1
|
Sabry HA, Ali EHA, Osman AA, Zahra MM. Nanotechnology strategy for inhibition of PARP1 and IL-17A-associated with neurotoxicity in rats exposed to hospital wastewater. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03512-x. [PMID: 39422747 DOI: 10.1007/s00210-024-03512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Hospital wastewater (HWW) poses a serious hazard to human health security concerning its high susceptibility to neurodegeneration. Water sources and ecosystems are exposed to a complicated pollution load from a variety of refractory organics and pharmaceutical active composites. This study evaluates the treated newly developed nanocomposite (NiFe2O4) HWW on the neural injury induced by HWW action in rats. Three groups of male Wistar rats were distributed, with eight rats in each: group I: tap water served as a control; group II: HWW; and group III: nano-HWW. Each group was intragastrical administrated with each type of water (2.5 ml/100 g b.wt/6 h) for 28 consecutive days. The open field test and Morris Water Maze assessed behavioral activity and spatial learning 2 days before the last day. The research demonstrated that HWW treated with nanocomposite (NiFe2O4) may exert decreased risks of the neural impairment effect of HWW. This improvement was achieved by reducing the neurotoxicity by lowering nitric oxide contents, lipid peroxidation, acetylcholinesterase, interleukin-17A (IL-17A), and poly(ADP-ribose) polymerase1(PARP1) while restoring the antioxidant biomarkers and neurotransmitter levels (β-endorphin, norepinephrine, dopamine, and serotonin) of the treated groups in the cortex and brainstem and enhancement of the histopathology of the cortex as well. In conclusion, this study introduced a newly developed nanotechnology application for treating HWW to protect from neural injury. The findings of this research have significant value for policymakers, Ministry of Health management, and environmental organizations in their selection of suitable techniques and procedures to optimize hospital wastewater treatment efficiency.
Collapse
Affiliation(s)
- Hend A Sabry
- Zoology Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt.
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Amany A Osman
- Zoology Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Mai M Zahra
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Sheikhlangi Z, Gharaei A, Mirdar Harijani J, Davari SA, Hassanein P, Rahdari A. Toxicological effects of meloxicam on physiological and antioxidant status of common carp (Cyprinus carpio). Vet Med Sci 2023; 9:2085-2094. [PMID: 37616188 PMCID: PMC10508569 DOI: 10.1002/vms3.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2022] [Accepted: 07/06/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Fish in aquatic environments are end consumers of the food chain and are widely used for the evolution effects of environmental pollution and their interactions in aquatic ecosystem. OBJECTIVE In the present study, common carp (Cyprinus carpio) fingerlings were selected to assess the potential risk and aquatic toxicity of meloxicam as a non-steroidal anti-inflammatory and a commonly used pharmaceutical drug. METHODS In order to evaluate meloxicam toxicological effect on haematological, antioxidant status, enzymological and histological parameters, based on its LC50 24 h acute toxicity (10.05 mg L-1 ), fish fingerlings were exposed to four doses of meloxicam including; 0 (control), 0.1 (low), 1 (medium) and 2 mg L-1 (high) under static bioassay method for 28 days. RESULTS The results showed that sublethal doses of meloxicam significantly decreased alanine aminotransferase, alkaline phosphatase, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) levels in comparison with the control group after 28 days (p < 0.05). However, red blood cell, haematocrit, haemoglobin and malondialdehyde values in fish exposed to meloxicam significantly increased alongside its concentration (p < 0.05) more than the control group after 28 days. SOD, CAT and GPX mRNA expression levels in gill, liver, kidney and brain organ of fish under meloxicam treatment were significantly down-regulated compared to the control group (p < 0.05). Histopathological assessment showed the increased vacuolation in hepatocytes in liver of fish exposure to medium and high doses of meloxicam. CONCLUSION In conclusion, meloxicam induces oxidative stress in common carp which results a disruption of physiological and health status of this species based on our current findings.
