1
|
Niu Y, Wei H, Zhang Y, Su J. Transcriptome response of a marine copepod in response to environmentally-relevant concentrations of saxitoxin. MARINE POLLUTION BULLETIN 2024; 205:116546. [PMID: 38870575 DOI: 10.1016/j.marpolbul.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Paralytic shellfish toxins (PSTs) can pose a serious threat to human health. Among them, saxitoxin (STX) is one of the most potent natural neurotoxins. Here, the copepod Tigriopus japonicus, was exposed to environmentally relevant concentrations (2.5 and 25 μg/L) STX for 48 h. Although no lethal effects were observed at both concentrations, the transcriptome was significantly altered, and displayed a concentration-dependent response. STX exposure decreased the copepod's metabolism and compromised immune defense and detoxification. Additionally, STX disturbed signal transduction, which might affect other cellular processes. STX exposure could inhibit the copepod's chitin metabolism, disrupting its molting process. Also, the processes related to damage repair and protection were up-regulated to fight against high concentration exposure. Collectively, this study has provided an early warning of PSTs for coastal ecosystem not only because of their potent toxicity effect but also their bioaccumulation that can transfer up the food chain after ingestion by copepods.
Collapse
Affiliation(s)
- Yaolu Niu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361013, China.
| |
Collapse
|
2
|
Yan L, Yu Z, Lin P, Qiu S, He L, Wu Z, Ma L, Gu Y, He L, Dai Z, Zhou C, Hong P, Li C. Polystyrene nanoplastics promote the apoptosis in Caco-2 cells induced by okadaic acid more than microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114375. [PMID: 36508836 DOI: 10.1016/j.ecoenv.2022.114375] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are widespread in the environment and can be ingested through food, water, and air, posing a threat to human health. In addition, MPs can have a potential combined effect with other toxic compounds. Polystyrene (PS) has been shown to enhance the cytotoxicity of okadaic acid (OA). However, it remains unclear whether this enhancement effect is related to the size of PS particles. In this study, we investigated the mechanism of the combined effect of PS microplastics (PS-MPs) or PS nanoplastics (PS-NPs) and OA on Caco-2 cells. The results indicated that PS-NPs enhanced the cytotoxicity of OA and induced endoplasmic reticulum (ER) stress-mediated apoptosis in Caco-2 cells, compared to PS-MPs. Specifically, PS-NPs and OA cause more severe oxidative stress, lactate dehydrogenase (LDH) release, and mitochondrial membrane depolarization. Furthermore, it induced intracellular calcium overload through store-operated channels (SOCs) and activated the PERK/ATF-4/CHOP pathway to cause ER stress. ER stress promoted mitochondrial damage and finally activated the caspase family to induce apoptosis. This study provided an indirect basis for the assessment of the combined toxicity of MPs or NPs with OA.
