1
|
Khoshnood Z. A review on toxic effects of pesticides in Zebrafish, Danio rerio and common carp, Cyprinus carpio, emphasising Atrazine herbicide. Toxicol Rep 2024; 13:101694. [PMID: 39131695 PMCID: PMC11314875 DOI: 10.1016/j.toxrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The widespread use of pesticides has emerged as a pressing environmental concern nowadays. These chemical compounds pose a significant threat to aquatic organisms due to their toxic effects. Zebrafish and common carp are two common species used in pesticide toxicity studies. Atrazine, a widely used herbicide, is one of the most prevalent globally, detectable in nearly all surface waters. This article examines existing literature to provide a comprehensive review of the toxic effects of Atrazine on Zebrafish and common carp. The findings reveal that exposure to atrazine triggers a range of biochemical, physiological, behavioral, and genetic alterations in these fish species, even at concentrations deemed environmentally relevant. These changes could have severe consequences, including increased mortality rates, reproductive failures, and potentially leading to fish populations decline. It is, therefore, imperative to prioritize stringent regulatory measures to curb the usage of this herbicide and safeguard fish species as unintended victims of aquatic ecosystems.
Collapse
Affiliation(s)
- Zahra Khoshnood
- Department of Biology, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
2
|
Hu S, Tian G, Bai Y, Qu A, He Q, Chen L, Xu P. Alternative splicing dynamically regulates common carp embryogenesis under thermal stress. BMC Genomics 2024; 25:918. [PMID: 39358679 PMCID: PMC11448050 DOI: 10.1186/s12864-024-10838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Thermal stress is a major environmental factor affecting fish development and survival. Common carp (Cyprinus carpio) are susceptible to heat stress in their embryonic and larval phases, but the thermal stress response of alternative splicing during common carp embryogenesis remains poorly understood. RESULTS Using RNA-seq data from eight developmental stages and four temperatures, we constructed a comprehensive profile of alternative splicing (AS) during the embryogenesis of common carp, and found that AS genes and events are widely distributed among all stages. A total of 5,835 developmental stage-specific AS (SAS) genes, 21,368 temperature-specific differentially expressed genes (TDEGs), and 2,652 temperature-specific differentially AS (TDAS) genes were identified. Hub TDAS genes in each developmental stage, such as taf2, hnrnpa1, and drg2, were identified through protein-protein interaction (PPI) network analysis. The early developmental stages may be more sensitive to temperature, with thermal stress leading to a massive increase in the number of expressed transcripts, TDEGs, and TDAS genes in the morula stage, followed by the gastrula stage. GO and KEGG analyses showed that from the morula stage to the neurula stage, TDAS genes were more involved in intracellular transport, protein modification, and localization processes, while from the optic vesicle stage to one day post-hatching, they participated more in biosynthetic processes. Further subgenomic analysis revealed that the number of AS genes and events in subgenome B was generally higher than that in subgenome A, and the homologous AS genes were significantly enriched in basic life activity pathways, such as mTOR signaling pathway, p53 signaling pathway, and MAPK signaling pathway. Additionally, lncRNAs can play a regulatory role in the response to thermal stress by targeting AS genes such as lmnl3, affecting biological processes such as apoptosis and axon guidance. CONCLUSIONS In short, thermal stress can affect alternative splicing regulation during common carp embryogenesis at multiple levels. Our work complemented some gaps in the study of alternative splicing at both levels of embryogenesis and thermal stress in C. carpio and contributed to the comprehension of environmental adaptation formation in polyploid fishes during embryogenesis.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Bhardwaj S, Thakur K, Sharma AK, Sharma D, Brar B, Mahajan D, Kumar S, Kumar R. Regulation of omega-3 fatty acids production by different genes in freshwater fish species: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1005-1016. [PMID: 37684550 DOI: 10.1007/s10695-023-01236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The present study aims to compare the gene expression of three different fish species (common carp, tilapia, and trout) with varying levels of fatty acids (FA). Based on transcriptome analysis and RNA sequencing, various genes and their associated metabolic pathways are identified. Pathways are categorized based on the genes they encode. Genes that were differentially expressed and their promoter's methylation patterns were revealed by RNA-seq analysis in common carp. Furthermore, fatty acid-enriched pathways, such as ARA4 and adipocytokine signaling, were also identified. Many genes and pathways may influence tilapia's growth and omega-3 content. Using the mTOR pathway, trout with differential expression were discovered to be involved in producing omega-3 fatty acids. This study revealed major pathways in fish species to produce omega-3 fatty acids.
