation and SARS-CoV-2 Nucleoprotein intracellular staining. Half-maximal Neutralisation Titres (NT50) were determined using non-linear regression. Our assay was compared to Plaque Reduction Neutralisation Test (PRNT) and validated against the First WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Both Micro-NT and PRNT achieved comparable NT50 values. Further validation showed adequate correlation with PRNT using a panel of secondary standards of clinical convalescent and vaccinated plasma samples. We found the assay to be reproducible through measuring both repeatability and intermediate precision. Screening 190 convalescent samples and 11 COVID-19 naive controls (AIID cohort) we demonstrated that Micro-NT has broad dynamic range differentiating NT50s <1/20 to >1/5000. We could also characterise immune-escape VOC Beta and Omicron BA.5, achieving fold-reductions in neutralising capacity similar to those published. Our flow cytometry-based Micro-NT is a robust and reliable assay to quantify NAb titres, and has been selected as an endpoint in clinical trials.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Tamara Alrawahneh
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Nathan Francois
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Lili Gu
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew Angeliadis
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Valentin de Masson d’Autume
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Carricklawn, Wexford, Ireland
| | - Aoife Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Eccles St, Dublin, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Cork, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Woelfel S, Dütschler J, König M, Dulovic A, Graf N, Junker D, Oikonomou V, Krieger C, Truniger S, Franke A, Eckhold A, Forsch K, Koller S, Wyss J, Krupka N, Oberholzer M, Frei N, Geissler N, Schaub P, Albrich WC, Friedrich M, Schneiderhan-Marra N, Misselwitz B, Korte W, Bürgi JJ, Brand S. STAR SIGN study: Evaluation of COVID-19 vaccine efficacy against the SARS-CoV-2 variants BQ.1.1 and XBB.1.5 in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2023; 58:678-691. [PMID: 37571863 DOI: 10.1111/apt.17661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Vaccine-elicited immune responses are impaired in patients with inflammatory bowel disease (IBD) treated with anti-TNF biologics. AIMS To assess vaccination efficacy against the novel omicron sublineages BQ.1.1 and XBB.1.5 in immunosuppressed patients with IBD. METHODS This prospective multicentre case-control study included 98 biologic-treated patients with IBD and 48 healthy controls. Anti-spike IgG concentrations and surrogate neutralisation against SARS-CoV-2 wild-type, BA.1, BA.5, BQ.1.1, and XBB.1.5 were measured at two different time points (2-16 weeks and 22-40 weeks) following third dose vaccination. Surrogate neutralisation was based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Primary outcome was surrogate neutralisation against tested SARS-CoV-2 sublineages. Secondary outcomes were proportions of participants with insufficient surrogate neutralisation, impact of breakthrough infection, and correlation of surrogate neutralisation with anti-spike IgG concentration. RESULTS Surrogate neutralisation against all tested sublineages was reduced in patients with IBD who were treated with anti-TNF biologics compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.001) at visit 1. Anti-TNF therapy (odds ratio 0.29 [95% CI 0.19-0.46]) and time since vaccination (0.85 [0.72-1.00]) were associated with low, and mRNA-1273 vaccination (1.86 [1.12-3.08]) with high wild-type surrogate neutralisation in a β-regression model. Accordingly, higher proportions of patients treated with anti-TNF biologics had insufficient surrogate neutralisation against omicron sublineages at visit 1 compared to patients treated with non-anti-TNF biologics and healthy controls (each p ≤ 0.015). Surrogate neutralisation against all tested sublineages decreased over time but was increased by breakthrough infection. Anti-spike IgG concentrations correlated with surrogate neutralisation. CONCLUSIONS Patients with IBD who are treated with anti-TNF biologics show impaired neutralisation against novel omicron sublineages BQ.1.1 and XBB.1.5 and may benefit from prioritisation for future variant-adapted vaccines.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU Munich), Munich, Germany
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Joel Dütschler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Marius König
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Nicole Graf
- Clinical Trials Unit, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Vasileios Oikonomou
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia Krieger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Samuel Truniger
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Annett Franke
