1
|
Do ATN, Hiki K, Watanabe H, Yamamoto H, Endo S. Developing a Passive Dosing Method for Acute Aquatic Toxicity Tests of Cationic Surfactant Benzalkoniums (BACs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13678-13686. [PMID: 39047073 DOI: 10.1021/acs.est.4c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Benzalkonium chlorides (BACs) have been of environmental concern due to their widespread use and potential harm. However, challenges arise in defining and controlling the exposure concentration (Cw) in aquatic toxicity tests involving BACs with a long alkyl chain (i.e., #C > 14). To address this, a novel passive dosing method was introduced in the 48 h-acute ecotoxicity test on Daphnia magna and compared to the conventional solvent-spiking method in terms of Cw stability and toxicity results. Among 13 sorbent materials tested for their sorption capacity, poly(ether sulfone) (PES) membrane was an optimal passive dosing reservoir, with equilibrium desorption of BACs to water achieved within 24 h. The Cw of BACs remained constant in both applied dosing methods during the test period. However, the Cw in solvent-spiking tests was lower than the nominal concentration for long-chain BACs, particularly at low exposure concentrations. Notably, the solvent-spiking tests indicated that the toxicity of BACs increased with alkyl chain length from C6 to 14, followed by a decline in toxicity from C14 to 18. In contrast, the passive dosing method displayed similar or slightly increasing toxicity levels of BACs from C14 to C18, indicating higher toxicity of C16 and C18-BACs than that inferred by the solvent spiking test. These findings emphasize the potential of applying this innovative passive dosing approach in aquatic toxicity tests to generate reliable and accurate toxicity data and support a comprehensive risk assessment of cationic surfactants.
Collapse
Affiliation(s)
- Anh T Ngoc Do
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Kyoshiro Hiki
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Parameswaran J, Abd Ghani N, M Yunus NB, Bt Hasanudin N. Evaluating acute toxicity of amino acid ionic liquids towards Poecilia reticulata fish for designing sustainable chemical processes. Toxicol Rep 2024; 12:414-421. [PMID: 38590341 PMCID: PMC10999776 DOI: 10.1016/j.toxrep.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
An acute toxicity study assessed the LC50 values for eight different amino acid ionic liquids (AAILs), featuring two cations, tetrabutylphosphonium [P4444] and tetrabutylammonium [N4444], coupled with four anions [PHE], [ASP], [SER], and [GLY]. According to the OECD 203 standard for acute fish toxicity tests with guppy fish (Poecilia reticulata, all the AAILs exhibited low toxicity levels, and were practically nontoxic and harmless. The LC50 values surpassed 100 mg/L and 1000 mg/L. This study provides valuable insights for industrial professionals in utilizing tetrabutylphosphonium-based amino acid ionic liquids [P4444] [AA] and tetrabutylammonium-based amino acid ionic liquids [N4444][AA] in chemical processes, indicating their safety in aquatic environments. These promising results highlight the potential of incorporating these AAILs into diverse chemical processes while ensuring minimal ecological impact.
Collapse
Affiliation(s)
- Jivana Parameswaran
- Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Noraini Abd Ghani
- Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Normawati Bt M Yunus
- Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Noorhafizah Bt Hasanudin
- Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| |
Collapse
|
3
|
Fan D, Xue K, Zhang R, Zhu W, Zhang H, Qi J, Zhu Z, Wang Y, Cui P. Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168168. [PMID: 37918734 DOI: 10.1016/j.scitotenv.2023.168168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
With the wide application prospect of ionic liquids (ILs) as solvent in the future industry, in order to promote green and sustainable chemical engineering, the toxicity problem of common concern has been systematically modeled. Machine learning has promoted the development of chemical property prediction model with its powerful data processing ability. Two typical ensemble learning models, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), were used to model the toxicity of ILs to Vibrio fischeri in this work. The model's hyperparameters were fine-tuned using Bayesian optimization, and its robustness was enhanced through the 5-fold cross validation. The results of the model comparison showed that the XGBoost model exhibited good generalization ability. In addition, the SHapley Additive exPlanations (SHAP) method was used to explain the model in more detail and the XGBoost model was used to supplement the toxicity value matrix of 1590 ILs.
Collapse
Affiliation(s)
- Dingchao Fan
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| | - Ke Xue
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| | - Runqi Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| | - Wenguang Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| | - Hongru Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| | - Jianguang Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| | - Zhaoyou Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China.
| | - Peizhe Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, 53Zhengzhou Road, Qingdao 266042, People's Republic of China
| |
Collapse
|
4
|
Sousa V, Pereira RN, Vicente AA, Dias O, Geada P. Microalgae biomass as an alternative source of biocompounds: New insights and future perspectives of extraction methodologies. Food Res Int 2023; 173:113282. [PMID: 37803596 DOI: 10.1016/j.foodres.2023.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/08/2023]
Abstract
Microalgae have characteristics that make them unique and full of potential. Their capacity to generate interesting bioactive molecules can add value to various industrial applications. However, most of these valuable compounds are intracellular, which makes their extraction a major bottleneck. Conventional extraction methodologies have some drawbacks, such as low eco-friendly character, high costs and energy demand, long treatment times, low selectivity and reduced extraction yields, as well as degradation of extracted compounds. The gaps found for these methods demonstrate that emergent approaches, such as ohmic heating, pulsed electric fields, ionic liquids, deep eutectic solvents, or high-pressure processing, show potential to overcome the current drawbacks in the release and extraction of added-value compounds from microalgae. These new processing techniques can potentially extract a variety of compounds, making the process more profitable and applicable to large scales. This review provides an overview of the most important and promising factors to consider in the extraction methodologies applied to microalgae. Additionally, it delivers broad knowledge of the present impact of these methods on biomass and its compounds, raising the possibility of applying them in an integrated manner within a biorefinery concept.
Collapse
Affiliation(s)
- Vítor Sousa
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| | - António A Vicente
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| | - Pedro Geada
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Huang R, Liu H, Wei Z, Jiang Y, Pan K, Wang X, Kong J. Insights into the quantitative structure-activity relationship for ionic liquids: a bibliometric mapping analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95054-95076. [PMID: 37581727 DOI: 10.1007/s11356-023-29285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Environmental protection and sustainability is the development goal that countries all over the world are pursuing. Ionic liquids (ILs), as a new type of green material, have a great application prospect. And the quantitative structure-activity relationship (QSAR) is significant for the research of ILs. To better understand the role played by QSAR in the research of ILs, 4139 literatures published in the WOS database from 2002 to 2022 were used for bibliometric analysis, and different types of knowledge maps were mapped to obtain the current status and trends of IL research applied QSAR. The distribution pattern of the literature output chronology, country, institution, author cooperation, and major source journals can be obtained through the research of the distribution of literature. Through core literature, dual-map overlays, and evolutionary path analysis, the research knowledge base was obtained mainly including ionic liquid toxicological properties research, environmental protection and sustainability, ionic liquid design, and mild steel corrosion inhibition; through the co-occurrence and evolution of keywords, the current research hotspots are basic properties of ILs, corrosion inhibition of mild steel, the effect of toxicity on the environment, QSAR modeling methods, solvent application of ILs, and drug design.