Collapse
Affiliation(s)
- Shivani Bhardwaj
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India.
| |
Collapse
|
4
|
Li X, Bai Y, Bi Y, Wu Q, Xu S. Baicalin suppressed necroptosis and inflammation against chlorpyrifos toxicity; involving in ER stress and oxidative stress in carp gills. FISH & SHELLFISH IMMUNOLOGY 2023:108883. [PMID: 37285874 DOI: 10.1016/j.fsi.2023.108883] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Chlorpyrifos (CPF) has caused large-scale pollution worldwide and posed a threat to non-target organisms. Baicalein (BAI) is a flavonoid extract with anti-oxidant and anti-inflammatory activities. The gills are the mucosal immune organ and the first physical barrier of fish. However, it is not clear whether BAI counteracts organophosphorus pesticide CPF exposure-caused gill damage. Therefore, we established the CPF exposure and BAI intervention models by adding 23.2 μg/L CPF in water and/or 0.15 g/kg BAI in feed for 30 days. The results showed that CPF exposure could cause gill histopathology lesions. Moreover, CPF exposure led to endoplasmic reticulum (ER) stress, caused oxidative stress and Nrf2 pathway activation, and triggered NF-κB-mediated inflammation reaction and necroptosis in carp gills. BAI adding effectively relieved the pathological changes, and lighten inflammation and necroptosis involving in the elF2α/ATF4 and ATF6 pathways through binding to GRP78 protein. Moreover, BAI could ease oxidative stress, but did not affect Nrf2 pathway in carp gills under CPF exposure. These results suggested that BAI feeding could alleviate necroptosis and inflammation against chlorpyrifos toxicity through elF2α/ATF4 and ATF6 axis. The results partially explained the poisoning effect of CPF, and showed BAI could be act as an antidote for organophosphorus pesticides.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yichen Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qian Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Yang H, Jiang Y, Lu K, Xiong H, Zhang Y, Wei W. Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. CHEMOSPHERE 2021; 283:131227. [PMID: 34147975 DOI: 10.1016/j.chemosphere.2021.131227] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Atrazine is considered as a potential environmental endocrine disruptors and exhibits various toxic effects on animals. It has a great impact in the aquatic ecosystems, but there are few studies on its immunotoxicity in crustaceans. In the present study, the Procambarus clarkii were utilized to assess the immune toxicity after 0.5 mg/L and 5 mg/L atrazine exposure. A significant decrease in total hemocytes count (THC) was observed at 5 mg/L atrazine exposure throughout the experiment. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly inhibited, but the content of reactive oxygen species (ROS) and malondialdehyde (MDA) were up-regulated, indicating the potential oxidative stress. The analysis of the integrated biomarker response (IBR) showed the induction of oxidative stress biomarkers and the inhibition of antioxidants. After 5 mg/L atrazine exposure for 144 h, the integrity of crayfish hepatopancreas was destroyed with disappeared connections between tubules and increased liver tubules vacuoles. The relative expression levels of different immune genes in hepatopancreas after atrazine exposure were measured. Most of these genes were suppressed and exhibited a certain dose-dependent effect. The results of crayfish white spot syndrome virus (WSSV) replication shown the amount of virus in muscle was significantly higher and exhibited a higher mortality rate at 5 mg/L group than other groups. The present study determined the impact of atrazine exposure on WSSV outbreaks, and also provide an important basis for further assessing the occurrence of pesticides on diseases of P. clarkii.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaiyuan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
7
|
Olguín-Jacobson C, Pitt KA, Carroll AR, Melvin SD. Chronic pesticide exposure elicits a subtle carry-over effect on the metabolome of Aurelia coerulea ephyrae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116641. [PMID: 33611208 DOI: 10.1016/j.envpol.2021.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Chemical pollutants, such as pesticides, often leach into aquatic environments and impact non-target organisms. Marine invertebrates have complex life cycles with multiple life-history stages. Exposure to pesticides during one life-history stage potentially influences subsequent stages; a process known as a carry-over effect. Here, we investigated carry-over effects on the jellyfish Aurelia coerulea. We exposed polyps to individual and combined concentrations of atrazine (2.5 μg/L) and chlorpyrifos (0.04 μg/L) for four weeks, after which they were induced to strobilate. The resultant ephyrae were then redistributed and exposed to either the same conditions as their parent-polyps or to filtered seawater to track potential carry-over effects. The percentage of deformities, ephyrae size, pulsation and respiration rates, as well as the metabolic profile of the ephyrae, were measured. We detected a subtle carry-over effect in two metabolites, acetoacetate and glycerophosphocholine, which are precursors of the neurotransmitter acetylcholine, important for energy metabolism and osmoregulation of the ephyrae. Although these carry-over effects were not reflected in the other response variables in the short-term, a persistent reduction of these two metabolites could have negative physiological consequences on A. coerulea jellyfish in the long-term. Our results highlight the importance of considering more than one life-history stage in ecotoxicology, and measuring a range of variables with different sensitivities to detect sub-lethal effects caused by anthropogenic stressors. Furthermore, since we identified few effects when using pesticides concentrations corresponding to Australian water quality guidelines, we suggest that future studies consider concentrations detected in the environment, which are higher than the water quality guidelines, to obtain a more realistic scenario by possible risk from pesticide exposure.