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Outpatient Clinic, Ambulatory Services Rorschach, Rorschach, Switzerland
| | - Annika Eckhold
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Kristina Forsch
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Seraina Koller
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Nicola Frei
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Nora Geissler
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Peter Schaub
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | - Stephan Brand
- Department of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
8
|
Rouvinski A, Friedman A, Kirillov S, Attal JH, Kumari S, Fahoum J, Wiener R, Magen S, Plotkin Y, Chemtob D, Bercovier H. Antibody response in elderly vaccinated four times with an mRNA anti-COVID-19 vaccine. Sci Rep 2023; 13:14165. [PMID: 37644113 PMCID: PMC10465611 DOI: 10.1038/s41598-023-41399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
The humoral response after the fourth dose of a mRNA vaccine against COVID-19 has not been adequately described in elderly recipients, particularly those not exposed previously to SARS-CoV-2. Serum anti-RBD IgG levels (Abbott SARS-CoV-2 IgG II Quant assay) and neutralizing capacities (spike SARS-CoV-2 pseudovirus Wuhan and Omicron BA.1 variant) were measured after the third and fourth doses of a COVID-19 mRNA vaccine among 46 elderly residents (median age 85 years [IQR 81; 89]) of an assisted living facility. Among participants never infected by SARS-CoV-2, the mean serum IgG levels against RBD (2025 BAU/ml), 99 days after the fourth vaccine, was as high as 76 days after the third vaccine (1987 BAU/ml), and significantly higher (p = 0.030) when the latter were corrected for elapsed time. Neutralizing antibody levels against the historical Wuhan strain were significantly higher (Mean 1046 vs 1573; p = 0.002) and broader (against Omicron) (Mean 170 vs 375; p = 0.018), following the fourth vaccine. The six individuals with an Omicron breakthrough infection mounted strong immune responses for anti-RBD and neutralizing antibodies against the Omicron variant indicating that the fourth vaccine dose did not prevent a specific adaptation of the immune response. These findings point out the value of continued vaccine boosting in the elderly population.
Collapse
Affiliation(s)
- Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ahuva Friedman
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saveliy Kirillov
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Jordan Hannink Attal
- Braun School of Public Health and Community Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Tuberculosis and AIDS, State of Israel Ministry of Health, Jerusalem, Israel
| | - Sujata Kumari
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sophie Magen
- Department of Clinical Biochemistry, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yevgeni Plotkin
- Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Chemtob
- Braun School of Public Health and Community Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Tuberculosis and AIDS, State of Israel Ministry of Health, Jerusalem, Israel
| | - Herve Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Zhou Y, Zhao X, Jiang Y, Lin DJ, Lu C, Wang Y, Le S, Li R, Yan J. A Mechanical Assay for the Quantification of Anti-RBD IgG Levels in Finger-Prick Whole Blood. ACS Sens 2023; 8:2986-2995. [PMID: 37582229 PMCID: PMC10464602 DOI: 10.1021/acssensors.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
A large portion of the global population has been vaccinated with various vaccines or infected with SARS-CoV-2, the virus that causes COVID-19. The resulting IgG antibodies that target the receptor binding domain (RBD) of SARS-CoV-2 play a vital role in reducing infection rates and severe disease outcomes. Different immune histories result in the production of anti-RBD IgG antibodies with different binding affinities to RBDs of different variants, and the levels of these antibodies decrease over time. Therefore, it is important to have a low-cost, rapid method for quantifying the levels of anti-RBD IgG in decentralized testing for large populations. In this study, we describe a 30 min assay that allows for the quantification of anti-RBD IgG levels in a single drop of finger-prick whole blood. This assay uses force-dependent dissociation of nonspecifically absorbed RBD-coated superparamagnetic microbeads to determine the density of specifically linked microbeads to a protein A-coated transparent surface through anti-RBD IgGs, which can be measured using a simple light microscope and a low-magnification lens. The titer of serially diluted anti-RBD IgGs can be determined without any additional sample processing steps. The limit of detection for this assay is 0.7 ± 0.1 ng/mL referenced to the CR3022 anti-RBD IgG. The limits of the technology and its potential to be further developed to meet the need for point-of-care monitoring of immune protection status are discussed.