Collapse
Affiliation(s)
- Rui Huang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hui Liu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China.
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Ze Wei
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Yi Jiang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Kai Pan
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Xin Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jie Kong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
6
|
Wang L, Deng XQ, Cai JY, Liang WW, Du YQ, Hu XL. Chronic and intergenerational toxic effects of 1-decyl-3-methylimidazolium hexafluorophosphate on the water flea, Moina macrocopa. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:699-710. [PMID: 37378816 DOI: 10.1007/s10646-023-02674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
With the increasing use and production of "green solvents" ionic liquids (ILs) and their known stability in the environment, the potential adverse effects of ILs have become a focus of research. In the present study, acute, chronic, and intergenerational toxic effects of an imidazolium-based ionic liquid, 1-decyl-3-methylimidazolium hexafluorophosphate ([Demim]PF6), on Moina macrocopa were investigated following the parental exposure. The results showed that [Demim]PF6 exhibited high toxicity to M. macrocopa, and the long-term exposure significantly inhibited the survivorship, development, and reproduction of the water flea. Furthermore, it is also observed that [Demim]PF6 induced toxic effects in the following generation of M. macrocopa, resulting in the complete cessation of reproduction in the first offspring generation, and the growth of the organisms was also significantly affected. These findings provided a novel insight into the intergenerational toxicity induced by ILs to crustaceans and suggested that these compounds pose potential risks to the aquatic ecosystem.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
7
|
Antimicrobial Activity of Novel Deep Eutectic Solvents. Sci Pharm 2023. [DOI: 10.3390/scipharm91010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Herein, we utilized several deep eutectic solvents (DES) that were based on hydrogen donors and hydrogen acceptors for their antibacterial application. These DES were tested for their bactericidal activities against Gram-positive (Streptococcus pyogenes, Bacillus cereus, Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) bacteria. Using lactate dehydrogenase assays, DES were evaluated for their cytopathic effects towards human cells. Results from antibacterial tests revealed that DES prepared from the combination of methyl-trioctylammonium chloride and glycerol (DES-4) and DES prepared form methyl-trioctylammonium chloride and fructose (DES-11) at a 2 µL dose showed broad-spectrum antibacterial behavior and had the highest bactericidal activity. Moreover, DES-4 showed 40% and 68% antibacterial activity against P. aeruginosa and E. coli K1, respectively. Similarly, DES-11 eliminated 65% and 61% E. coli K1 and P. aeruginosa, respectively. Among Gram-positive bacteria, DES-4 showed important antibacterial activity, inhibiting 75% of B. cereus and 51% of S. pneumoniae. Likewise, DES-11 depicted 70% B. cereus and 50% S. pneumoniae bactericidal effects. Finally, the DES showed limited cytotoxic properties against human cell lines with the exception of the DES prepared from Methyltrioctylammonium chloride and Citric acid (DES-10), which had 88% cytotoxic effects. These findings suggest that DES depict potent antibacterial efficacies and cause minimal damage to human cells. It can be concluded that the selected DES in this study could be utilized as valuable and novel antibacterial drugs against bacterial infections. In future work, the mechanisms for bactericides and the cytotoxicity effects of these DES will be investigated.
Collapse
|
8
|
Toxicity of ionic liquids in marine and freshwater microorganisms and invertebrates: state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39288-39318. [PMID: 36745344 DOI: 10.1007/s11356-023-25562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
The variety of applications and expected growth in ionic liquid production are raising concerns about the release of these compounds into aquatic systems. Up to date, 103 studies have provided ecotoxicological data regarding the exposure effects of Ionic Liquids towards aquatic microorganisms and invertebrate species: 61 were devoted to freshwater species (n = 28), while marine species (n = 12) were mentioned in 42. The aim of this review, by gathering published studies on ionic liquids and model aquatic organisms, was to present the toxic effects described in distinct species and to understand which are the main factors influencing the toxicity of some ionic liquids. In accordance with the most recognized pattern, freshwater species were featured in a higher number of publications than marine ones. After literature analysis, algal species were the most represented organisms in aquatic toxicity assessments. Among tested compounds, the imidazolium cations in combination with long alkyl-chain anions, showed to be the most toxic one. In analytical terms, it is not straightforward to find the undissociated compound in a natural compartment, as ionic liquids are composed of ionic components, easily subjected to dissociation. Given the aforementioned, the present review paper points out the need of increasing the number of organisms being assessed in ionic liquids toxicity assays, in order to start defining monitoring procedures. Moreover, such would allow a better understanding of ionic liquids contamination status and, also, the opportunity to remark the effectiveness of new in silico methods for the ecotoxicity assessment of this kind of substances.
Collapse
|
9
|
Fernandes MM, Carvalho EO, Correia DM, Esperança JM, Padrão J, Ivanova K, Hoyo J, Tzanov T, Lanceros-Mendez S. Ionic Liquids as Biocompatible Antibacterial Agents: A Case Study on Structure-Related Bioactivity on Escherichia coli. ACS APPLIED BIO MATERIALS 2022; 5:5181-5189. [PMID: 36260814 PMCID: PMC9778738 DOI: 10.1021/acsabm.2c00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of ionic liquids (ILs) to be used as antimicrobial agents for biomedical applications has been hindered by the fact that most of them are cytotoxic toward mammalian cells. Understanding the mechanism of bacterial and mammalian cellular damage of ILs is key to their safety design. In this work, we evaluate the antimicrobial activity and mode of action of several ILs with varying anions and cations toward the clinically relevant Gram-negative Escherichia coli. Langmuir monolayer technique was used to evaluate if the IL's mode of action was related to the bacterial cell membrane interaction for an effective E. coli killing. 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [DMIM][TFSI] and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P6,6,6,14][TFSI] were surface-active and induced bacterial cell lysis, through a membrane-disruption phenomenon on bacteria, in a mechanism that was clearly related to the long alkyl chains of the cation. 1-Ethyl-3-methylimidazolium hydrogen sulfate [EMIM][HSO4] was highly antimicrobial toward E. coli and found suitable for biological applications since it was harmless to mammalian cells at most of the tested concentrations. The results suggest that the imidazolium cation of the ILs is mostly responsible not only for their antimicrobial activity but also for their cytotoxicity, and the inclusion of different anions may tailor the ILs' biocompatibility without losing the capacity to kill bacteria, as is the case of [EMIM][HSO4]. Importantly, this IL was found to be highly antimicrobial even when incorporated in a polymeric matrix.