Collapse
Affiliation(s)
- Carolina Olguín-Jacobson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia.
| | - Kylie A Pitt
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University, Southport, Queensland, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
8
|
Xie J, Lin L, Sánchez OF, Bryan C, Freeman JL, Yuan C. Pre-differentiation exposure to low-dose of atrazine results in persistent phenotypic changes in human neuronal cell lines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116379. [PMID: 33388679 DOI: 10.1016/j.envpol.2020.116379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Exposures to organic pesticides, particularly during a developmental window, have been associated with various neurodegenerative diseases later in life. Atrazine (ATZ), one of the most used pesticides in the U.S., is suspected to be associated with increased neurodegeneration later in life but few studies assessed the neurotoxicity of developmental ATZ exposure using human neuronal cells. Here, we exposed human SH-SY5Y cells to 0.3, 3, and 30 ppb of ATZ prior to differentiating them into dopaminergic-like neurons in ATZ-free medium to mimic developmental exposure. The differentiated neurons exhibit altered neurite outgrowth and SNCA pathology depending on the ATZ treatment doses. Epigenome changes, such as decreases in 5mC (for 0.3 ppb only), H3K9me3, and H3K27me3 were observed immediately after exposure. These alterations persist in a compensatory manner in differentiated neurons. Specifically, we observed significant reductions in 5mC and H3K9me3, as well as, an increase in H3K27me3 in ATZ-exposed cells after differentiation, suggesting substantial chromatin rearrangements after developmental ATZ exposure. Transcriptional changes of relevant epigenetic enzymes were also quantified but found to only partially explain the observed epigenome alteration. Our results thus collectively suggest that exposure to low-dose of ATZ prior to differentiation can result in long-lasting changes in epigenome and increase risks of SNCA-related Parkinson's Disease.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Chris Bryan
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Akcha F, Barranger A, Bachère E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8266-8280. [PMID: 33052562 DOI: 10.1007/s11356-020-11021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances, their concentration range and their acute and chronic toxicity for organisms. Pesticide pollution is of particular concern in France due to important agricultural activities and presence of several exoreic catchment areas that vehicle pesticides up to coastal waters, impacting non-target marine species. Several ecotoxicology questions remain to be addressed concerning the long-term effects of chronic pesticide exposure and the mechanisms involved in adaptation to chemical stress. In the present study, we brought new insights on the genetic and epigenetic effects of the herbicide diuron in oyster genitors. During gametogenesis, we exposed Crassostrea gigas to environmentally realistic herbicide concentrations (0.2-0.3 μg L-1 during two 7-day periods at half-course and end of gametogenesis). Diuron exposure was shown to decrease global DNA methylation and total methyltransferase activity in whole oyster tissue; this is consistent with the previous observation of a significant decrease in DNMT1 gene expression. Diuron effect seemed to be tissue-specific; hypermethylation was detected in the digestive gland, whereas diuron exposure had no effect on gill and gonad tissue. The genotoxicity of diuron was confirmed by the detection of one adduct in gonad DNA. By using in vitro approaches and human DNMT1 (DNMT1 has not been purified yet in bivalves), the presence of DNA lesions (adduct, 8-oxodGuo) was shown to interfere with DNMT1 activity, indicating a complex interaction between DNA damage and DNA methylation. Based on our results, we propose mechanisms to explain the effect of diuron exposure on DNA methylation, a widespread epigenetic mark.
Collapse
Affiliation(s)
- Farida Akcha
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France.
| | - Audrey Barranger
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France
| | - Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions Hosts Pathogens Environment, UPVD, CNRS, University of Montpellier, CC 80, 34095, Montpellier, France
| |
Collapse
|
10
|
Miller JGP, Jamwal A, Ilnytskyy Y, Hontela A, Wiseman SB. Dicamba elevates concentrations of S-adenosyl methionine but does not induce oxidative stress or alter DNA methylation in rainbow trout (Oncorhynchus mykiss) hepatocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100744. [PMID: 32950925 DOI: 10.1016/j.cbd.2020.100744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Dicamba is a benzoic acid herbicide used to target woody and broadleaf weeds in industrial, domestic, and municipal spheres. Because of its widespread use, dicamba is frequently detected in surface waters near sites of application. However, little is known regarding the effects of dicamba on freshwater fishes. In the present study, primary cultures of hepatocytes from rainbow trout (Oncorhynchus mykiss) were exposed to either an environmentally relevant (0.22 or 2.2 μg L-1) or supra-environmental (22 μg L-1) concentration of dicamba for 48 h to investigate if oxidative stress is a mechanism of toxicity. mRNA abundances of genes involved in the response to oxidative stress, levels of lipid peroxidation, and concentrations of glutathione and s-adenosyl methionine (SAM) were quantified. Results indicate that dicamba does not induce oxidative stress. However, exposure to 2.2 μg L-1 of dicamba did cause a 5.24-fold increase in concentrations of SAM. To investigate the mechanisms of increased SAM, effects of dicamba on global and genome-wide DNA methylation were quantified. Dicamba did not cause changes to DNA methylation. Overall, dicamba was not acutely toxic to hepatocytes and did not cause oxidative stress or changes in DNA methylation at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ankur Jamwal