Collapse
Affiliation(s)
- Yu Zhou
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | - Xiaodan Zhao
- Department
of Physics, National University of Singapore, 117542, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, 117557, Singapore
| | - Yanqige Jiang
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | | | - Chen Lu
- Department
of Physics, National University of Singapore, 117542, Singapore
| | - Yinan Wang
- Department
of Physics, National University of Singapore, 117542, Singapore
| | - Shimin Le
- Department
of Physics, Xiamen University, Xiamen361005, P. R. China
| | - Rong Li
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, 117411, Singapore
- Department
of Physics, National University of Singapore, 117542, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
10
|
Ashrafian F, Bagheri Amiri F, Bavand A, Zali M, Sadat Larijani M, Ramezani A. A Comparative Study of Immunogenicity, Antibody Persistence, and Safety of Three Different COVID-19 Boosters between Individuals with Comorbidities and the Normal Population. Vaccines (Basel) 2023; 11:1376. [PMID: 37631944 PMCID: PMC10459403 DOI: 10.3390/vaccines11081376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Data on immunogenicity, immune response persistency, and safety of COVID-19 boosters in patients with comorbidities are limited. Therefore, we aimed to evaluate three different boosters' immunogenicity and safety in individuals with at least one underlying disease (UD) (obesity, hypertension, and diabetes mellitus) with healthy ones (HC) who were primed with two doses of the BBIBP-CorV vaccine and received a booster shot of the same priming vaccine or protein subunit vaccines, PastoCovac Plus or PastoCovac. One hundred and forty subjects including sixty-three ones with a comorbidity and seventy-seven healthy ones were enrolled. The presence of SARS-CoV-2 antibodies was assessed before the booster injection and 28, 60, 90, and 180 days after it. Moreover, the adverse events (AEs) were recorded on days 7 and 21 postbooster shot for evaluating safety outcomes. Significantly increased titers of antispike, antiRBD, and neutralizing antibodies were observed in both UD and HC groups 28 days after the booster dose. Nevertheless, the titer of antispike IgG and anti-RBD IgG was lower in the UD group compared to the HC group. The long-term assessment regarding persistence of humoral immune responses showed that the induced antibodies were detectable up to 180 days postbooster shots though with a declined titer in both groups with no significant differences (p > 0.05). Furthermore, no significant difference in antibody levels was observed between each UD subgroup and the HC group, except for neutralizing antibodies in the hypertension subgroup. PastoCovac Plus and PastoCovac boosters induced a higher fold rise in antibodies in UD individuals than BBIBP-CorV booster recipients. No serious AEs after the booster injection were recorded. The overall incidence of AEs after the booster injection was higher in the UD group than the HC group among whom the highest systemic rate of AEs was seen in the BBIBP-CorV booster recipients. In conclusion, administration of COVID-19 boosters could similarly induce robust and persistent humoral immune responses in individuals with or without UD primarily vaccinated with two doses of the BBIBP-CorV. Protein-based boosters with higher a higher fold rise in antibodies and lower AEs in individuals with comorbidities might be considered a better choice for these individuals.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| |
Collapse
|
11
|
Clairon Q, Prague M, Planas D, Bruel T, Hocqueloux L, Prazuck T, Schwartz O, Thiébaut R, Guedj J. Modeling the kinetics of the neutralizing antibody response against SARS-CoV-2 variants after several administrations of Bnt162b2. PLoS Comput Biol 2023; 19:e1011282. [PMID: 37549192 PMCID: PMC10434962 DOI: 10.1371/journal.pcbi.1011282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/17/2023] [Accepted: 06/20/2023] [Indexed: 08/09/2023] Open
Abstract