Collapse
Affiliation(s)
| | | | - Daniela M. Correia
- Centre
of Physics, University of Minho, Braga4710-057, Portugal,Centre
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5001-801Vila Real, Portugal,
| | - José M.S.S. Esperança
- LAQV,
REQUIMTE, Departamento de Química, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa, 2829-516Caparica, Portugal
| | - Jorge Padrão
- Centre
for Textile Science and Technology, University
of Minho, Campus de Azurém, Guimarães4800-058, Portugal
| | - Kristina Ivanova
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222Terrassa, Spain
| | - Javier Hoyo
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222Terrassa, Spain
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222Terrassa, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940Leioa, Spain,Ikerbasque,
Basque Foundation for Science, 48009Bilbao, Spain
| |
Collapse
|
10
|
Liu Q, Liu C, Zhao Z, Liang SX. Prioritization of micropollutants in municipal wastewater and the joint inhibitory effects of priority organic pollutants on Vibrio qinghaiensis sp.-Q67. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106288. [PMID: 36156356 DOI: 10.1016/j.aquatox.2022.106288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Treatment of wastewater in municipal wastewater treatment plants has become a major barrier to organic pollutants entering the aquatic environment. In this study, qualitative screening of organic micropollutants was conducted in a typical municipal wastewater treatment plant (MWWTP) using gas chromatography-mass spectrometry (GC-MS). The identified compounds were prioritized according to their comprehensive scores ranked by detection frequency, semi-quantitative concentration, bioaccumulation, ecotoxicity, and biodegradability. The results showed dibutyl phthalate, antioxidant 2246, methyl stearate, 2,4,6-tri‑tert-butylphenol, and dioctyl phthalate had the top five scores and were ranked as priority organic pollutants in the municipal wastewater. The individual and joint toxicity determinations of the five compounds were carried out by a bioluminescence inhibition assay using Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis). The individual toxicity assay results of these pollutants on V. qinghaiensis demonstrated that the order of the acute toxicity of the five priority organic pollutants was as follows: dioctyl phthalate> dibutyl phthalate> methyl stearate> antioxidant 2246> 2,4,6-tri‑tert-butylphenol. The joint toxicity showed partial addition or antagonism among these pollutants. The prediction results of the mixed toxicity were compared between the concentration addition model and the independent action model, indicating that a single traditional prediction model could not accurately predict the mixed toxicity of different types of organic pollutants, and that a comprehensive application of model prediction could improve the accuracy of mixed toxicity prediction. This method could provide a theoretical basis for systematic screening and toxicity prediction of pollutants in wastewater.
Collapse
Affiliation(s)
- Qiong Liu
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Chang Liu
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
|
12
|
An Overview on the Recent Advances in Alternative Solvents as Stabilizers of Proteins and Enzymes. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the use of alternative solvents is increasing, namely ionic liquids (ILs) and deep eutectic solvents (DESs) in diverse fields of knowledge, such as biochemistry, chemistry, chemical engineering, biotechnology and biomedicine. Particularly, when compared to traditional solvents, these alternative solvents have great importance for biomolecules due to the enhanced solubility, structure stability and the biological activity of biomolecules, such as protein and enzymes. Thus, in this review article, the recent developments and efforts on the technological developments carried out with ILs and DESs for the stabilization and activation of proteins and enzymes are provided. The most studied IL- and DES-based formulations for proteins and enzymes are discussed and the molecular mechanisms and interactions related to the increased stability promoted by these alternative solvents are disclosed, while emphasizing their main advantages.
Collapse
|
13
|
Methyltrioctylammonium Octadecanoate as Lubricant Additive to Different Base Oils. LUBRICANTS 2022. [DOI: 10.3390/lubricants10060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigates the use of an ionic liquid obtained from fatty acids (FAIL) as an additive at 2 wt.% in two different base oils: a mineral oil (M1) and a polyol ester (E1). Physicochemical characterization of the base oil–FAIL blends confirmed the miscibility of the FAIL in the base oils. The addition of the FAIL hardly changed the density of the base oils and the viscosity slightly increased at lower temperatures. The tribological performance of the base oils and their blends with the FAIL was determined using three different tests: Stribeck curve determination and tribofilm formation tests, both under sliding/rolling motion, and reciprocating wear tests. The M1 + FAIL blend showed the lowest friction values under the mixed lubrication regime due to its higher viscosity, while the E1 + FAIL showed the lowest friction values under the elastohydrodynamic lubrication regime, which may well have been due to its higher polarity. Only the E1 + FAIL blend outperformed the antiwear behavior of the base oil, probably because it has better chemical affinity (higher polarity) for the metallic surface. SEM images showed that the predominant wear mechanism was adhesive-type with plastic deformation and XPS studies proved that the presence of increasing amounts of organic oxygen on the wear scar caused better antiwear performance when the E1 + FAIL blend was used.
Collapse
|
14
|
Kumari M, Sharma S, Deep S. Tetrabutylammonium based ionic liquids (ILs) inhibit the amyloid aggregation of superoxide dismutase 1 (SOD1). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Rehman AU, Zaini DB, Lal B. Predictive ecotoxicological modeling of ionic liquids using QSAR techniques: A mini review. PROCESS SAFETY PROGRESS 2022. [DOI: 10.1002/prs.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adeel ur Rehman
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Perak Malaysia
| | - Dzulkarnain B. Zaini
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Perak Malaysia
| | - Bhajan Lal
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Perak Malaysia
| |
Collapse
|
16
|
Santos Klienchen Dalari BL, Lisboa Giroletti C, Malaret FJ, Skoronski E, Hallett JP, Matias WG, Puerari RC, Nagel-Hassemer ME. Application of a phosphonium-based ionic liquid for reactive textile dye removal: Extraction study and toxicological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114322. [PMID: 35021594 DOI: 10.1016/j.jenvman.2021.114322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Textile dyeing processes are known for their negative environmental impacts due to the production of aqueous effluents containing toxic dyes. Therefore, new wastewater treatment processes need to be developed to treat such effluents, including Liquid-Liquid Extraction (LLE) process using Ionic Liquids (IL). This work aimed to evaluate the application of the hydrophobic IL trihexyltetradecylphosphonium decanoate to extract black, navy, and royal reactive dyes from water and evaluate the toxicological aspects of the resulting water stream. We investigated the effect of selected parameters, such as pH (2-12), temperature (20-50 °C), salt effects, dye concentration (0.5-50 mg/L), and phase volume ratio (900-9000) on the dye extraction. The results showed extraction yields as high as 97% for the three dyes and an extraction capacity of approximately 300 mg/g for black and navy dyes and 400 mg/g for royal. The toxicity tests involved Lactuca sativa, Triticum aestivium L, and Daphnia magna as bioindicators. The difference between the toxicity of the dye solutions before and after extraction was not statistically significant when L. sativa and Triticum aestivum L were used as bioindicators. However, the extracted solution showed increased toxicity towards D. magna due to traces of IL. Overall, the IL has a high extraction capacity for the black, navy, and royal dyes. Nevertheless, further studies on LLE associated with other processes must be carried out to reduce the risk linked to the toxicity of IL transferred to the water.