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Alice Hontela
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada; Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta, Canada
| | - Steve B Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada; Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
11
|
Zheng S, Wang S, Zhang Q, Zhang Z, Xu S. Avermectin inhibits neutrophil extracellular traps release by activating PTEN demethylation to negatively regulate the PI3K-ERK pathway and reducing respiratory burst in carp. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121885. [PMID: 31879111 DOI: 10.1016/j.jhazmat.2019.121885] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Excessive residual avermectin (AVM) in the environment can have toxic effects on non-target organisms. AVM can exert immunotoxicity by inducing genomic demethylation, but its effect on neutrophil extracellular traps (NETs) release in carp is unclear. In this study, carp neutrophils were pretreated with 5 μg/L AVM or 4 μM DNA demethylation inhibitor (aurintricarboxylic acid, ATA), alone or in combination, and then treated with 4 μM phorbol 12-myristate 13-acetate (PMA) to stimulate NETs release. The results showed that exposure of carp neutrophils to AVM significantly suppressed NETs release and MPO expression, increased ROS production, and dramatically reduced PMA-induced cellular respiratory burst. In addition, AVM could bind to the MBD2 molecule, markedly upregulate MBD2 expression to cause demethylation, and clearly activate PTEN expression, thereby inhibiting the expression of PI3K, AKT, Raf, MEK, and ERK. However, these effects were alleviated by ATA. In conclusion, our study showed that AVM could inhibit NETs release in carp by inducing demethylation of PTEN to negatively regulate NETs synthesis pathways and reducing respiratory burst level. Our findings clarify the mechanism of AVM immunotoxicity to fish and are of great significance for efforts to protect the ecological environment and human health.
Collapse
Affiliation(s)
- Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, HaRbin 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, HaRbin 150030, PR China.
| |
Collapse
|
12
|
Sánchez OF, Lin L, Bryan CJ, Xie J, Freeman JL, Yuan C. Profiling epigenetic changes in human cell line induced by atrazine exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113712. [PMID: 31875570 DOI: 10.1016/j.envpol.2019.113712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/12/2019] [Accepted: 11/30/2019] [Indexed: 05/24/2023]
Abstract
How environmental chemicals can affect and exert their toxic effect at a molecular level has gained significant interest in recent years, not only for understanding their immediate health implications over exposed individuals, but also for their subsequent progeny. Atrazine (ATZ) is a commonly used herbicide in the U.S. and a long-suspected endocrine disrupting chemical. The molecular mechanism conferring long-term adverse health outcomes, however, remain elusive. Here, we explored changes in epigenetic marks that arise after exposure to ATZ at selected doses using image-based analysis coupled with data clustering. Significant decreases in methylated CpG (meCpG) and histone 3 lysine 9 tri-methylated (H3K9me3) were observed in the selected human cell line with a clear spatial preference. Treating cells with ATZ leads to the loss of a subpopulation of cells with high meCpG levels as identified in our clustering and histogram analysis. A similar trend was observed in H3K9me3 potentially attributing to the cross-talking between meCpG and H3K9me3. Changes in meCpG are likely to be associated with alterations in epigenetic enzyme expression levels regulating meCpG and persist after the removal of ATZ source which collectively provide a plausible mechanism for long-term ATZ-induced toxicity.
Collapse
Affiliation(s)
- Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chris J Bryan
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Mitkovska V, Chassovnikarova T. Chlorpyrifos levels within permitted limits induce nuclear abnormalities and DNA damage in the erythrocytes of the common carp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7166-7176. [PMID: 31879882 DOI: 10.1007/s11356-019-07408-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The organophosphate pesticide chlorpyrifos (CPF) is defined as a priority pollutant in surface freshwaters according to Directive 2013/39/EU of the European Parliament. The focus of this study was to assess the potential cytotoxic and genotoxic effects of permissible CPF levels on juvenile forms of the common carp. We found that low-level CPF exposure did not induce elevated levels of micronuclei, but significantly increased the frequency of total nuclear abnormalities (NAs) proportional to dose and time; notched, blebbed, lobed and eight-shaped nuclei, nuclear buds, nuclear bridges and binucleated cells were all detected. Decreased frequencies of polychromatic erythrocytes (PCEs) and DNA damage detected by comet assay were also observed, confirming the cytotoxic and genotoxic effects of CPF. Altogether, these data (1) demonstrate that CPF is toxic even at permissible levels, possessing considerable genotoxic and cytotoxic potential in peripheral erythrocytes of exposed fish and (2) validate the assessment of NAs, PCEs and comet assay performance as sensitive biomarkers for the early detection of CPF pollution. These findings can be applied to guide environmental risk assessment and biomonitoring programs.
Collapse
Affiliation(s)
- Vesela Mitkovska
- Department of Zoology, Faculty of Biology, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria
| | - Tsenka Chassovnikarova
- Department of Zoology, Faculty of Biology, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria.