Because SARS-CoV-2 constantly mutates to escape from the immune response, there is a reduction of neutralizing capacity of antibodies initially targeting the historical strain against emerging Variants of Concern (VoC)s. That is why the measure of the protection conferred by vaccination cannot solely rely on the antibody levels, but also requires to measure their neutralization capacity. Here we used a mathematical model to follow the humoral response in 26 individuals that received up to three vaccination doses of Bnt162b2 vaccine, and for whom both anti-S IgG and neutralization capacity was measured longitudinally against all main VoCs. Our model could identify two independent mechanisms that led to a marked increase in measured humoral response over the successive vaccination doses. In addition to the already known increase in IgG levels after each dose, we identified that the neutralization capacity was significantly increased after the third vaccine administration against all VoCs, despite large inter-individual variability. Consequently, the model projects that the mean duration of detectable neutralizing capacity against non-Omicron VoC is between 348 days (Beta variant, 95% Prediction Intervals PI [307; 389]) and 587 days (Alpha variant, 95% PI [537; 636]). Despite the low neutralization levels after three doses, the mean duration of detectable neutralizing capacity against Omicron variants varies between 173 days (BA.5 variant, 95% PI [142; 200]) and 256 days (BA.1 variant, 95% PI [227; 286]). Our model shows the benefit of incorporating the neutralization capacity in the follow-up of patients to better inform on their level of protection against the different SARS-CoV-2 variants. Trial registration: This clinical trial is registered with ClinicalTrials.gov, Trial IDs NCT04750720 and NCT05315583.
Collapse
Affiliation(s)
- Quentin Clairon
- Université de Bordeaux, Inria Bordeaux Sud-Ouest, Bordeaux, France
- Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Mélanie Prague
- Université de Bordeaux, Inria Bordeaux Sud-Ouest, Bordeaux, France
- Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Delphine Planas
- Vaccine Research Institute, Créteil, France
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Timothée Bruel
- Vaccine Research Institute, Créteil, France
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional, Orléans, France
| | - Thierry Prazuck
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional, Orléans, France
| | - Olivier Schwartz
- Vaccine Research Institute, Créteil, France
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Rodolphe Thiébaut
- Université de Bordeaux, Inria Bordeaux Sud-Ouest, Bordeaux, France
- Inserm, Bordeaux Population Health Research Center, SISTM Team, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | | |
Collapse
|
12
|
Woudenberg T, Pinaud L, Garcia L, Tondeur L, Pelleau S, De Thoisy A, Donnadieu F, Backovic M, Attia M, Hozé N, Duru C, Koffi AD, Castelain S, Ungeheuer MN, Fernandes Pellerin S, Planas D, Bruel T, Cauchemez S, Schwartz O, Fontanet A, White M. Estimated protection against COVID-19 based on predicted neutralisation titres from multiple antibody measurements in a longitudinal cohort, France, April 2020 to November 2021. Euro Surveill 2023; 28:2200681. [PMID: 37347417 PMCID: PMC10288827 DOI: 10.2807/1560-7917.es.2023.28.25.2200681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/28/2023] [Indexed: 06/23/2023] Open
Abstract
BackgroundThe risk of SARS-CoV-2 (re-)infection remains present given waning of vaccine-induced and infection-acquired immunity, and ongoing circulation of new variants.AimTo develop a method that predicts virus neutralisation and disease protection based on variant-specific antibody measurements to SARS-CoV-2 antigens.MethodsTo correlate antibody and neutralisation titres, we collected 304 serum samples from individuals with either vaccine-induced or infection-acquired SARS-CoV-2 immunity. Using the association between antibody and neutralisation titres, we developed a prediction model for SARS-CoV-2-specific neutralisation titres. From predicted neutralising titres, we inferred protection estimates to symptomatic and severe COVID-19 using previously described relationships between neutralisation titres and protection estimates. We estimated population immunity in a French longitudinal cohort of 905 individuals followed from April 2020 to November 2021.ResultsWe demonstrated a strong correlation between anti-SARS-CoV-2 antibodies measured using a low cost high-throughput assay and antibody response capacity to neutralise live virus. Participants with a single vaccination or immunity caused by infection were especially vulnerable to symptomatic or severe COVID-19. While the median reduced risk of COVID-19 from Delta variant infection in participants with three vaccinations was 96% (IQR: 94-98), median reduced risk among participants with infection-acquired immunity was only 42% (IQR: 22-66).ConclusionOur results are consistent with data from vaccine effectiveness studies, indicating the robustness of our approach. Our multiplex serological assay can be readily adapted to study new variants and provides a framework for development of an assay that would include protection estimates.