Collapse
Affiliation(s)
- Beatriz Lima Santos Klienchen Dalari
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil.
| | - Cristiane Lisboa Giroletti
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| | - Francisco J Malaret
- Imperial College London, Department of Chemical Engineering, London, SW7 2AZ, United Kingdom
| | - Everton Skoronski
- Santa Catarina State University, Department of Environmental and Sanitary Engineering, 2090 Luis de Camões Avenue, 88520-000 Lages, Santa Catarina, Brazil
| | - Jason P Hallett
- Imperial College London, Department of Chemical Engineering, London, SW7 2AZ, United Kingdom
| | - William Gerson Matias
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| | - Rodrigo Costa Puerari
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| | - Maria Eliza Nagel-Hassemer
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
17
|
Tantray AA, Rode NR, Shinde SS, Nandre V, Kodam KM, Terdale SS. Influence of the alkyl chain length on the physicochemical properties and microbial biocompatibility of phosphonium based fatty acid ionic liquids. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ionic liquids (ILs) have remarkable properties and applications in many areas of science. Phosphonium ILs have become important because of their unique chemical and thermal stabilities. The present work is focused on the synthesis, characterisation, physicochemical properties, and microbial toxicity assessment of phosphonium ILs bearing seven different fatty acid anions. The structures of the synthesised ILs were confirmed by 1H and 13C nuclear magnetic resonance (NMR) and FTIR spectroscopy. Physicochemical properties such as density and viscosity of pure ILs were measured at temperatures ranging from 298.15 to 313.15 K. The experimental density decreased, whereas the viscosity increased with an increasing number of carbon atoms in the anion. The derived properties were also found to be anion dependent. The thermal decomposition temperature was investigated by TGA. Subsequently, the toxicity profile of the ILs was determined for selected Gram positive and Gram negative bacteria and some species of fungi in terms of minimum inhibitory concentrations (MIC). The results show that the antimicrobial activities of the ILs are strongly related to the structures of the ILs, where an increase in toxicity was observed with increasing alkyl group chain length of the fatty acid anion.
Collapse
Affiliation(s)
- Aafaq A. Tantray
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
| | - Nitin R. Rode
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
| | - Sandesh S. Shinde
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
| | - Vinod Nandre
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
| | - Kisan M. Kodam
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
| | - Santosh S. Terdale
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411 007, India
| |
Collapse
|
18
|
Wei P, Pan X, Chen CY, Li HY, Yan X, Li C, Chu YH, Yan B. Emerging impacts of ionic liquids on eco-environmental safety and human health. Chem Soc Rev 2021; 50:13609-13627. [PMID: 34812453 DOI: 10.1039/d1cs00946j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Owing to their unique physicochemical properties, ionic liquids (ILs) have been rapidly applied in diverse areas, such as organic synthesis, electrochemistry, analytical chemistry, functional materials, pharmaceutics, and biomedicine. The increase in the production and application of ILs has resulted in their release into aquatic and terrestrial environments. Because of their low vapor pressure, ILs cause very little pollution in the atmosphere compared to organic solvents. However, ILs are highly persistent in aquatic and terrestrial environments due to their stability, and therefore, potentially threaten the safety of eco-environments and human health. Specifically, the environmental translocation and retention of ILs, or their accumulation in organisms, are all related to their physiochemical properties, such as hydrophobicity. Based on results of ecotoxicity, cytotoxicity, and toxicity in mammalian models, the mechanisms involved in IL-induced toxicity include damage of cell membranes and induction of oxidative stress. Recently, artificial intelligence and machine learning techniques have been used in mining and modeling toxicity data to make meaningful predictions. Major future challenges are also discussed. This review will accelerate our understanding of the safety issues of ILs and serve as a guideline for the design of the next generation of ILs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chien-Yuan Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Hsin-Yi Li
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. .,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Lanaridi O, Platzer S, Nischkauer W, Limbeck A, Schnürch M, Bica-Schröder K. A Combined Deep Eutectic Solvent-Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh). Molecules 2021; 26:7204. [PMID: 34885786 PMCID: PMC8659014 DOI: 10.3390/molecules26237204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Recovery of platinum group metals from spent materials is becoming increasingly relevant due to the high value of these metals and their progressive depletion. In recent years, there is an increased interest in developing alternative and more environmentally benign processes for the recovery of platinum group metals, in line with the increased focus on a sustainable future. To this end, ionic liquids are increasingly investigated as promising candidates that can replace state-of-the-art approaches. Specifically, phosphonium-based ionic liquids have been extensively investigated for the extraction and separation of platinum group metals. In this paper, we present the extraction capacity of several phosphonium-based ionic liquids for platinum group metals from model deep eutectic solvent-based acidic solutions. The most promising candidates, P66614Cl and P66614B2EHP, which exhibited the ability to extract Pt, Pd, and Rh quantitively from a mixed model solution, were additionally evaluated for their capacity to recover these metals from a spent car catalyst previously leached into a choline-based deep eutectic solvent. Specifically, P66614Cl afforded extraction of the three target precious metals from the leachate, while their partial separation from the interfering Al was also achieved since a significant amount (approx. 80%) remained in the leachate.
Collapse
Affiliation(s)
- Olga Lanaridi
- Institution of Applied Synthetic Chemistry, Technische Universität Wien, 1060 Vienna, Austria; (O.L.); (S.P.); (M.S.)
| | - Sonja Platzer
- Institution of Applied Synthetic Chemistry, Technische Universität Wien, 1060 Vienna, Austria; (O.L.); (S.P.); (M.S.)
| | - Winfried Nischkauer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (W.N.); (A.L.)
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (W.N.); (A.L.)
| | - Michael Schnürch
- Institution of Applied Synthetic Chemistry, Technische Universität Wien, 1060 Vienna, Austria; (O.L.); (S.P.); (M.S.)
| | - Katharina Bica-Schröder
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (W.N.); (A.L.)
| |
Collapse
|
20
|
Beil S, Markiewicz M, Pereira CS, Stepnowski P, Thöming J, Stolte S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem Rev 2021; 121:13132-13173. [PMID: 34523909 DOI: 10.1021/acs.chemrev.0c01265] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tailorable and often unique properties of ionic liquids (ILs) drive their implementation into a broad variety of seminal technologies. The modular design of ILs allows in this context a proactive selection of structures that favor environmental sustainability─ideally without compromising their technological performance. To achieve this objective, the whole life cycle must be taken into account and various aspects considered simultaneously. In this review, we discuss how the structural design of ILs affects their environmental impacts throughout all stages of their life cycles and scrutinize the available data in order to point out knowledge gaps that need further research activities. The design of more sustainable ILs starts with the selection of the most beneficial precursors and synthesis routes, takes their technical properties and application specific performance into due account, and considers its environmental fate particularly in terms of their (eco)toxicity, biotic and abiotic degradability, mobility, and bioaccumulation potential. Special emphasis is placed on reported structure-activity relationships and suggested mechanisms on a molecular level that might rationalize the empirically found design criteria.