Collapse
Affiliation(s)
- Linhong Yan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Zihua Yu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shijie Qiu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Liuying He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zijie Wu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Lihua Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Yanggao Gu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| |
Collapse
|
3
|
Yu W, Yin H, Sun Y, Shi S, Li J, Wang X. The attenuation effect of potassium 2-(1-hydroxypentyl)-benzoate in a mouse model of diabetes-associated cognitive decline: The protein expression in the brain. CNS Neurosci Ther 2022; 28:1108-1123. [PMID: 35445545 PMCID: PMC9160457 DOI: 10.1111/cns.13847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Aims dl‐PHPB (potassium 2‐(1‐hydroxypentyl)‐benzoate) has been shown to have neuroprotective effects against acute cerebral ischemia, vascular dementia, and Alzheimer's disease. The aim of this study was to investigate the effects of dl‐PHPB on memory deficits and preliminarily explore the underlying molecular mechanism. Methods Blood glucose and behavioral performance were evaluated in the KK‐Ay diabetic mouse model before and after dl‐PHPB administration. Two‐dimensional difference gel electrophoresis (2D‐DIGE)‐based proteomics was used to identify differentially expressed proteins in brain tissue. Western blotting was used to study the molecular mechanism of the related signaling pathways. Results Three‐month‐old KK‐Ay mice were given 150 mg/kg dl‐PHPB by oral gavage for 2 months, which produced no effect on the level of serum glucose. In the Morris water maze test, KK‐Ay mice treated with dl‐PHPB showed significant improvements in spatial learning and memory deficits compared with vehicle‐treated KK‐Ay mice. Additionally, we performed 2D‐DIGE to compare brain proteomes of 5‐month KK‐Ay mice treated with and without dl‐PHPB. We found 14 altered proteins in the cortex and 11 in the hippocampus; two of the 25 altered proteins and another four proteins that were identified in a previous study on KK‐Ay mice were then validated by western blot to further confirm whether dl‐PHPB can reverse the expression levels of these proteins. The phosphoinositide 3‐kinase/protein kinase B/glycogen synthase kinase‐3β (PI3K/Akt/GSK‐3β) signaling pathway was also changed in KK‐Ay mice and dl‐PHPB treatment could reverse it. Conclusions These results indicate that dl‐PHPB may play a potential role in diabetes‐associated cognitive impairment through PI3K/Akt/GSK‐3β signaling pathway and the differentially expressed proteins may become putative therapeutic targets.
Collapse
Affiliation(s)
- Wenwen Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingni Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Si Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Mu G, Zhu Y, Dong Z, Shi L, Deng Y, Li H. Calmodulin 2 Facilitates Angiogenesis and Metastasis of Gastric Cancer via STAT3/HIF-1A/VEGF-A Mediated Macrophage Polarization. Front Oncol 2021; 11:727306. [PMID: 34604066 PMCID: PMC8479158 DOI: 10.3389/fonc.2021.727306] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) are indispensable to mediating the connections between cells in the tumor microenvironment. In this study, we intended to research the function and mechanism of Calmodulin2 (CALM2) in gastric cancer (GC)-TAM microenvironment. Materials and methods CALM2 expression in GC tissues and GC cells was determined through quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). The correlation between CALM2 level and the survival rate of GC patients was assessed. The CALM2 overexpression or knockdown model was constructed to evaluate its role in GC cell proliferation, migration, and invasion. THP1 cells or HUVECs were co-cultured with the conditioned medium of GC cells. Tubule formation experiment was done to examine the angiogenesis of endothelial cells. The proliferation, migration, and polarization of THP1 cells were measured. A xenograft model was set up in BALB/c male nude mice to study CALM2x’s effects on tumor growth and lung metastasis in vivo. Western Blot (WB) checked the profile of JAK2/STAT3/HIF-1/VEGFA in GC tissues and cells. Results In GC tissues and cell lines, CALM2 expression was elevated and positively relevant to the poor prognosis of GC patients. In in-vitro experiments, CALM2 overexpression or knockdown could facilitate or curb the proliferation, migration, invasion, and