Collapse
Affiliation(s)
- Zeynab Sheikhlangi
- Department of FisheriesNatural Resources FacultyUniversity of ZabolZabolSistan … BalouchestanIran
| | - Ahmad Gharaei
- Department of FisheriesNatural Resources FacultyUniversity of ZabolZabolSistan … BalouchestanIran
| | - Javad Mirdar Harijani
- Department of FisheriesNatural Resources FacultyUniversity of ZabolZabolSistan … BalouchestanIran
| | - Seyedeh Ayda Davari
- Department of PathobiologyFaculty of VeterinaryUniversity of ZabolZabolSistan … BalouchestanIran
| | - Parisa Hassanein
- Department of BiologyFaculty of ScienceUniversity of ZabolZabolSistan … BalouchestanIran
| | - Abdolali Rahdari
- Department of FisheriesHamoun International Wetland Research InstituteResearch Institute of ZbolZabolSistan … BalouchestanIran
| |
Collapse
|
3
|
Ellepola N, Viera T, Patidar PL, Rubasinghege G. Fate, transformation and toxicological implications of environmental diclofenac: Role of mineralogy and solar flux. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114138. [PMID: 36201921 DOI: 10.1016/j.ecoenv.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac is an emerging surface water contaminant, yet the environmental impact of its degradation products remains elusive. The current study focuses on mineralogy-controlled diclofenac photo-degradation and its potential health impacts. Under irradiated conditions, we studied the effects of kaolinite, hematite, and anatase on diclofenac degradation. Our results showed that kaolinite doubled the diclofenac degradation rate, which can be attributed to the high catalytic effect, mediated via increased surface area and pore size of mineral surface in the low pH. Conversely, anatase, a crystal phase of titanium dioxide (TiO2), diminished the diclofenac degradation compared to treatments without TiO2. Hematite, on the other hand, showed no effect on diclofenac degradation. Photo-degradation products also varied with the mineral surface. We further assessed in vitro toxicological effects of photo-degraded products on two human cell lines, HEK293T and HepG2. Biological assays confirmed that photo-degraded compound 6 (1-(2,6-dichlorophenyl)indolin-2-one) decreased HEK293T cell survival significantly (p < 0.05) when compared to diclofenac in all concentrations. At lower concentrations, inhibition of HEK293T cells caused by compounds 4 (2-(8-chloro-9H-carbazol-1-yl)acetic acid), and 5 (2-(9H-carbazol-1-yl)acetic acid) was greater than diclofenac. Compound 7 (1-phenylindolin-2-one) was toxic only at 250 µM. Additionally, compound 6 decreased HepG2 cell viability significantly when compared to diclofenac. Overall, our data highlighted that mineralogy plays a vital role in environmental diclofenac transformation and its photo-degraded products. Some photo-degraded compounds can be more cytotoxic than the parent compound, diclofenac.
Collapse
Affiliation(s)
- Nishanthi Ellepola
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Talysa Viera
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Praveen L Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.
| |
Collapse
|
4
|
Żur J, Marchlewicz A, Piński A, Guzik U, Wojcieszyńska D. Degradation of diclofenac by new bacterial strains and its influence on the physiological status of cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124000. [PMID: 33265034 DOI: 10.1016/j.jhazmat.2020.124000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/20/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Diclofenac (DCF) is one of the most commonly utilized non-steroidal anti-inflammatory drugs (NSAIDs), which is known to pose an ecotoxicological threat. In this study, from activated sludge and contaminated soil, we isolated four new bacterial strains able to degrade DCF under mono-substrate and co-metabolic conditions with glucose supplementation. We found that the effectiveness of DCF removal is strictly strain-specific and the addition of the primary substrate is not always beneficial. To assess the multidirectional influence of DCF on bacterial cells we evaluated the alterations of increasing concentrations of this drug on membrane structure. A significant increase was observed in the content of 17:0 cyclo fatty acid, which is responsible for reduced fluidity and profound changes in membrane rigidity. The cell injury and oxidative stress were assessed with biomarkers used as endpoints of toxicity, i.e. catalase (CAT), superoxide dismutase (SOD), lipids peroxidation (LPX), and both intra- and extracellular alkaline and acid phosphatase activity. Results indicated that DCF induced oxidative stress, frequently intensified by the addition of glucose. However, the response of the microbial cells to the presence of DCF should not be generalized, since the overall picture of the particular alterations greatly varied for each of the examined strains.