Collapse
Affiliation(s)
- Stephan Beil
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jorg Thöming
- Chemical Process Engineering, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
21
|
Ahmadi S, Lotfi S, Kumar P. Quantitative structure-toxicity relationship models for predication of toxicity of ionic liquids towards Leukemia rat cell line IPC-81 based on index of ideality of correlation. Toxicol Mech Methods 2021; 32:302-312. [PMID: 34724871 DOI: 10.1080/15376516.2021.2000686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The application of ion liquids (ILs) as green solvents has attracted the attention of the scientific community. However, ILs may play the role of toxins. Even though ionic liquids may assist to minimise air pollution, but their discharge into aquatic ecosystems might result in significant water pollution due to their potential toxicity and inaccessibility to biodegradation. Recently, more attention has been paid to the toxicity of ILs on plants, bacteria, and humans. Here, a quantitative structure-toxicity relationship study (QSTR) based on the Monte Carlo method of CORAL software has been applied to estimate the logarithm of the half-maximal effective concentration of toxicity of ILs against leukemia rat cell line IPC-81 (logEC50). A hybrid optimal descriptor is used to build QSTR models for a large set of 304 diverse ILs including ammonium, imidazolium, morpholinium, phosphonium, piperidinium, pyridinium, pyrrolidinium, quinolinium, sulfonium, and protic ILs. The SMILES notations of Ils are utilized to compute the descriptor correlation weight (DCW). Four splits are made from the whole dataset and each split is randomly divided into four sets (training subsets and validation set). The index of ideality of correlation (IIC) is applied to evaluate the authenticity and robustness of the QSTR models. A QSTR model with statistical parameters R2=0.85, CCC =0.92, Q2=0.84, and MAE =0.25 for the validation set of the best split is considered as a prime model. The outliers and promoters of increase/decrease of logEC50 are extracted and the mechanistic interpretation of effective descriptors for the model is also offered.HighlightsGlobal SMILES-based QSAR model was developed to predict the toxicity of ILs.The CORAL software is used to model the ILs toxicity on IPC-81 leukemia rat cell lineIIC is tested as a criterion of predictive potential.The toxicological effects of ILs are discussed based on the proposed model.
Collapse
Affiliation(s)
- Shahin Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran medical sciences, Islamic Azad University, Tehran, Iran
| | - Shahram Lotfi
- Department of Chemistry, Payame Noor University (PNU), 19395-4697 Tehran, Iran
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
22
|
Correia DM, Fernandes LC, Fernandes MM, Hermenegildo B, Meira RM, Ribeiro C, Ribeiro S, Reguera J, Lanceros-Méndez S. Ionic Liquid-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2401. [PMID: 34578716 PMCID: PMC8471968 DOI: 10.3390/nano11092401] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Ionic liquids (ILs) have been extensively explored and implemented in different areas, ranging from sensors and actuators to the biomedical field. The increasing attention devoted to ILs centers on their unique properties and possible combination of different cations and anions, allowing the development of materials with specific functionalities and requirements for applications. Particularly for biomedical applications, ILs have been used for biomaterials preparation, improving dissolution and processability, and have been combined with natural and synthetic polymer matrixes to develop IL-polymer hybrid materials to be employed in different fields of the biomedical area. This review focus on recent advances concerning the role of ILs in the development of biomaterials and their combination with natural and synthetic polymers for different biomedical areas, including drug delivery, cancer therapy, tissue engineering, antimicrobial and antifungal agents, and biosensing.
Collapse
Affiliation(s)
- Daniela Maria Correia
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Liliana Correia Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
| | - Margarida Macedo Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Rafaela Marques Meira
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sylvie Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Senentxu Lanceros-Méndez
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
23
|
Cho CW, Pham TPT, Zhao Y, Stolte S, Yun YS. Review of the toxic effects of ionic liquids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147309. [PMID: 33975102 DOI: 10.1016/j.scitotenv.2021.147309] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 05/11/2023]
Abstract
Interest in ionic liquids (ILs), called green or designer solvents, has been increasing because of their excellent properties such as thermal stability and low vapor pressure; thus, they can replace harmful organic chemicals and help several industrial fields e.g., energy-storage materials production and biomaterial pretreatment. However, the claim that ILs are green solvents should be carefully considered from an environmental perspective. ILs, given their minimal vapor pressure, may not directly cause atmospheric pollution. However, they have the potential to cause adverse effects if leaked into the environment, for instance if they are spilled due to human mistakes or technical errors. To estimate the risks of ILs, numerous ILs have had their toxicity assessed toward several micro- and macro-organisms over the past few decades. Since the toxic effects of ILs depend on the method of estimating toxicity, it is necessary to briefly summarize and comprehensively discuss the biological effects of ILs according to their structure and toxicity testing levels. This can help simplify our understanding of the toxicity of ILs. Therefore, in this review, we discuss the key findings of toxicological information of ILs, collect some toxicity data of ILs to different species, and explain the influence of IL structure on their toxic properties. In the discussion, we estimated two different sensitivity values of toxicity testing levels depending on the experiment condition, which are theoretical magnitudes of the inherent sensitivity of toxicity testing levels in various conditions and their changes in biological response according to the change in IL structure. Finally, some perspectives, future research directions, and limitations to toxicological research of ILs, presented so far, are discussed.
Collapse
Affiliation(s)
- Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea.
| | - Thi Phuong Thuy Pham
- Faculty of Biotechnology, HoChiMihn University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Yufeng Zhao
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Stefan Stolte
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry, Bergstraße 66, 01062 Dresden, Germany
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 561-756, South Korea.
| |
Collapse
|
24
|
Das L, Rubbi F, Habib K, Aslfattahi N, Saidur R, Baran Saha B, Algarni S, Irshad K, Alqahtani T. State-of-the-art ionic liquid & ionanofluids incorporated with advanced nanomaterials for solar energy applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Azevedo AMO, Vilaranda AG, Neves AFDC, Sousa MJ, Santos JLM, Saraiva MLMFS. Development of an automated yeast-based spectrophotometric method for toxicity screening: Application to ionic liquids, GUMBOS, and deep eutectic solvents. CHEMOSPHERE 2021; 277:130227. [PMID: 33794429 DOI: 10.1016/j.chemosphere.2021.130227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Saccharomyces cerevisiae has been used as a eukaryotic model organism for studying the toxic effects of various compounds. In this context, an automated spectrophotometric method based on the enzymatic reduction of methylene blue dye to a colorless product by living yeast cells was implemented in a sequential injection analysis system. Loss of yeast viability/impaired metabolic activity was monitored by an increase in optical density at 664 nm. To prove the usefulness of this approach, the toxicity of ILs (ionic liquids), GUMBOS (group of uniform materials based on organic salts), and DESs (deep eutectic solvents) was examined. Differences obtained between IC50 values confirmed the impact of structural elements on each compounds' toxicity. While DESs appeared to be less toxic than ILs, GUMBOS were found to be among the most toxic compounds to yeast cells and thus can be viewed as promising antimicrobial candidates. The automated methodology showed satisfactory repeatability and reproducibility (RSD < 9%), which is in good agreement with Green Chemistry principles. In fact, the method required consumption of only 40 μL of reagents and produced less than 2 mL of effluents per cycle. Thus, the developed assay can be used as an alternative tool for toxicity screening.
Collapse
Affiliation(s)
- Ana M O Azevedo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - André G Vilaranda
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana F D C Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria João Sousa
- CBMA, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
26
|
Ahmad Sajid T, Jamal MA, Saeed M, Atta-ul-Haq, Muneer M. Elucidation of molecular interactions between amino acid and imidazolium based ionic liquid in an aqueous system: Volumetric and acoustic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Lynam JG, Zugger HT, Amedee ET. Ionic Liquids Separating Rubber Latex from Guayule. MATERIALS 2021; 14:ma14154255. [PMID: 34361449 PMCID: PMC8348007 DOI: 10.3390/ma14154255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Danger to rubber trees (Hevea brasiliensis) from South American leaf blight fungus imperils the world’s source of natural latex for essential rubber products. Avoiding latex allergies also requires a non-Hevea latex source. The present methods for removing latex entrapped in the individual cells of guayule plants require environmentally hazardous chemicals. This study proposes a new method for latex extraction from guayule using various ionic liquids (ILs) to dissolve cell walls and release latex, as substantiated by Fourier transform infrared spectroscopy (FTIR) data.