angiogenesis of HUVECs and M2 polarization of THP1 cells. In in-vivo experiments, CALM2 boosted tumor growth and lung metastasis. Mechanically, CALM2 could arouse the JAK2/STAT3/HIF-1/VEGFA signaling. It was also discovered that JAK2 and HIF-1A inhibition could attenuate the promoting effects of CALM2 on GC, HUVECs cells, and macrophages. Conclusion CALM2 modulates the JAK2/STAT3/HIF-1/VEGFA axis and bolsters macrophage polarization, thus facilitating GC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Ganggang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lang Shi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Liu C, Ji Y, Zhang L, Qiu J, Wang Z, Liu L, Zhuang Y, Chen T, Li Y, Niu B, Li A. Spatial distribution and source of biotoxins in phytoplankton from the South China Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126285. [PMID: 34119973 DOI: 10.1016/j.jhazmat.2021.126285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Marine phycotoxins severely threaten ecosystem health and mariculture. This study investigates the spatial distribution and source of diverse phycotoxins in the South China Sea (SCS), during four 2019/2020 cruises. Saxitoxin (STX) and okadaic acid (OA) -groups, azaspiracids, cyclic imines, pectenotoxins (PTX), yessotoxins, and domoic acid (DA) toxins were analyzed in microalgal samples. PTX2 occurred with the highest (93.5%) detection rate (DR) during all cruises, especially in the Pearl River Estuary (PRE) in June 2019. Homo-yessotoxin (hYTX) and DA were found during three cruises in August 2020, and high DR of hYTX (67.7%, 29.3%) and DA (29.0%, 29.3%) in the PRE and Guangdong coast, respectively, in June 2019 and 2020, peaking at concentrations of 777 pg hYTX L-1 and 38514 pg DA L-1. The phycotoxin distribution demonstrated that DA-producing microalgae gathered close to the PRE and Guangdong coast, while hYTX-producing microalgae distributed relatively far offshore. Microalgae producing PTX2- and STX-group toxins were more widely living in the SCS. High-throughput sequencing results suggested that Alexandrium pacificum and Gonyaulax spinifera were responsible for STX-group toxins and hYTX, respectively, while Pseudo-nitzschia cuspidata was the main source of DA. Widely distributed PTX2, hYTX, and DA were reported for the first time in the SCS.
Collapse
Affiliation(s)
- Chao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunyun Zhuang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Tianying Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Biaobiao Niu
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
6
|
Campos A, Freitas M, de Almeida AM, Martins JC, Domínguez-Pérez D, Osório H, Vasconcelos V, Reis Costa P. OMICs Approaches in Diarrhetic Shellfish Toxins Research. Toxins (Basel) 2020; 12:E493. [PMID: 32752012 PMCID: PMC7472309 DOI: 10.3390/toxins12080493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Diarrhetic shellfish toxins (DSTs) are among the most prevalent marine toxins in Europe's and in other temperate coastal regions. These toxins are produced by several dinoflagellate species; however, the contamination of the marine trophic chain is often attributed to species of the genus Dinophysis. This group of toxins, constituted by okadaic acid (OA) and analogous molecules (dinophysistoxins, DTXs), are highly harmful to humans, causing severe poisoning symptoms caused by the ingestion of contaminated seafood. Knowledge on the mode of action and toxicology of OA and the chemical characterization and accumulation of DSTs in seafood species (bivalves, gastropods and crustaceans) has significantly contributed to understand the impacts of these toxins in humans. Considerable information is however missing, particularly at the molecular and metabolic levels involving toxin uptake, distribution, compartmentalization and biotransformation and the interaction of DSTs with aquatic organisms. Recent contributions to the knowledge of DSTs arise from transcriptomics and proteomics research. Indeed, OMICs constitute a research field dedicated to the systematic analysis on the organisms' metabolisms. The methodologies used in OMICs are also highly effective to identify critical metabolic pathways affecting the physiology of the organisms. In this review, we analyze the main contributions provided so far by OMICs to DSTs research and discuss the prospects of OMICs with regard to the DSTs toxicology and the significance of these toxins to public health, food safety and aquaculture.