Collapse
Affiliation(s)
- Joanna Żur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Ariel Marchlewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| |
Collapse
|
5
|
Żur J, Piński A, Wojcieszyńska D, Smułek W, Guzik U. Diclofenac Degradation-Enzymes, Genetic Background and Cellular Alterations Triggered in Diclofenac-Metabolizing Strain Pseudomonas moorei KB4. Int J Mol Sci 2020; 21:ijms21186786. [PMID: 32947916 PMCID: PMC7555183 DOI: 10.3390/ijms21186786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/20/2022] Open
Abstract
Diclofenac (DCF) constitutes one of the most significant ecopollutants detected in various environmental matrices. Biological clean-up technologies that rely on xenobiotics-degrading microorganisms are considered as a valuable alternative for chemical oxidation methods. Up to now, the knowledge about DCF multi-level influence on bacterial cells is fragmentary. In this study, we evaluate the degradation potential and impact of DCF on Pseudomonas moorei KB4 strain. In mono-substrate culture KB4 metabolized 0.5 mg L−1 of DCF, but supplementation with glucose (Glc) and sodium acetate (SA) increased degraded doses up to 1 mg L−1 within 12 days. For all established conditions, 4′-OH-DCF and DCF-lactam were identified. Gene expression analysis revealed the up-regulation of selected genes encoding biotransformation enzymes in the presence of DCF, in both mono-substrate and co-metabolic conditions. The multifactorial analysis of KB4 cell exposure to DCF showed a decrease in the zeta-potential with a simultaneous increase in the cell wall hydrophobicity. Magnified membrane permeability was coupled with the significant increase in the branched (19:0 anteiso) and cyclopropane (17:0 cyclo) fatty acid accompanied with reduced amounts of unsaturated ones. DCF injures the cells which is expressed by raised activities of acid and alkaline phosphatases as well as formation of lipids peroxidation products (LPX). The elevated activity of superoxide dismutase (SOD) and catalase (CAT) testified that DCF induced oxidative stress.
Collapse
Affiliation(s)
- Joanna Żur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznan, Poland;
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| |
Collapse
|
6
|
Gasca-Pérez E, Galar-Martínez M, García-Medina S, Pérez-Coyotl IA, Ruiz-Lara K, Cano-Viveros S, Pérez-Pastén Borja R, Gómez-Oliván LM. Short-term exposure to carbamazepine causes oxidative stress on common carp (Cyprinus carpio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:96-103. [PMID: 30639901 DOI: 10.1016/j.etap.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The aim of this research was to determine the bioconcentration factor and if subacute exposure to carbamazepine (2 mg L-1) modifies the oxidative state of liver, gills and brain of Cyprinus carpio. This was measured through the following biomarkers: hydroperoxide and protein carbonyl content, lipid peroxidation degree, as well as superoxide dismutase, catalase and glutathione peroxidase activity. Carbamazepine concentration in carp's tissue was also determined by liquid chromatography with a diode arrangement detector. An increase in lipid peroxidation degree, hydroperoxide and protein carbonyl content, and a decrease in the activity of the antioxidant enzymes (P < 0.05) with respect to control was observed. Also, there is an increase in the concentration of carbamazepina present in the organs with respect to the water in the system, which denotes bioconcentration of the drug. In conclusion, carbamazepine is bioconcentrated and produces oxidative stress on the common carp (C. carpio).
Collapse
Affiliation(s)
- Eloy Gasca-Pérez
- Cátedra CONACYT, Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico; Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico.
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico.
| | - Sandra García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Isabel A Pérez-Coyotl
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Karina Ruiz-Lara
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Selene Cano-Viveros
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular and Cellular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Leobardo M Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
7
|
Bonnefille B, Gomez E, Courant F, Escande A, Fenet H. Diclofenac in the marine environment: A review of its occurrence and effects. MARINE POLLUTION BULLETIN 2018; 131:496-506. [PMID: 29886975 DOI: 10.1016/j.marpolbul.2018.04.053] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 05/14/2023]
Abstract
Interest in the presence and effects of diclofenac (DCF) and other pharmaceutical products (PPs) in the aquatic environment has been growing over the last 20 years. DCF has been included in the First Watch List of the EU Water Framework Directive in order to gather monitoring data in surface waters. Despite PP input in water bodies, few studies have been conducted to determine the extent of DCF occurrence and effects on marine ecosystems, which is usually the final recipient of surface waters. The present article reviews available published data on DCF occurrence in marine water, sediment and organisms, and its effects on marine organisms. The findings highlight the scarcity of available data on the occurrence and effects of DCF in marine ecosystems, and the need for further data acquisition to assess the risks associated with the presence of this compound in the environment.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Elena Gomez
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Frédérique Courant
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France.