Collapse
|
28
|
Abbaszadeh S, Yousefinejad S, Jafari S, Soleimani E. In-syringe ionic liquid-dispersive liquid-liquid microextraction coupled with HPLC for the determination of trans,trans-muconic acid in human urine sample. J Sep Sci 2021; 44:3126-3136. [PMID: 34114310 DOI: 10.1002/jssc.202100044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
trans,trans-Muconic acid has been widely used as a biomarker in biological monitoring of benzene-exposed workers during routine occupational health services. In the present study, a novel microextraction technique, in-syringe ionic liquid-dispersive liquid-liquid microextraction, was implemented for preconcentration of trans,trans-muconic acid followed by analytical determination by high-performance liquid chromatography with ultraviolet detection. Moreover, the important variables affecting the performance of applied microextraction technique including needle diameter, volume of the spiked sample, volume of the ionic liquid, salt addition, rotation speed of centrifugation, centrifuge time, and ultrasonic time were optimized by experimental design. A good linear relationship was observed at the range of 0.032-10 μg/mL between the peak area and the concentration levels (R2 = 0.9997). The limit of detection and extraction recovery for trans,trans-muconic acid were 0.011 μg/mL and >96.2%, respectively. This method provided easy and rapid analysis of low amounts of trans,trans-muconic acid in human urine with simple equipment.
Collapse
Affiliation(s)
- Sepideh Abbaszadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Jafari
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Soleimani
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Ispán D, Varga B, Balogh S, Zsirka B, Gömöry Á, Skoda‐Földes R. Claisen‐Schmidt Condensation and Domino Claisen‐Schmidt Condensation ‐ Michael Addition of 16‐Formyl Steroids in the Presence of Switchable Polarity Solvents. ChemistrySelect 2021. [DOI: 10.1002/slct.202100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dávid Ispán
- Research Group of Organic Synthesis and Catalysis University of Pannonia Egyetem u. 10. (P.O.Box 158) H-8200 Veszprém Hungary
| | - Bence Varga
- Research Group of Organic Synthesis and Catalysis University of Pannonia Egyetem u. 10. (P.O.Box 158) H-8200 Veszprém Hungary
| | - Szabolcs Balogh
- NMR Laboratory University of Pannonia Egyetem u. 10 H-8200 Veszprém Hungary
| | - Balázs Zsirka
- Research Group for Surfaces and Nanostructures University of Pannonia Egyetem u. 10 H-8200 Veszprém Hungary
| | - Ágnes Gömöry
- Research Centre for Natural Sciences Eötvös Loránd Research Network Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Rita Skoda‐Földes
- Research Group of Organic Synthesis and Catalysis University of Pannonia Egyetem u. 10. (P.O.Box 158) H-8200 Veszprém Hungary
| |
Collapse
|
30
|
Magina S, Barros-Timmons A, Ventura SPM, Evtuguin DV. Evaluating the hazardous impact of ionic liquids - Challenges and opportunities. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125215. [PMID: 33951860 DOI: 10.1016/j.jhazmat.2021.125215] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), being related to the design of new environmentally friendly solvents, are widely considered for applications within the "green chemistry" concept. Due to their unique properties and wide diversity, ILs allow tailoring new separation procedures and producing new materials for advanced applications. However, despite the promising technical performance, environmental concerns highlighted in recent studies focused on the toxicity and biodegradability of ILs and their metabolites have revealed that ILs safety labels are not as benign as previously claimed. This review refers to the fundamentals about the properties and applications of ILs also in the context of their potential environmental effect. Toxicological issues and harmful effects related to the use of ILs are discussed, including the evaluation of their biodegradability and ecological impact on diverse organisms and ecosystems, also with respect to bacteria, fungi, and cell cultures. In addition, this review covers the tools used to assess the toxicity of ILs, including the predictive computational models and the results of studies involving cell membrane models and molecular simulations. Summing up the knowledge available so far, there are still no reliable criteria for unequivocal attribution of toxicity and environmental impact credentials for ILs, which is a challenging research task.
Collapse
Affiliation(s)
- Sandra Magina
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Ana Barros-Timmons
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Sónia P M Ventura
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Dmitry V Evtuguin
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
31
|
Makuch E, Ossowicz-Rupniewska P, Klebeko J, Janus E. Biodegradation of L-Valine Alkyl Ester Ibuprofenates by Bacterial Cultures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3180. [PMID: 34207691 PMCID: PMC8228323 DOI: 10.3390/ma14123180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, we consume very large amounts of medicinal substances. Medicines are used to cure, halt, or prevent disease, ease symptoms, or help in the diagnosis of illnesses. Some medications are used to treat pain. Ibuprofen is one of the most popular drugs in the world (it ranks third). This drug enters our water system through human pharmaceutical use. In this article, we describe and compare the biodegradation of ibuprofen and ibuprofen derivatives-salts of L-valine alkyl esters. Biodegradation studies of ibuprofen and its derivatives have been carried out with activated sludge. The structure modifications we received were aimed at increasing the biodegradation of the drug used. The influence of the alkyl chain length of the ester used in the biodegradation of the compound was also verified. The biodegradation results correlated with the lipophilic properties (log P).
Collapse
Affiliation(s)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, PL-70322 Szczecin, Poland; (E.M.); (J.K.); (E.J.)
| | | | | |
Collapse
|
32
|
Cui YH, Shi QS, Zhang DD, Wang LL, Feng J, Chen YW, Xie XB. Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116725. [PMID: 33631691 DOI: 10.1016/j.envpol.2021.116725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.
Collapse
Affiliation(s)
- Yin Hua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dan Dan Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ling Ling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jin Feng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yi Wen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Xiao Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
33
|
Khan AS, Ibrahim TH, Jabbar NA, Khamis MI, Nancarrow P, Mjalli FS. Ionic liquids and deep eutectic solvents for the recovery of phenolic compounds: effect of ionic liquids structure and process parameters. RSC Adv 2021; 11:12398-12422. [PMID: 35423754 PMCID: PMC8697206 DOI: 10.1039/d0ra10560k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Water pollution is a severe and challenging issue threatening the sustainable development of human civilization. Besides other pollutants, waste fluid streams contain phenolic compounds. These have an adverse effect on the human health and marine ecosystem due to their toxic, mutagenic, and carcinogenic nature. Therefore, it is necessary to remove such phenolic pollutants from waste stream fluids prior to discharging to the environment. Different methods have been proposed to remove phenolic compounds from wastewater, including extraction using ionic liquids (ILs) and deep eutectic solvent (DES), a class of organic salts having melting point below 100 °C and tunable physicochemical properties. The purpose of this review is to present the progress in utilizing ILs and DES for phenolic compound extraction from waste fluid streams. The effects of IL structural characteristics, such as anion type, cation type, alkyl chain length, and functional groups will be discussed. In addition, the impact of key process parameters such as pH, phenol concentration, phase ratio, and temperature will be also described. More importantly, several ideas for addressing the limitations of the treatment process and improving its efficiency and industrial viability will be presented. These ideas may form the basis for future studies on developing more effective IL-based processes for treating wastewaters contaminated with phenolic pollutants, to address a growing worldwide environmental problem.