Collapse
Affiliation(s)
- Alexandre Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Marisa Freitas
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- ESS-P.Porto, School of Health, Polytechnic Institute of Porto. Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - André M. de Almeida
- LEAF-Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - José Carlos Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Dany Domínguez-Pérez
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro Reis Costa
- IPMA—Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal;
| |
Collapse
|
7
|
Wu D, Chen J, Wang J, He X, Xin M, Wang B. Monitoring and warning of lipophilic marine algal toxins in mariculture zone based on toxin profiles of phytoplankton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110647. [PMID: 32315787 DOI: 10.1016/j.ecoenv.2020.110647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Some toxigenic dinoflagellates can produce lipophilic marine algal toxins (LMATs), which are potent threats to marine breeding industries. In this study, a new method based on the profiling analysis of six LMAT classes in phytoplankton was developed for the monitoring and warning of LMATs in mariculture zones. This method was applied to monitor and evaluate LMATs in the Jiaozhou Bay and the Changjiang estuary in China. Results demonstrated that the occurrence and spatiotemporal variations of LMATs in mariculture zones can be revealed by the toxin profiles of phytoplankton, indicating the method's effectiveness for the comprehensive monitoring of the composition and levels of various LMATs in coastal aquaculture zones. The method was further used as an alarm for potential pollution risk from LMATs in mariculture zones at an early stage. The "alert" thresholds of LMAT pollution in the mariculture zones were preliminarily proposed based on the statistical data analysis of LMATs in phytoplankton in three typical mariculture areas in China. This study is the first to conduct simultaneous monitoring and warning of multi-class LMATs based on toxin profiles of phytoplankton, thereby providing new insight into the monitoring and early warning of natural poisonous pollutants in coastal aquaculture zones around the world.
Collapse
Affiliation(s)
- Danni Wu
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Jiuming Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiuping He
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Ming Xin
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Baodong Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
8
|
Yan W, Yue H, Ji X, Li G, Sang N. Prenatal NO 2 exposure and neurodevelopmental disorders in offspring mice: Transcriptomics reveals sex-dependent changes in cerebral gene expression. ENVIRONMENT INTERNATIONAL 2020; 138:105659. [PMID: 32203807 DOI: 10.1016/j.envint.2020.105659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Early-life exposure to nitrogen dioxide (NO2) is associated with an increased risk of developing a neurodevelopmental disorder during childhood or later in life. OBJECTIVES We investigated whether prenatal NO2 inhalation causes neurodevelopmental abnormalities and cognitive deficits in weanling offspring without subsequent postnatal NO2 exposure and how this prenatal exposure contributes to postnatal consequences. METHODS Pregnant C57BL/6 mice were exposed to air or NO2 (2.5 ppm, 5 h/day) throughout gestation, and the offspring were sacrificed on postnatal days (PNDs) 1, 7, 14 and 21. We determined the mRNA profiles of different postnatal developmental windows, detected the long noncoding RNA (lncRNA) profiles and cognitive function in weanling offspring, and analyzed the effects of hub lncRNAs on differentially expressed genes (DEGs). RESULTS Prenatal NO2 inhalation significantly impaired cognitive function in the weanling male, but not female, offspring. The male-specific response was coupled with abnormal neuropathologies and transcriptional profiles in the cortex during different postnatal developmental windows. Consistently, Gene Ontology (GO) analysis of the DEGs revealed persistent disruptions in neurodevelopment-associated biological processes and cellular components in the male offspring, and Apolipoprotein E (ApoE) was one of key factors contributing to prenatal exposure-induced male-specific neurological dysfunction. In addition, distinct sex-dependent lncRNA expression was identified in the weanling offspring, and metastasis-associated lung adenocarcinoma transcript 1 (Malat1) acted as a hub lncRNA and was coexpressed with most coding genes in the lncRNA-mRNA coexpressed pairs in the male offspring. Importantly, lncRNA Malat1 expression was elevated, and Malat1 modulated ApoE expression through NF-κB activation during this process. CONCLUSIONS Prenatal NO2 exposure is related to sex-dependent neurocognitive deficits and transcriptomic profile changes in the cortices of the prenatally exposed offspring. Male-specific neurological dysfunction is associated with the constant alteration of genes during postnatal neurodevelopment and their transcriptional modulation by hub lncRNAs.