| | - Aurélie Escande
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Hélène Fenet
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Bao S, Nie X, Ou R, Wang C, Ku P, Li K. Effects of diclofenac on the expression of Nrf2 and its downstream target genes in mosquito fish (Gambusia affinis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:43-53. [PMID: 28456064 DOI: 10.1016/j.aquatox.2017.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Diclofenac (DCF) is one of widely used non-steroidal anti-inflammatory drugs. Recently, this drug has been universally detected in aquatic environment. However, its potential adverse effects and oxidative stress toxic mechanisms on fish remain unclear. In the present study, we first cloned the crucial partial sequences of some key oxidative stress related genes, which include NF-E2-related factor 2 (Nrf2), NAD(P)H: quinoneoxidoreductase (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), Cu-Zn superoxide dismutase (SOD2), catalase (CAT), alpha-glutathione S-transferase (GSTA), and UDP-glucuronosyltransferases (UGT) in mosquito fish (Gambusia affinis). We also deduced amino acids of Nrf2 and then constructed the phylogenetic trees of Nrf2, NQO1 and GCLC, respectively. Results showed that a high identity percentage was founded between G. affinis and other bony fish species, such as Xiphophorus maculates and Poecilia reticulate. The transcriptional expression of these genes and partly related enzymes activities were then investigated under the included environmental relevant concentration DCF exposure (0μmolL-1, 1.572×10-3μmolL-1, 1.572×10-2μmolL-1, 0.1572μmolL-1 and 1.572μmolL-1) for 24h and 168h. The expression of Nrf2 was inhibited at 24h but induced at 168h, exhibiting a significant time and/or dose-effect relationship under DCF exposure. Similar observation was found in its downstream target genes. However, Nrf2-mediated antioxidant enzymes activities displayed differently under the same concentration of DCF exposure for the same time. Under DCF exposure for 168h, the genes exhibited dramatic induction trend, but there were no significant changes in enzyme activities and MDA content. Overall, mRNA responses were more sensitive than enzyme changes in mosquito fish under DCF exposure.
Collapse
Affiliation(s)
- Shuang Bao
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China.
| | - Ruikang Ou
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China
| | - Chao Wang
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China
| | - Peijia Ku
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China
| | - Kaibing Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
9
|
Islas-Flores H, Manuel Gómez-Oliván L, Galar-Martínez M, Michelle Sánchez-Ocampo E, SanJuan-Reyes N, Ortíz-Reynoso M, Dublán-García O. Cyto-genotoxicity and oxidative stress in common carp (Cyprinus carpio) exposed to a mixture of ibuprofen and diclofenac. ENVIRONMENTAL TOXICOLOGY 2017; 32:1637-1650. [PMID: 28101901 DOI: 10.1002/tox.22392] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/14/2023]
Abstract
Thirty million people worldwide consume each day nonsteroidal anti-inflammatory drugs (NSAIDs), a heterogeneous group of pharmaceuticals used for its analgesic, antipyretic, and anti-inflammatory properties. Recent studies report high NSAID concentrations in wastewater treatment plant effluents, in surface, ground, and drinking water, and in sediments. NSAIDs are also known to induce toxicity on aquatic organisms. However, toxicity in natural ecosystems is not usually the result of exposure to a single substance but to a mixture of toxic agents, yet only a few studies have evaluated the toxicity of mixtures. The aim of this study was to evaluate the toxicity induced by diclofenac (DCF), ibuprofen (IBP), and their mixture on a species of commercial interest, the common carp Cyprinus carpio. The median lethal concentration of IBP and DCF was determined, and oxidative stress was evaluated using the following biomarkers: lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. Cyto-genotoxicity was evaluated by micronucleus test, comet assay, and the specific activity of caspase-3. Results show that DCF, IBP, and a mixture of these pharmaceuticals induced free radical production, oxidative stress and cyto-genotoxicity in tissues of C. carpio. However, a greater effect was elicited by the mixture than by either pharmaceutical alone in some biomarkers evaluated, particularly in gill. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1637-1650, 2017.