Collapse
Affiliation(s)
- Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates .,Department of Chemistry, University of Science & Technolgy Banuu-28100 Khyber Pakhthunkhwa Pakistan
| | - Taleb H Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Nabil Abdel Jabbar
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Mustafa I Khamis
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Paul Nancarrow
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Farouq Sabri Mjalli
- Petroleum & Chemical Engineering Department, Sultan Qaboos University Muscat 123 Oman
| |
Collapse
|
34
|
Eppink MHM, Ventura SPM, Coutinho JAP, Wijffels RH. Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends Biotechnol 2021; 39:1131-1143. [PMID: 33726917 DOI: 10.1016/j.tibtech.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs) are salts with low melting points that can be used as solvents for mild extraction and selective fractionation of biomolecules (e.g., proteins, carbohydrates, lipids, and pigments), enabling the valorisation of microalgal biomass in a multiproduct biorefinery concept, while maintaining the biomolecules' structural integrity and activity. Aqueous biphasic systems and emulsions stabilised by core-shell particles have been used to fractionate disrupted microalgal biomass into hydrophobic (lipids and pigments) and hydrophilic (proteins and carbohydrates) components. From nondisrupted biomass, the hydrophobic components can be directly extracted using ILs from intact cells, while the most fragile hydrophilic components can be obtained upon further mechanical cell disruption. These multiproduct biorefinery concepts will be discussed in an outlook on future separations using IL-based systems.
Collapse
Affiliation(s)
- Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands.
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049, Bodø, Norway
| |
Collapse
|
35
|
Lim CR, Choi JW, Yun YS, Cho CW. Selection of low-toxic and highly efficient ionic liquids for the separation of palladium and platinum in acidic solution, and prediction of the metal affinity of ionic liquids. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Economic analysis of the production and recovery of green fluorescent protein using ATPS-based bioprocesses. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Role of cationic head-group in cytotoxicity of ionic liquids: Probing changes in bilayer architecture using solid-state NMR spectroscopy. J Colloid Interface Sci 2021; 581:954-963. [DOI: 10.1016/j.jcis.2020.08.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 01/30/2023]
|
38
|
Viesca J, Oulego P, González R, Guo H, Battez AH, Iglesias P. Miscibility, corrosion and environmental properties of six hexanoate- and sulfonate-based protic ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|
40
|
|
41
|
Lan T, Yan X, Yan F, Xia S, Jia Q, Wang Q. Norm index in QSTR work for predicting toxicity of ionic liquids on Vibrio fischeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111187. [PMID: 32853869 DOI: 10.1016/j.ecoenv.2020.111187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/26/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquids have been becoming new 'green solvent' because of the low saturation vapor pressure, less volatilization and more recycling utilization. Since most ILs are soluble in water, it should be indispensable to evaluate the ecotoxicology effect of ILs on aquatic environment before using them widely. Based on the concept of norm index, a set of norm descriptors were proposed for anions, cations and ILs. The whole IL structure optimization method has been used to build a predictive norm index-based quantitative structure-toxicity relationship model for the toxicity of ILs on Vibrio fischeri. Statistical results indicated that norm descriptors were reliable and robust in expressing the relationship between structural information and toxicity of ILs. Meanwhile, a series of ILs without experimental values were predicted based on this stable QSTR model. The results indicated that for imidazole-based ILs, an increase in the length of substituent in the branch could enhance the toxicity of ILs on Vibrio fischeri, and the branch contains hydroxyl group, double bond or triple bonds might reduce the toxicity of ILs. Results obtained in this present work would be valuable for the molecular design and the toxicity evaluation toward aquatic organism of ILs.
Collapse
Affiliation(s)
- Tian Lan
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, 13St. 29, TEDA, 300457, Tianjin, PR China
| | - Xue Yan
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, 13St. 29, TEDA, 300457, Tianjin, PR China
| | - Fangyou Yan
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, 13St. 29, TEDA, 300457, Tianjin, PR China.
| | - Shuqian Xia
- Key Laboratory for Green Chemical Technology of the State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.
| | - Qingzhu Jia
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, 13St. 29, TEDA, 300457, Tianjin, PR China
| | - Qiang Wang
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, 13St. 29, TEDA, 300457, Tianjin, PR China
| |
Collapse
|
42
|
Jangir AK, Mandviwala H, Patel P, Sharma S, Kuperkar K. Acumen into the effect of alcohols on choline chloride: L-lactic acid-based natural deep eutectic solvent (NADES): A spectral investigation unified with theoretical and thermophysical characterization. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Quijada-Maldonado E, Olea F, Sepúlveda R, Castillo J, Cabezas R, Merlet G, Romero J. Possibilities and challenges for ionic liquids in hydrometallurgy. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117289] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Kang X, Chen Z, Zhao Y. Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122761. [PMID: 32388091 DOI: 10.1016/j.jhazmat.2020.122761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquids (ILs) have attracted increasing attention both in the scientific community and the industry in the past two decades. Their risk of being inevitable released to ecosystem lights up the urgent research on their toxicity to the environment. To reduce the time and capital consumption on testing tremendous ILs ecotoxicity experimentally, it is essential to construct predictive models for estimating their toxicity. The objective of this study is to provide a new approach for evaluating the ecotoxicity of ILs. A comprehensive ecotoxicity dataset for Vibrio fischeri involving 142 ILs, was collected and investigated. The electrostatic potential surface areas (SEP) of separate cations and anions of ILs were firstly applied to develop predictive models for ecotoxicity on Vibrio fischeri. In addition, an intelligent algorithm named extreme learning machine (ELM) was employed to establish the predictive model. The squared correlation coefficients (R2), the average absolute error (AAE%) and the root-mean-square error (RMSE) of the developed model are 0.9272, 0.2101 and 0.3262 for the entire set, respectively. The proposed approach based on the high R2 and low deviation has remarkable potential for predicting ILs ecotoxicity on Vibrio fischeri.