Collapse
Affiliation(s)
- Tom Woudenberg
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Laurie Pinaud
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Laura Garcia
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Laura Tondeur
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Stéphane Pelleau
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Alix De Thoisy
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Françoise Donnadieu
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Marija Backovic
- Structural Virology Unit, Department of Virology and CNRS UMR 3569, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Mikaël Attia
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université Paris-Cité, CNRS UMR 3569, Paris, France
| | - Nathanael Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris-Cité, UMR2000, CNRS, Paris, France
| | - Cécile Duru
- Hôpital de Crépy-en-Valois, Crépy-en-Valois, France
| | | | | | - Marie-Noelle Ungeheuer
- Clinical Investigation and Access to Research Bioresources (ICAReB) platform, Center for Translational Science, Institut Pasteur, Paris, France
| | | | - Delphine Planas
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris-Cité, UMR2000, CNRS, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Arnaud Fontanet
- PACRI Unit, Conservatoire National des Arts et Métiers, Paris, France
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| |
Collapse
|
13
|
Bobrovitz N, Ware H, Ma X, Li Z, Hosseini R, Cao C, Selemon A, Whelan M, Premji Z, Issa H, Cheng B, Abu Raddad LJ, Buckeridge DL, Van Kerkhove MD, Piechotta V, Higdon MM, Wilder-Smith A, Bergeri I, Feikin DR, Arora RK, Patel MK, Subissi L. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression. THE LANCET. INFECTIOUS DISEASES 2023; 23:556-567. [PMID: 36681084 PMCID: PMC10014083 DOI: 10.1016/s1473-3099(22)00801-5] [Citation(s) in RCA: 251] [Impact Index Per Article: 251.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. METHODS For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case-control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). FINDINGS 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1-83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4-35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4-99·2) at 12 months with primary series vaccination and 95·3% (81·9-98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5-52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0-57·3) at 6 months. INTERPRETATION All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. FUNDING WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.
Collapse
Affiliation(s)
- Niklas Bobrovitz
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada; Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Harriet Ware
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiaomeng Ma
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Zihan Li
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Reza Hosseini
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Christian Cao
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anabel Selemon
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mairead Whelan
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, BC, Canada
| | - Hanane Issa
- Institute of Health Informatics, University College London, London, UK
| | - Brianna Cheng
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Laith J Abu Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - David L Buckeridge
- Department of Epidemiology and Biostatistics, School of Population and Global Health, McGill University, Montreal, QC, Canada
| | | | - Vanessa Piechotta
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Melissa M Higdon
- International Vaccine Access Center, Department of International Health, John Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Annelies Wilder-Smith
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland; Heidelberg Institute of Global Health, University of Heidelberg, Germany
| | - Isabel Bergeri
- Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| | - Daniel R Feikin
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Rahul K Arora
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Minal K Patel
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Lorenzo Subissi
- Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
14
|