Collapse
Affiliation(s)
- Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
9
|
Yang L, Singh A, Lankford SK, Stuart J, Rice D, Wu WH, Hungerford JM. A Rapid Method for the Detection of Diarrhetic Shellfish Toxins and Azaspiracid Shellfish Toxins in Washington State Shellfish by Liquid Chromatography Tandem Mass Spectrometry. J AOAC Int 2020; 103:792-799. [DOI: 10.1093/jaoacint/qsaa009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/16/2023]
Abstract
Abstract
Background
Diarrhetic shellfish toxins (DSTs) in domestic shellfish and azaspiracids (AZAs) in imported products are emerging seafood safety issues in the United States. In addition to causing gastrointestinal illnesses, some of these toxins are also carcinogenic and genotoxic. Efficient analytical strategies are needed for their monitoring in U.S. domestic and imported shellfish.
Objective
In the US, DSTs and AZAs are the only lipophilic shellfish toxins addressed in regulations. Streamlining of existing methods for several classes of lipophilic toxins, based on liquid chromatography coupled with triple quadrupole mass spectrometry, was pursued.
Method
The resulting simplified LC-MS/MS method is focused on the separation and detection of just the AZAs and total DSTs using a C18 Hypersil gold column. Filter vials are used to expedite and simplify sample handling.
Results
The method has a run time of 7.25 min. LOQs for the AZAs and DSTs in shellfish were 0.3–0.4 µg/kg. Recoveries (AZAs and total DSTs) for three spiking levels in three matrixes ranged from 68 to 129%. Trueness was established using certified reference materials. Method equivalence was established using shellfish provided blind by the Washington State Department of Health Public Health Laboratory (WA DOH PHL). Data obtained from these samples agreed well with data from another LC-MS/MS method used in harvest control by WA DOH PHL (R = 0.999; P < 0.0001).
Conclusions
The LC-MS/MS method described offers more rapid sample handling and has excellent sensitivity, linearity, and repeatability.
Collapse
Affiliation(s)
- Li Yang
- U.S. Food and Drug Administration, Office of the Commissioner, Commissioner’s Fellowship Program, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - Avi Singh
- Washington State Department of Health, Public Health Laboratories, 1610 NE 150th St, Shoreline, WA 98155, USA
| | - Shelley K Lankford
- Washington State Department of Health, Public Health Laboratories, 1610 NE 150th St, Shoreline, WA 98155, USA
| | - James Stuart
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - Daniel Rice
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - Wen-Hsin Wu
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| | - James M Hungerford
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Pacific Northwest Laboratory, 22201 23rd Dr SE, Bothell, WA 98012, USA
| |
Collapse
|
10
|
Toxins of Okadaic Acid-Group Increase Malignant Properties in Cells of Colon Cancer. Toxins (Basel) 2020; 12:toxins12030179. [PMID: 32183214 PMCID: PMC7150798 DOI: 10.3390/toxins12030179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Diarrhetic shellfish poisoning (DSP) is a syndrome caused by the intake of shellfish contaminated with a group of lipophilic and thermostable toxins, which consists of okadaic acid (OA), dinophysistoxin-1 (DTX-1) and dinophysistoxin-2 (DTX-2). These toxins are potent protein Ser/Thr phosphatase inhibitors, mainly type 1 protein phosphatase (PP1) and type 2A protein phosphatase (PP2A). Different effects have been reported at the cellular, molecular and genetic levels. In this study, changes in cell survival and cell mobility induced by OA, DTX-1 and DTX-2 were determined in epithelial cell lines of the colon and colon cancer. The cell viability results showed that tumoral cell lines were more resistant to toxins than the nontumoral cell line. The results of the functional assays for testing cell migration, evaluation of cell death and the expression of proteins associated with cell adhesion showed a dual effect of toxins since in the nontumoral cell line, a greater induction of cell death, presumably by anoikis, was detected. In the tumoral cell lines, there was an induction of a more aggressive phenotype characterized by increased resistance to toxins, increased migration and increased FAK activation. In tumoral cell lines of colon cancer, OA, DTX-1/DTX-2 induce a more aggressive phenotype.