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, 1000, Sofia, Bulgaria.
| |
Collapse
|
14
|
Liu Q, Yang J, Gong Y, Cai J, Zhang Z. Role of miR-731 and miR-2188-3p in mediating chlorpyrifos induced head kidney injury in common carp via targeting TLR and apoptosis pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105286. [PMID: 31479757 DOI: 10.1016/j.aquatox.2019.105286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos (CPF) is an environmental pollutant with increasing importance due to its high toxicity to fish and aquatic animals. In the present study, we divided 120 common carp (Cyprinus carpio L.) into two groups including control group and CPF group, CPF group was exposed to 14.5 μg/L CPF for 30 d. 17 miRNAs were differentially expressed in CPF group head kidney tissues according to the results of miRNAome analysis. In addition, histopathological examination and electron microscopy proved that CPF exposure could lead to damage of head kidney and obvious apoptosis characteristics. The possible target genes of miRNA were predicted using online target gene prediction websites, miRNAome sequencing, GO and KEGG enrichment. miRNAome results showed that expression of miR-731 and miR-2188-3p in CPF group was 0.48 time and 0.45 time as control group, respectively. qRT-PCR results proved the reality of miRNAome. During CPF exposure, mRNA expression of TLR pathway genes and its downstream genes involved in autophagy and apoptosis pathway including TLR1, TLR2, TLR7, TLR9, MyD88, IRAK1, IRAK4, IRF7, PI3K, AKT, mTOR, Caspase3, Caspase8 and Bax were differentially increased under CPF exposure, along with ATG13 and Bcl2 decreased at the same time. Western blot results indicated that apoptosis related protein Caspase3 and Caspase8 were differentially up-regulated in the CPF group. In summary, CPF exposure could induce apoptosis while inhibited autophagy in head kidney of common carp via the regulation of miR-2188-3p and miR-731 by targeting TLR pathway. These results provide new insights for unveiling the biological effects of CPF and miRNAs in common carp.
Collapse
Affiliation(s)
- Qi Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yafan Gong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Sánchez OF, Mendonca A, Min A, Liu J, Yuan C. Monitoring Histone Methylation (H3K9me3) Changes in Live Cells. ACS OMEGA 2019; 4:13250-13259. [PMID: 31460452 PMCID: PMC6705211 DOI: 10.1021/acsomega.9b01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 05/16/2023]
Abstract
H3K9me3 (methylation of lysine 9 of histone H3) is an epigenetic modification that acts as a repressor mark. Several diseases, including cancers and neurological disorders, have been associated with aberrant changes in H3K9me3 levels. Different tools have been developed to enable detection and quantification of H3K9me3 levels in cells. Most techniques, however, lack live cell compatibility. To address this concern, we have engineered recombinant protein sensors for probing H3K9me3 in situ. A heterodimeric sensor containing a chromodomain and chromo shadow domain from HP1a was found to be optimal in recognizing H3K9me3 and exhibited similar spatial resolution to commercial antibodies. Our sensor offers similar quantitative accuracy in characterizing changes in H3K9me3 compared to antibodies but claims single cell resolution. The sensor was applied to evaluate changes in H3K9me3 responding to environmental chemical atrazine (ATZ). ATZ was found to result in significant reductions in H3K9me3 levels after 24 h of exposure. Its impact on the distribution of H3K9me3 among cell populations was also assessed and found to be distinctive. We foresee the application of our sensors in multiple toxicity and drug-screening applications.
Collapse
Affiliation(s)
- Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette 47907, Indiana, United States
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
- Purdue University Center for Cancer Research, West Lafayette 47907, Indiana, United States
| |
Collapse
|
16
|
Cleary JA, Tillitt DE, Vom Saal FS, Nicks DK, Claunch RA, Bhandari RK. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:639-650. [PMID: 31108297 DOI: 10.1016/j.envpol.2019.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is presently one of the most abundantly used herbicides in the United States, and a common contaminant of natural water bodies and drinking waters in high-use areas. Dysregulation of reproductive processes has been demonstrated in atrazine exposed fish, including alteration of key endocrine pathways on hypothalamic-pituitary-gonadal (HPG) axis. However, the potential for atrazine-induced transgenerational inheritance of reproductive effects in fish has not been investigated. The present study examined the effects of early developmental atrazine exposure on transgenerational reproductive dysregulation in Japanese medaka (Oryzias latipes). F0 medaka were exposed to atrazine (ATZ, 5 or 50 μg/L), 17α-ethinylestradiol (EE2, 0.002 or 0.05 μg/L), or solvent control during the first twelve days of development with no subsequent exposure over three generations. This exposure overlapped with the critical developmental window for embryonic germ cell development, gonadogenesis, and sex determination. Exposed males and females of the F0 generation were bred to produce an F1 generation, and this was continued until the F2 generation. Sperm count and motility were not affected in F0 males; however, both parameters were significantly reduced in the males from F2 Low EE2 (0.002 μg/L), Low ATZ (5 μg/L), and High ATZ (50 μg/L) lineages. Fecundity was unaffected by atrazine or EE2 in F0 through F2 generations; however, fertilization rate was decreased in low atrazine and EE2 exposure lineages in the F2 generation. There were significant transgenerational differences in expression of the genes involved in steroidogenesis and DNA methylation. These results suggest that although early life exposure to atrazine did not cause significant phenotypes in the directly exposed F0 generation, subsequent generations of fish were at greater risk of reproductive dysfunction.