Collapse
Affiliation(s)
- Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, México, D.F, 11340, México
| | - Esmeralda Michelle Sánchez-Ocampo
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Mariana Ortíz-Reynoso
- Laboratorio de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca, Estado de México, 50120, México
| |
Collapse
|
10
|
Bickley LK, van Aerle R, Brown AR, Hargreaves A, Huby R, Cammack V, Jackson R, Santos EM, Tyler CR. Bioavailability and Kidney Responses to Diclofenac in the Fathead Minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1764-1774. [PMID: 28068076 DOI: 10.1021/acs.est.6b05079] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diclofenac is one of the most widely prescribed nonsteroidal anti-inflammatory drugs worldwide. It is frequently detected in surface waters; however, whether this pharmaceutical poses a risk to aquatic organisms is debated. Here we quantified the uptake of diclofenac by the fathead minnow (Pimephales promelas) following aqueous exposure (0.2-25.0 μg L-1) for 21 days, and evaluated the tissue and biomolecular responses in the kidney. Diclofenac accumulated in a concentration- and time-dependent manner in the plasma of exposed fish. The highest plasma concentration observed (for fish exposed to 25 μg L-1 diclofenac) was within the therapeutic range for humans. There was a strong positive correlation between exposure concentration and the number of developing nephrons observed in the posterior kidney. Diclofenac was not found to modulate the expression of genes in the kidney associated with its primary mode of action in mammals (prostaglandin-endoperoxide synthases) but modulated genes associated with kidney repair and regeneration. There were no significant adverse effects following 21 days exposure to concentrations typical of surface waters. The combination of diclofenac's uptake potential, effects on kidney nephrons and relatively small safety margin for some surface waters may warrant a longer term chronic health effects analysis for diclofenac in fish.
Collapse
Affiliation(s)
- Lisa K Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Ronny van Aerle
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, U.K
| | - A Ross Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Adam Hargreaves
- AstraZeneca Drug Safety and Metabolism, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
- PathCelerate Ltd. The BioHub at Alderley Park, Alderley Edge, Cheshire SK10 4TG, U.K
| | - Russell Huby
- Bioscript, St Peter's Institute , Macclesfield, Cheshire SK11 7HS, U.K
| | - Victoria Cammack
- AstraZeneca Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
| | - Richard Jackson
- AstraZeneca Drug Safety and Metabolism, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
- Institute of Psychiatry, Psychology and Neuroscience, King's College London , De Crespigny Park, Box 63, SE5 8AF, London, U.K
| | - Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| |
Collapse
|
11
|
Lonappan L, Brar SK, Das RK, Verma M, Surampalli RY. Diclofenac and its transformation products: Environmental occurrence and toxicity - A review. ENVIRONMENT INTERNATIONAL 2016; 96:127-138. [PMID: 27649472 DOI: 10.1016/j.envint.2016.09.014] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 05/03/2023]
Abstract
Diclofenac (DCF) is a prevalent anti-inflammatory drug used throughout the world. Intensive researches carried out in the past few decades have confirmed the global ubiquity of DCF in various environmental compartments. Its frequent occurrence in freshwater environments and its potential toxicity towards several organisms such as fish and mussels makes DCF an emerging environmental contaminant. At typical detected environmental concentrations, the drug does not exhibit toxic effects towards living organisms, albeit chronic exposure may lead to severe effects. For DCF, about 30-70% removal has been obtained through the conventional treatment system in wastewater treatment plant being the major primary sink. Thus, the untreated DCF will pass to surface water. DCF can interact with other inorganic contaminants in the environment particularly in wastewater treatment plant, such as metals, organic contaminants and even with DCF metabolites. This process may lead to the creation of another possible emerging contaminant. In the present context, environmental fate of DCF in different compartments such as soil and water has been addressed with an overview of current treatment methods. In addition, the toxicity concerns regarding DCF in aquatic as well as terrestrial environment along with an introduction to the metabolites of DCF through consumption as well as abiotic degradation routes are also discussed. Further studies are required to better assess the fate and toxicological effects of DCF and its metabolites and must consider the possible interaction of DCF with other contaminants to develop an effective treatment method for DCF and its traces.
Collapse
Affiliation(s)
- Linson Lonappan
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mausam Verma
- CO(2) Solutions Inc., 2300, Rue Jean-Perrin, Québec, Québec, G2C 1T9, Canada
| | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, PO Box 886105, Lincoln, NE 68588-6105, USA
| |
Collapse
|
12
|
Saucedo-Vence K, Dublán-García O, López-Martínez LX, Morachis-Valdes G, Galar-Martínez M, Islas-Flores H, Gómez-Oliván LM. Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:527-539. [PMID: 25512029 DOI: 10.1007/s10646-014-1401-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Diclofenac (DCF) has been detected in significant amounts in municipal treated wastewater effluent. Diverse studies report that trace concentrations of DCF may induce toxic effects on different aquatic organisms as well as developmental, reproductive and renal damage. This study aimed to determine whether short and long-term exposure to DCF alter the oxidative stress (OS) status in blood, muscle, gills, brain and liver of common carp Cyprinus carpio. The median lethal concentration of DCF at 96 h (96-h LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed (short and long-term) to the latter value for different exposure times (4 and 24 days) and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxides content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF was determined by LC-MS/MS. Significant increases in HPC, LPX and PCC were observed respect to control (P < 0.05) particularly in blood, muscle, gill, brain and liver. SOD, CAT and GPx activity also increased in these organs, with respect to controls (P < 0.05). DCF concentrations decreased and increased in water system and carp, respectively. Cyprinus carpio exposed to DCF was affected in OS status during the initial days of the study (at 4 days), exhibiting an increased response at 24 days in blood and liver. In contrast, a decrease was observed in muscle, gills and brain at 24 days with respect to 4 days. In conclusion, DCF induces OS on blood, muscle, gills, brain and liver in the carp C. carpio in short and long-term exposure. The biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.