Cocherie T, Zafilaza K, Leducq V, Marot S, Calvez V, Marcelin AG, Todesco E. Epidemiology and Characteristics of SARS-CoV-2 Variants of Concern: The Impacts of the Spike Mutations. Microorganisms 2022; 11:30. [PMID: 36677322 PMCID: PMC9866527 DOI: 10.3390/microorganisms11010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 expresses on its surface the Spike protein responsible for binding with the ACE2 receptor and which carries the majority of immunodominant epitopes. Mutations mainly affect this protein and can modify characteristics of the virus, giving each variant a unique profile concerning its transmissibility, virulence, and immune escape. The first lineage selected is the B.1 lineage characterized by the D614G substitution and from which all SARS-CoV-2 variants of concern have emerged. The first three variants of concern Alpha, Beta, and Gamma spread in early 2021: all shared the N501Y substitution. These variants were replaced by the Delta variant in summer 2021, carrying unique mutations like the L452R substitution and associated with higher virulence. It was in turn quickly replaced by the Omicron variant at the end of 2021, which has predominated since then, characterized by its large number of mutations. The successive appearance of variants of concern showed a dynamic evolution of SARS-CoV-2 through the selection and accumulation of mutations. This has not only allowed progressive improvement of the transmissibility of SARS-CoV-2, but has also participated in a better immune escape of the virus. This review brings together acquired knowledge about SARS-CoV-2 variants of concern and the impacts of the Spike mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eve Todesco
- Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Virologie, 75013 Paris, France
| |
Collapse
|
15
|
Utilization of the Abbott SARS-CoV-2 IgG II Quant Assay To Identify High-Titer Anti-SARS-CoV-2 Neutralizing Plasma against Wild-Type and Variant SARS-CoV-2 Viruses. Microbiol Spectr 2022; 10:e0281122. [PMID: 36125288 PMCID: PMC9602363 DOI: 10.1128/spectrum.02811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There is evidence that COVID-19 convalescent plasma may improve outcomes of patients with impaired immune systems; however, more clinical trials are required. Although we have previously used a 50% plaque reduction/neutralization titer (PRNT50) assay to qualify convalescent plasma for clinical trials and virus-like particle (VLP) assays to validate PRNT50 methodologies, these approaches are time-consuming and expensive. Here, we characterized the ability of the Abbott severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG II Quant assay to identify high- and low-titer plasma for wild-type and variant (Alpha, Beta, Gamma, and Delta) SARS-CoV-2 characterized by both VLP assays and PRNT50. Plasma specimens previously tested in wild-type, Alpha, Beta, Gamma, and Delta VLP neutralization assays were selected based on availability. Selected specimens were evaluated by the Abbott SARS-CoV-2 IgG II Quant assay [Abbott anti-Spike (S); Abbott, Chicago, IL], and values in units per milliliter were converted to binding antibody units (BAU) per milliliter. Sixty-three specimens were available for analysis. Abbott SARS-CoV-2 IgG II Quant assay values in BAU per milliliter were significantly different between high- and low-titer specimens for wild-type (Mann-Whitney U = 42, P < 0.0001), Alpha (Mann-Whitney U = 38, P < 0.0001), Beta (Mann-Whitney U = 29, P < 0.0001), Gamma (Mann-Whitney U = 0, P < 0.0001), and Delta (Mann-Whitney U = 42, P < 0.0001). A conservative approach using the highest 95% confidence interval (CI) values from wild-type and variant of concern (VOC) SARS-CoV-2 experiments would identify a potential Abbott SARS-CoV-2 IgG II Quant assay cutoff of ≥7.1 × 103 BAU/mL. IMPORTANCE The United States Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the use of COVID-19 convalescent plasma (CCP) to treat hospitalized patients with COVID-19 in August 2020. However, by 4 February 2021, the FDA had revised the convalescent plasma EUA. This revision limited the authorization for high-titer COVID-19 convalescent plasma and restricted patient groups to hospitalized patients with COVID-19 early in their disease course or hospitalized patients with impaired humoral immunity. Traditionally our group utilized 50% plaque reduction/neutralization titer (PRNT50) assays to qualify CCP in Canada. Since that time, the Abbott SARS-CoV-2 IgG II Quant assay (Abbott, Chicago IL) was developed for the qualitative and quantitative determination of IgG against the SARS-CoV-2. Here, we characterized the ability of the Abbott SARS-CoV-2 IgG II Quant assay to identify high- and low-titer plasma for wild-type and variant (Alpha, Beta, Gamma, and Delta) SARS-CoV-2.
Collapse
|