Collapse
Affiliation(s)
- Jacob A Cleary
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Diane K Nicks
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Rachel A Claunch
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
17
|
Zhang H, Xu P, Jiang Y, Zhao Z, Feng J, Tai R, Dong C, Xu J. Genomic, Transcriptomic, and Epigenomic Features Differentiate Genes That Are Relevant for Muscular Polyunsaturated Fatty Acids in the Common Carp. Front Genet 2019; 10:217. [PMID: 30930941 PMCID: PMC6428711 DOI: 10.3389/fgene.2019.00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a set of important nutrients that mainly include arachidonic acid (ARA4), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic acid (ALA). Recently, fish-derived PUFAs have been associated with cardiovascular health, fetal development, and improvement of brain functions. Studies have shown that fish muscular tissues are rich in PUFAs, which are influenced by various factors, including genetic variations, regulatory profiles, and methylation status of desaturase genes during fatty acid desaturation and elongation processes. However, the genetic mechanism and the pathways involved in fatty acid metabolism in fishes remain unclear. The overall aim of this study was to assess differences in gene expression responses among fishes with different fatty acid levels. To achieve this goal, we conducted genome-wide association analysis (GWAS) using a 250K SNP array in a population of 203 samples of common carp (Cyprinus carpio) and identified nine SNPs and 15 genes associated with muscular PUFA content. Then, RNA-Seq and whole genome bisulfite sequencing (WGBS) of different groups with high and low EPA, DHA, ARA4, and ALA contents in muscle, liver and brain tissues were conducted, resulting in 6,750 differentially expressed genes and 5,631 genes with differentially methylated promoters. Gene ontology and KEGG pathway enrichment analyses of RNA-Seq and WGBS results identified enriched pathways for fatty acid metabolism, which included the adipocytokine signaling pathway, ARA4 and linoleic acid metabolism pathway, and insulin signaling pathway. Integrated analysis indicated significant correlations between gene expression and methylation status among groups with high and low PUFA contents in muscular tissues. Taken together, these multi-level results uncovered candidate genes and pathways that are associated with fatty acid metabolism and paved the way for further genomic selection and carp breeding for PUFA traits.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zixia Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou, China
| | - Ruyu Tai
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Chuanju Dong
- College of Fishery, Henan Normal University, Xinxiang, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| |
Collapse
|
18
|
Toledo-Jaldin HP, Blanco-Flores A, Sánchez-Mendieta V, Martín-Hernández O. Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions. ENVIRONMENTAL TECHNOLOGY 2018; 39:2679-2690. [PMID: 28783007 DOI: 10.1080/09593330.2017.1365097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Removal potentials of a surfactant modified zeolite (SMZ) and clay (SMC) for atrazine adsorption were evaluated. Materials were modified with hexadecyl trimethyl ammonium bromide (HDTMA-Br) and benzyl octadecyl dimethyl ammonium (BODA) chloride considering the critical micellar concentration (CMC) of each one (0.94 and 0.041 meq/L, respectively). The influence of the surfactant was analyzed in detail, particularly the formation of surfactant layers (complete or partial) connected with the length of the surfactant tail (16 and 18 methyl groups or number of carbons in the chain). Raw materials were characterized by XRD and Fourier transform infrared spectroscopy (FTIR), SMZ and SMC were analyzed by FTIR. Results obtained from kinetic adsorption experiments shown that equilibrium time is less for materials modified with HDTMA (8 h) than materials with BODA (10 and 12 h). Materials modified with the largest chain surfactant (BODA) showed more resistance to atrazine masse transference. The chemisorption was presented in the adsorption mechanisms of atrazine and adsorbent materials. Based on the results of adsorption isotherms Langmuir isotherms showed the better correlation coefficients value. The qmax is greater for materials modified with BODA (0.9232 and 4.2448 mg/g) than for materials modified with HDTMA (0.6731 and 3.9121 mg/g). Therefore, SMZ and SMC modified with the largest chain surfactant has more affinity for the pesticide. The removal process at high concentration of atrazine depends of the partition process but at lower concentration, it occurs not only by this process but also by absorption process.