Collapse
Affiliation(s)
- Karinne Saucedo-Vence
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Valdés-Alanís A, Islas-Flores H, Neri-Cruz N. Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 2014; 37:391-9. [PMID: 24393029 DOI: 10.3109/01480545.2013.870191] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used pharmaceuticals in Mexico, but there is not proper regulation on the sale, use and disposal. These drugs can enter water bodies by diverse pathways, attaining significant concentrations and inducing damage on hydrobionts. OBJECTIVE To evaluate the oxidative stress and consequent damage to genetic material induced by DCF, IBP and NPX on Daphnia magna. METHODS The acute toxicity assays were performed to 48-h by nonsteroidal anti-inflammatory drugs evaluated. A sublethal assay were done after 48 h of exposure to DCF, IBP and NPX added to water with the concentration equivalent to the lowest observed adverse effect level (LOAEL), 9.7 mg/L for DCF, 2.9 mg/L for IBP and 0.017 mg/L for NPX. The DNA damage (comet assay) was evaluated at 12, 48 and 96 h. The oxidative biomarkers were evaluated: lipid peroxidation; protein carbonyl content; activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. RESULTS D. magna exposed to DCF, IBP and NPX showed a significant increase (p < 0.05) with respect to controls in LPX. PCC was increased in IBP exposure. SOD and CAT activity were increased by exposure to IBP and NPX. GPX shows a significant increase with respect to control in IBP and DCF exposure and significant decrease by NPX exposure. DNA damage was observed in 48 and 96 h. DISCUSSION AND CONCLUSION DCF, IBP and NPX were responsible of alterations in biochemical biomarkers evaluated and DNA damage.
Collapse
Affiliation(s)
- Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México , Toluca, State of Mexico , Mexico and
| | | | | | | | | | | |
Collapse
|
14
|
Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, Colín-Cruz A, Neri-Cruz N, García-Medina S. Diclofenac-induced oxidative stress in brain, liver, gill and blood of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:32-38. [PMID: 23474065 DOI: 10.1016/j.ecoenv.2013.01.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 06/01/2023]
Abstract
Due to its analgesic properties, diclofenac (DCF) is one of the most commonly used non-steroidal anti-inflammatory drugs (NSAIDs). While residue from this pharmaceutical agent has been found in diverse water bodies in various countries, there is not enough information of its potential toxicity on aquatic organisms, particularly in species which are economically valuable due to their high consumption by humans, such as the common carp Cyprinus carpio. This study aimed to evaluate potential DCF-induced oxidative stress in brain, liver, gill and blood of C. carpio. The median lethal concentration of DCF at 96h (96-h LC50) was determined and used to establish the concentration equivalent to the lowest observed adverse effect level (LOAEL). Carp specimens were exposed to this concentration for different exposure times (12, 24, 48, 72 and 96h) and the following biomarkers were evaluated: lipid peroxidation (LPX) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF and 4-hydroxy DCF was determined by LC-MS/MS. Results show a statistically significant LPX increase (P<0.05) in liver and gill mainly as well as significant changes in the activity of the antioxidant enzymes evaluated in these organs, with respect to controls (P<0.05). The DCF concentrations decreased in water system and increased in the carp. The DCF biotransformation to 4-hydroxy DCF was observed to 12h. The pharmaceutical agent DCF is concluded to induce oxidative stress on the common carp C. carpio, with the highest incidence of oxidative damage occurring in liver and gill. Furthermore, the biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.