Collapse
|
11
|
李 月. Research Progress on the Secondary Metabolites from Dinoflagellate Prorocentrum Spp. INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.12677/ije.2018.74023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Gonzalez-Romero R, Suarez-Ulloa V, Rodriguez-Casariego J, Garcia-Souto D, Diaz G, Smith A, Pasantes JJ, Rand G, Eirin-Lopez JM. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:196-204. [PMID: 28315825 DOI: 10.1016/j.aquatox.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.
Collapse
Affiliation(s)
- Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Victoria Suarez-Ulloa
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Javier Rodriguez-Casariego
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Daniel Garcia-Souto
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gabriel Diaz
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Abraham Smith
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Juan Jose Pasantes
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gary Rand
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA.
| |
Collapse
|
13
|
Chen L, Feng P, Zhu X, He S, Duan J, Zhou D. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. J Cell Mol Med 2016; 20:2102-2110. [PMID: 27374227 PMCID: PMC5082393 DOI: 10.1111/jcmm.12904] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are playing critical roles in neurogenesis, yet the underlying molecular mechanisms remain largely elusive. Neurite outgrowth is an early step in neuronal differentiation and regeneration. Using in vitro differentiation of neuroblastoma-derived Neuro-2a (N2a) cell as a model, we performed expression profiling to identify lncRNAs putatively relevant for neurite outgrowth. We identified that Metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was one of the most significantly up-regulated lncRNAs during N2a cell differentiation. Malat1 knockdown resulted in defects in neurite outgrowth as well as enhanced cell death. To pinpoint signalling pathways perturbed by Malat1 depletion, we then performed a reporter-based screening to examine the activities of 50 signalling pathways in Malat1 knockdown cells. We found that Malat1 knockdown resulted in conspicuous inhibition of Mitogen-Activated Protein Kinase (MAPK) signaling pathway as well as abnormal activation of Peroxisome proliferator-activated receptor (PPAR) and P53 signalling pathway. Inhibition of ERK/MAPK pathway with PD98059 potently blocked N2a cell neurite outgrowth, whereas phorbol 12-myristate 13-acetate-induced ERK activation rescued defects in neurite outgrowth and cell death induced by Malat1 depletion. Together, our results established a critical role of Malat1 in the early step of neuronal differentiation through activating ERK/MAPK signalling pathway.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
| | - Peimin Feng
- Department of Gastroenterology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Zhu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shixu He
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Jialan Duan
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B. Okadaic acid: more than a diarrheic toxin. Mar Drugs 2013; 11:4328-49. [PMID: 24184795 PMCID: PMC3853731 DOI: 10.3390/md11114328] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 01/04/2023] Open
Abstract
Okadaic acid (OA) is one of the most frequent and worldwide distributed marine toxins. It is easily accumulated by shellfish, mainly bivalve mollusks and fish, and, subsequently, can be consumed by humans causing alimentary intoxications. OA is the main representative diarrheic shellfish poisoning (DSP) toxin and its ingestion induces gastrointestinal symptoms, although it is not considered lethal. At the molecular level, OA is a specific inhibitor of several types of serine/threonine protein phosphatases and a tumor promoter in animal carcinogenesis experiments. In the last few decades, the potential toxic effects of OA, beyond its role as a DSP toxin, have been investigated in a number of studies. Alterations in DNA and cellular components, as well as effects on immune and nervous system, and even on embryonic development, have been increasingly reported. In this manuscript, results from all these studies are compiled and reviewed to clarify the role of this toxin not only as a DSP inductor but also as cause of alterations at the cellular and molecular levels, and to highlight the relevance of biomonitoring its effects on human health. Despite further investigations are required to elucidate OA mechanisms of action, toxicokinetics, and harmful effects, there are enough evidences illustrating its toxicity, not related to DSP induction, and, consequently, supporting a revision of the current regulation on OA levels in food.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-981167000; Fax: +34-981167172
| | - María Verónica Prego-Faraldo
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Eduardo Pásaro
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| | - Josefina Méndez
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Blanca Laffon
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| |
Collapse
|