Collapse
Affiliation(s)
- Xuejing Kang
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague 16521, Prague 6, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague 16521, Prague 6, Czech Republic.
| | - Yongsheng Zhao
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106-5080, USA.
| |
Collapse
|
45
|
Flieger J, Flieger M. Ionic Liquids Toxicity-Benefits and Threats. Int J Mol Sci 2020; 21:E6267. [PMID: 32872533 PMCID: PMC7504185 DOI: 10.3390/ijms21176267] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their "green" features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic "greener" ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Michał Flieger
- Medical University of Lublin, Faculty of Medicine, Aleje Racławickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
46
|
Two fatty acid anion-based ionic liquids - part II: Effectiveness as an additive to a polyol ester. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Karaman M, Vraneš M, Tot A, Papović S, Miljaković D, Gadžurić S, Ignjatov M. Ionic liquids as potentially new antifungal agents against Alternaria species. RSC Adv 2020; 10:22318-22323. [PMID: 35514570 PMCID: PMC9054575 DOI: 10.1039/d0ra02475a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/16/2020] [Indexed: 11/21/2022] Open
Abstract
The fungal genus Alternaria Nees 1816 includes the most prevalent pathogenic species that can cause crop diseases such as blight, black spot, and dark leaf spot. In accordance with the aim of developing modern sustainable approaches in agriculture for the replacement of synthetic and toxic substances with environmentally friendly alternatives, the objective of this study was to examine the in vitro antifungal activities of 18 newly synthesized ionic liquids (ILs) against three Alternaria strains: A. padwickii, A. dauci and A. linicola. The antifungal activities of the ILs were estimated via a microdilution method to establish minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values. The results confirmed that 17 of the 18 ILs showed strain specificity, including good antifungal activity toward Alternaria strains, with MIC and MFC values in the range of 0.04 to 0.43 mol dm-3. The strongest antifungal effects toward all analyzed Alternaria strains were displayed by the compounds with long alkyl chains: [omim][Cl] (MIC/MFC: 0.042 mol dm-3), [dmim][Cl] (MIC/MFC: 0.043 mol dm-3), [ddmim][Cl] (MIC/MFC: 0.053 mol dm-3), [ddTSC][Br] (MIC/MFC: 0.053 mol dm-3), and [Allyl-mim][Cl] (MIC/MFC: 0.054 mol dm-3). The introduction of oxygen as a hydroxyl group resulted in less-pronounced toxicity towards Alternaria compared to the introduction of an ether group, while the contribution of the hydroxyl group was shown to be a more determining factor than the prolongation of the side-chain, resulting in overall fungicidal activity decrease. Our results indicate the possibility that the most effective ILs ([Allyl-mim][Cl], [omim][Cl], [dmim][Cl], [ddmim][Cl], [bTSC][Br], [hTSC][Br], [oTSC][Br], [dTSC][Br], and [ddTSC][Br]) could be applied to the control of plant diseases caused by Alternaria species, based on their potential as an environmentally friendly crop protection approach. Since salts based on TSC cations are significantly cheaper to synthesize, stable under mild conditions, and environmentally friendly after degradation, thiosemicarbazidium-based ILs can be a suitable replacement for commercially available imidazolium ILs.
Collapse
Affiliation(s)
- Maja Karaman
- Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21 450 620 +381 21 485 2682
| | - Milan Vraneš
- Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21 450 620 +381 21 485 2682
| | - Aleksandar Tot
- Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21 450 620 +381 21 485 2682
| | - Snežana Papović
- Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21 450 620 +381 21 485 2682
| | - Dragana Miljaković
- Institute of Field and Vegetable Crops MaksimaGorkog 30 21000 Novi Sad Serbia
| | - Slobodan Gadžurić
- Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21 450 620 +381 21 485 2682
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops MaksimaGorkog 30 21000 Novi Sad Serbia
| |
Collapse
|
48
|
|
49
|
Han W, Hou M, He F, Zhang W, Shi B. Ecotoxicity and interacting mechanism of anionic surfactant sodium dodecyl sulfate (SDS) and its mixtures with nonionic surfactant fatty alcohol-polyoxyethlene ether (AEO). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105467. [PMID: 32208300 DOI: 10.1016/j.aquatox.2020.105467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
This paper reports the proportion-dependent toxicity of binary surfactant mixtures containing anionic sodium dodecyl sulfate (SDS) and nonionic fatty alcohol-polyoxyethlene ether (AEO) toward Photobacterium phosphoreum. The crucial role of toxicity interactions was elucidated by spectroscopic probing the refolding of the unfolded bovine serum albumin (BSA) induced by SDS and theoretical calculating the interaction parameter of mixed surfactants based on Rubingh's model from the critical micelle concentrations. The SDS/AEO mixtures can be divided into two groups based on the toxicity response to the proportion of AEO in the mixtures: Group I contained low mass proportions of AEO, that is, SDS:AEO = 4:1, 3:1; Group II featured high AEO proportions, that is, SDS:AEO = 3:2, 1:1, 2:3, 1:4. The toxicity of SDS/AEO mixtures decreased with the enhanced proportion of AEO in Group I and then fluctuated slightly when the AEO proportion increased to that of Group II. The mixture with the mass ratio of 1:1 showed a slightly higher toxicity than the others in Group II. Scanning electron microscopy (SEM) images illustrated that the addition of AEO hindered the action of SDS against the cell membrane. Fluorescence measurement indicated that AEO could extract SDS molecules embedded in the BSA matrix, except for those bound to the highly active sites of BSA, and refold stepwise the unfolded protein. The results were in excellent analogy to the proportion-dependent toxicity of SDS/AEO mixture, indicating the formation of mixed micelles playing a key role. The interaction parameter further revealed that antagonism led to the mixture with equal mass ratio (1:1) showing higher toxicity than other mass ratios in Group II. These results can be useful for compounding SDS/AEO mixtures in application efficiently and eco-friendly.
Collapse
Affiliation(s)
- Weimo Han
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mengchun Hou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Faming He
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenhua Zhang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Bi Shi
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
50
|
Rogacz D, Lewkowski J, Cal D, Rychter P. Ecotoxicological effects of new C-substituted derivatives of N-phosphonomethylglycine (glyphosate) and their preliminary evaluation towards herbicidal application in agriculture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110331. [PMID: 32146199 DOI: 10.1016/j.ecoenv.2020.110331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
In this paper, comparison of ecotoxicological and herbicidal effect of newly synthesized N‑[(phosphono)(aryl)methyl]glycines 1a-g (C-substituted glyphosate derivatives) with pure glyphosate (N-phosphonomethylglycine) (2) was demonstrated. All of tested glyphosate derivatives (1a-g) in contrast to glyphosate, were found to be completely safe for oat (Avena sativa) and classified as not harmful for marine bacteria Aliivibrio fischeri. Compounds 1a-g were also found rather harmless to radish (Raphanus sativus) as compared to N-phosphonomethylglycine, but they were moderately toxic against freshwater crustaceans Heterocypris incongruens. One of synthesized compounds, namely N-[(phosphono)(4-hydroxyphenyl)methyl]glycine (1f) was found to possess stronger herbicidal properties against gallant soldier (Galinsoga parviflora) and common sorrel (Rumex acetosa) when compared to pure glyphosate and demonstrated total death of these weeds being ranked 1 in the European Weed Research Council (EWRC) scale. Considering lower phytotoxicity of compound 1f against cultivated plants and tested microorganisms when compared to pure glyphosate, this aminophosphonate may be good candidate for further, more comprehensive study toward its agrochemical application, especially that this active agent demonstrated much stronger herbicidal properties than N-phosphonomethylglycine.
Collapse
Affiliation(s)
- Diana Rogacz
- Faculty of Science and Technology, Jan Długosz University in Częstochowa, 42-200, Częstochowa, Armii Krajowej 13/15, Poland.
| | - Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
| | - Dariusz Cal
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland; Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland.
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Długosz University in Częstochowa, 42-200, Częstochowa, Armii Krajowej 13/15, Poland.
| |
Collapse
|