Collapse
Affiliation(s)
- Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Departamento de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Mexico
| | | | | | | | | | | |
Collapse
|
15
|
Memmert U, Peither A, Burri R, Weber K, Schmidt T, Sumpter JP, Hartmann A. Diclofenac: New data on chronic toxicity and bioconcentration in fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:442-52. [PMID: 23325530 PMCID: PMC3674524 DOI: 10.1002/etc.2085] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/13/2012] [Accepted: 11/04/2012] [Indexed: 05/19/2023]
Abstract
Diclofenac (DCF) is a widely used nonsteroidal anti-inflammatory drug that is regularly detected in surface waters. To support a robust aquatic risk assessment, two early life stage (ELS) tests, compliant with the Organisation for Economic Co-operation and Development (OECD) test guideline 210, were conducted in rainbow trout and in zebrafish. Population relevant endpoints, such as hatching, growth, and survival, and in the trout study, histopathological effects in potential target organs, were examined. The bioconcentration of DCF in rainbow trout was measured in a separate study according to OECD test guideline 305. The bioconcentration factor (BCF) in rainbow trout remained below 10, demonstrating no relevant bioconcentration of DCF in fish. In the rainbow trout ELS test, the no observed effect concentration (NOEC) including histopathology was 320 µg/L. The effect of DCF on zebrafish growth was less clear, and the NOEC can be interpreted as 10 µg/L. However, for a number of reasons, the authors consider the moderately reduced growth of zebrafish exposed to concentrations of up to 320 µg/L not a repeatable, treatment-related effect of DCF. This leads us to a conclusion that DCF has, with high probability, no adverse effect on both fish species up to 320 µg/L. This NOEC indicates a sufficient safety margin for fish populations, because concentrations of DCF in European rivers are in the range of ng/L to low µg/L.
Collapse
Affiliation(s)
| | | | | | | | | | - John P Sumpter
- Institute for the Environment, Brunel UniversityUxbridge, United Kingdom
| | - Andreas Hartmann
- Novartis Pharma SteinStein, Switzerland
- * To whom correspondence may be addressed ()
| |
Collapse
|
16
|
Saravanan M, Devi KU, Malarvizhi A, Ramesh M. Effects of Ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:14-22. [PMID: 22418069 DOI: 10.1016/j.etap.2012.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/17/2011] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
In the present investigation, the most commonly used pharmaceutical drug Ibuprofen (IB) was exposed to an Indian major carp Cirrhinus mrigala under static bioassay method to estimate its toxicological effects for a period of 35 days. The median lethal concentration (LC 50) of IB to the fish C. mrigala for 24h was found to be 142 ppm. In sublethal treatment (1/10th of LC 50 24h value, 14.2 ppm), a significant decrease in erythrocyte (RBC), mean cellular hemoglobin concentration (MCHC) and plasma protein levels were observed throughout the study period when compare to that of their respective controls. In contrast, haemoglobin (Hb), hematocrit (Hct), mean cellular volume (MCV), mean cellular hemoglobin (MCH), leucocyte (WBC), plasma glucose and alanine transaminase (ALT) levels were increased in this study period. On the other hand, a mixed trend was noticed in aspartate aminotransaminase (AST) enzyme activity. Alterations of these parameters can be effectively used as potential biomarkers in monitoring of IB toxicity in the aquatic organisms. However, more detailed studies on these specific biomarkers are needed to assess the impacts of human pharmaceutical drugs in the field of pharmacotoxicology and aquatic toxicology.
Collapse
Affiliation(s)
- M Saravanan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | | | | |
Collapse
|
17
|
Cuklev F, Kristiansson E, Fick J, Asker N, Förlin L, Larsson DGJ. Diclofenac in fish: blood plasma levels similar to human therapeutic levels affect global hepatic gene expression. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2126-2134. [PMID: 21688307 DOI: 10.1002/etc.599] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/21/2011] [Accepted: 06/08/2011] [Indexed: 05/30/2023]
Abstract
Diclofenac is a nonsteroidal anti-inflammatory drug frequently found in the aquatic environment. Previous studies have reported histological changes in the liver, kidney, and gills of fish at concentrations similar to those measured in treated sewage effluents (approximately 1 µg/L). Analyses or predictions of blood plasma levels in fish allow a direct comparison with human therapeutic plasma levels and may therefore be used to indicate a risk for pharmacological effects in fish. To relate internal exposure to a pharmacological interaction, we investigated global hepatic gene expression together with bioconcentration in blood plasma and liver of rainbow trout (Oncorhynchus mykiss) exposed to waterborne diclofenac. At the highest exposure concentration (81.5 µg/L), the fish plasma concentration reached approximately 88% of the human therapeutic levels (C(max) ) after two weeks. Using an oligonucleotide microarray followed by quantitative PCR, we found extensive effects on hepatic gene expression at this concentration, and some genes were found to be regulated down to the lowest exposure concentration tested (1.6 µg/L), corresponding to a plasma concentration approximately 1.5% of the human C(max) . Thus, at concentrations detected in European surface waters, diclofenac can affect the expression of multiple genes in exposed fish. Functional analysis of differentially expressed genes revealed effects on biological processes such as inflammation and the immune response, in agreement with the mode of action of diclofenac in mammals. In contrast to some previously reported results, the bioconcentration factor was found to be stable (4.02 ± 0.75 for blood plasma and 2.54 ± 0.36 for liver) regardless of the water concentration.