Collapse
Affiliation(s)
- Helen Paola Toledo-Jaldin
- a Facultad de Química, Universidad Autónoma del Estado de México , Toluca , Estado de México , México
| | - Alien Blanco-Flores
- b División de Mecánica , Tecnológico de Estudios Superiores de Tianguistenco , Santiago Tianguistenco , Estado de México , México
| | - Víctor Sánchez-Mendieta
- c Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Toluca , Estado de México , México
| | | |
Collapse
|
19
|
Mostafalou S, Abdollahi M. The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology 2018; 409:44-52. [PMID: 30053494 DOI: 10.1016/j.tox.2018.07.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Organophosphorus (OP) compounds have been known as the most widely used pesticides during the past half century and there have been a huge body of literature regarding their association with human chronic diseases. Neurodegenerative and neurodevelopmental disorders including Alzheimer, Parkinson, amyotrophic lateral sclerosis (ALS), attention deficit hyperactivity disorder (ADHD), and autism are among the afflicting neurological diseases which overshadow human life and their higher risk in relation to OP exposures have been uncovered by epidemiological studies. In addition, experimental studies exploring the underlying mechanisms have provided some evidence for involvement of cholinergic deficit, oxidative stress, neuro-inflammation, and epigenetic modifications as the processes which are common in the toxicity of the OP and pathophysiology of the mentioned diseases. In addition, genetic mutations and polymorphisms of different variants of some genes like paraoxonase have been shown to be implicated in both susceptibility to OPs toxicity and neurological diseases. In this article, we reviewed the epidemiological as well as experimental studies evidencing the association of exposure to OPs and incidence of neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Wirbisky-Hershberger SE, Sanchez OF, Horzmann KA, Thanki D, Yuan C, Freeman JL. Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem Toxicol 2017; 109:727-734. [PMID: 28859886 DOI: 10.1016/j.fct.2017.08.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 11/26/2022]
Abstract
Atrazine, a herbicide used on agricultural crops is widely applied in the Midwestern United States as well as other areas of the globe. Atrazine frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. Previous studies have reported morphological, hormonal, and molecular alterations due to developmental and adulthood atrazine exposure; however, studies examining epigenetic alterations are limited. In this study, the effects of atrazine exposure on DNA methyltransferase (DNMT) activity and kinetics were evaluated. Global DNA methylation levels and dnmt expression in zebrafish larvae exposed to 0, 3, or 30 parts per billion (ppb) atrazine throughout embryogenesis was then assessed. Results indicate that atrazine significantly decreased the activity of maintenance DNMTs and that the inhibition mechanism can be described using non-competitive Michaelis-Menten kinetics. Furthermore, results show that an embryonic atrazine exposure decreases global methylation levels and the expression of dnmt4 and dnmt5. These findings indicate that atrazine exposure can decrease the expression and activity of DNMTs, leading to decreased DNA methylation levels.
Collapse
Affiliation(s)
| | - Oscar F Sanchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Devang Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Liu C, Cao Y, Zhou S, Khoso PA, Li S. Avermectin induced global DNA hypomethylation and over-expression of heat shock proteins in cardiac tissues of pigeon. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:52-58. [PMID: 28043331 DOI: 10.1016/j.pestbp.2016.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Despite increasing evidences pointing to residues of avermectin (AVM) pose toxic effects on non-target organisms in environment, but the data in pigeon is insufficient. The alteration of global DNA methylation and response of heat shock proteins (Hsps) are important for assessing the AVM toxicity in cardiac tissues of pigeon (Columba livia). To investigate the effects of AVM exposure in cardiac tissues of pigeon, we detected the expression levels of DNA methyltransferases (Dnmts), methylated DNA-binding domain protein 2 (MBD2), and Hsp 60, 70 and 90. Pigeons were exposed to feed containing AVM (0, 20, 40 and 60mg/kg diet) for 30, 60, 90days respectively, and cardiac tissues were collected and analyzed. We found the transcriptional levels of Dnmt1, Dnmt3a and Dnmt3b mRNA were down-regulated, but the transcriptional levels of MBD2 mRNA were up-regulated by AVM exposure in cardiac tissues of pigeon. Necrocytosis, hemorrhage, infiltration of inflammatory cells and abundant vacuoles appeared in cardiac tissues after AVM exposure. Accompanying this phenotype, the mRNA transcriptional and/or protein levels of Hsp30, Hsp60, Hsp70 and Hsp90 increased. In conclusion, these results underscored AVM exposure caused DNA methylation machinery malfunctions, and induced over-expression of Hsps to improve the protective function against cardiac injury.