Collapse
Affiliation(s)
- Filip Cuklev
- Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Lahti M, Brozinski JM, Jylhä A, Kronberg L, Oikari A. Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1403-1411. [PMID: 21337612 DOI: 10.1002/etc.501] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/08/2010] [Accepted: 01/18/2011] [Indexed: 05/30/2023]
Abstract
An urgent need exists to assess the exposure of fish to pharmaceuticals. The aim of the present study was to assess the uptake and metabolism of waterborne pharmaceuticals in rainbow trout (Oncorhynchus mykiss). A further objective was to determine the possibility of monitoring exposure to low levels of pharmaceuticals by bile assays. Rainbow trout were exposed for 10 d under flow-through conditions to mixtures of five pharmaceuticals (diclofenac, naproxen, ibuprofen, bisoprolol, and carbamazepine) at high and low concentrations. The low concentration was used to mimic the conditions prevailing in the vicinity of the discharge points of wastewater treatment plants. The uptake and the bioconcentration were determined by blood plasma and bile analyses. The average bioconcentration factor in plasma ranged from below 0.1 for bisoprolol to 4.9 for diclofenac, the values being approximately similar at low and high ambient concentrations. The biotransformation of diclofenac, naproxen, and ibuprofen was considered efficient, because several metabolites could be detected in concentrations clearly exceeding those of the unmetabolized compounds. The glucuronides were the dominant metabolites for all three pharmaceuticals. The total bioconcentration in the bile was two to four orders of magnitude higher than in the plasma. The results of this work show that the exposure of fish to pharmaceuticals in environmentally relevant concentrations may be monitored by blood plasma and bile analyses, the latter allowing detection at markedly lower ambient concentration.
Collapse
Affiliation(s)
- Marja Lahti
- Division of Environmental Science and Technology, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
19
|
Nishi I, Komuro T, Kawakami T, Onodera S. In vitro cyclooxygenase inhibition assay for evaluating ecotoxicity of the surface water and domestic wastewater in the Tone Canal, Japan. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 58:535-542. [PMID: 19662323 DOI: 10.1007/s00244-009-9369-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/19/2009] [Indexed: 05/28/2023]
Abstract
Cyclooxygenase (COX) plays an important role in eicosanoid metabolism. Nonsteroidal anti-inflammatory drugs (NSAIDs) function as COX inhibitors and are frequently detected in the aquatic environment. Here, we measured the in vitro COX-inhibiting activity of the surface water and domestic wastewater in the Tone Canal, Japan. The concentrations of several NSAIDs in the some samples were also determined using gas chromatography-tandem mass spectrometry for confirming the validity of the assay. The target compounds were extracted from the samples using a solid-phase extraction cartridge. A dose-response relationship between the inhibiting activity and sample volume were observed in the wastewater sample. The higher COX-inhibiting activities were observed in the wastewater sample, as compared with the samples of the surface water in the canal. These inhibiting activities reflected the trends of NSAIDs distribution in the canal. However, the inhibiting activities of the water samples could not be entirely explained by the NSAIDs that were selected for instrumental analysis in this study. Other compounds that were not measured by instrumental analysis in this study might contribute to the inhibiting activities. Therefore, the COX-inhibiting assay would be effective for evaluating inclusive ecotoxicity in the aquatic environment.
Collapse
Affiliation(s)
- Iwaki Nishi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| | | | | | | |
Collapse
|
20
|
Mehinto AC, Hill EM, Tyler CR. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2176-82. [PMID: 20175546 DOI: 10.1021/es903702m] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 μg/L) in rainbow trout Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 μg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 μg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Hatherly Laboratories, School of Biosciences, University of Ereter, Exeter EX4 4PS, UK
| | | | | |
Collapse
|