Collapse
Affiliation(s)
- Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
22
|
Wang P, Yin Y, Guo Y, Wang C. Preponderant adsorption for chlorpyrifos over atrazine by wheat straw-derived biochar: experimental and theoretical studies. RSC Adv 2016. [DOI: 10.1039/c5ra24248g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In competitive sorption, WS750 prefers to adsorb chlorpyrifos over atrazine since that chlorpyrifos has stronger pi–pi interaction with WS750 (23.68 kcal mol−1) and larger lipophilicity (log P= 4.7) than that (22.70 kcal mol−1, log P= 2.7) of atrazine.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- College of Environment
- Hohai University
- P. R. China
| | - Yayun Yin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- College of Environment
- Hohai University
- P. R. China
| | - Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- College of Environment
- Hohai University
- P. R. China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- College of Environment
- Hohai University
- P. R. China
| |
Collapse
|
23
|
Lin J, Zhao HS, Xiang LR, Xia J, Wang LL, Li XN, Li JL, Zhang Y. Lycopene protects against atrazine-induced hepatic ionic homeostasis disturbance by modulating ion-transporting ATPases. J Nutr Biochem 2016; 27:249-56. [DOI: 10.1016/j.jnutbio.2015.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022]
|
24
|
Lu C, Liu X, Liu C, Wang J, Li C, Liu Q, Li Y, Li S, Sun S, Yan J, Shao J. Chlorpyrifos Induces MLL Translocations Through Caspase 3-Dependent Genomic Instability and Topoisomerase II Inhibition in Human Fetal Liver Hematopoietic Stem Cells. Toxicol Sci 2015. [PMID: 26198043 DOI: 10.1093/toxsci/kfv153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Household pesticide exposure during pregnancy has been associated with a more than 2-fold increased risk in infant leukemia, and chlorpyrifos (CPF) is among the most frequently applied insecticides. During early fetal development, liver is a hematopoietic organ with majority of cells being CD34(+) hematopoietic stem cells (CD34(+)HSC). The in utero injury to CD34(+)HSC has been known to underlie the pathogenesis of several blood disorders, often involving rearrangements of the mixed-lineage leukemia (MLL) gene on 11q23. In this study, we evaluated the leukemogenic potential of CPF in human fetal liver-derived CD34(+)HSC. Specifically, exposure to 10 μM CPF led to decrease in viability, inhibition in proliferation and induction of DNA double-strand breaks (DSBs) and occurrence of MLL(+) rearrangements. In particular, we observed CPF-mediated cell cycle disturbance as shown by G0/G1 arrest, in contrast to etoposide (VP-16), an anticancer drug used as a positive control and known to induce G2/M arrest. Further study on mechanisms underlying DNA DSBs and MLL(+) rearrangements revealed that CPF might act as topoisomerase II poison, a mechanism of action similar to VP-16. On the other hand, CPF was also shown to induce early apoptosis through active caspase-3 activation, a pathway known to underlie DNA DSBs and MLL(+) translocations. Our data indicate that in utero injury of CD34(+)HSC by CPF may contribute to the increased risk of infant leukemia. Future work will elucidate the mechanism and the type of CPF-induced MLL(+) translocations in HSC.
Collapse
Affiliation(s)
- Chengquan Lu
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Xiaohui Liu
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Chang Liu
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Jian Wang
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Chunna Li
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Qi Liu
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Yachen Li
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Shuangyue Li
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044
| | - Shu Sun
- Department of Obstetrics, Maternal and Child Care Service Center of Dalian, Dalian, Liaoning 116033, China
| | - Jinsong Yan
- Dalian Key Laboratory of Hematology, Department of Hematology of the Second Hospital of Dalian Medical University, Institute of Stem Cell Transplantation of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Jing Shao
- *Dalian Key Laboratory of Hematology, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University. Dalian, Liaoning, China 116044;
| |
Collapse
|
25
|
Xing H, Wang C, Wu H, Chen D, Li S, Xu S. Effects of atrazine and chlorpyrifos on DNA methylation in the brain and gonad of the common carp. Comp Biochem Physiol C Toxicol Pharmacol 2015; 168:11-9. [PMID: 25460047 DOI: 10.1016/j.cbpc.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/28/2022]
Abstract
DNA methylation is known to play an important role in the regulation of gene expression in animal. The purpose of the present study was to examine the effect of atrazine (ATR), chlorpyrifos (CPF) and combined ATR/CPF exposure on DNA methylation in the brain and gonad of common carp (Cyprinus carpio L.). The carp were sampled after a 40-d exposure to CPF and ATR, individually or in combination, followed by a 40-d recovery to measure the levels of global DNA methylation and the expression of methylation enzymes (DNA methyltransferases (DNMTs) and methylcytosine binding domain 2 (MBD2)) in the brain and gonad tissues. The results revealed that a significant global DNA hypomethylation in the common carp exposed to ATR, CPF and their mixture was observed compared to the control fish. The MBD2 mRNA expression was up-regulated in the brain and gonad of the common carp exposed to ATR, CPF and their mixture, in contrast, the DNMTs mRNA expression was down-regulated. The information regarding the effects of ATR and CPF on DNA methylation status generated in this study is important for pesticides toxicology evaluation. However, the effect of ATR and CPF on the methylation status of specific genes, as well as its detailed mechanism requires further investigation.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Animal Health Supervision Institute of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin 150069, PR China
| | - Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Hongda Wu
- Institute of Animal Science, Academy of Agricultural Sciences of Heilongjiang Province, 368 Xuefu Road, Xiangfang District, Harbin 150086, PR China
| | - Dechun Chen
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Shu Li
- College of Animal Science and Technology, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China.
| |
Collapse
|