1
|
Dong X, Li W, Li C, Akan OD, Liao C, Cao J, Zhang L. Integrated transcriptomics and metabolomics revealed the mechanism of catechin biosynthesis in response to lead stress in tung tree (Vernicia fordii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172796. [PMID: 38692325 DOI: 10.1016/j.scitotenv.2024.172796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Lead (Pb) affects gene transcription, metabolite biosynthesis and growth in plants. The tung tree (Vernicia fordii) is highly adaptive to adversity, whereas the mechanisms underlying its response to Pb remain uncertain. In this work, transcriptomic and metabolomic analyses were employed to study tung trees under Pb stress. The results showed that the biomass of tung seedlings decreased with increasing Pb doses, and excessive Pb doses resulted in leaf wilting, root rot, and disruption of Pb homeostasis. Under non-excessive Pb stress, a significant change in the expression patterns of flavonoid biosynthesis genes was observed in the roots of tung seedlings, leading to changes in the accumulation of flavonoids in the roots, especially the upregulation of catechins, which can chelate Pb and reduce its toxicity in plants. In addition, Pb-stressed roots showed a large accumulation of VfWRKY55, VfWRKY75, and VfLRR1 transcripts, which were shown to be involved in the flavonoid biosynthesis pathway by gene module analysis. Overexpression of VfWRKY55, VfWRKY75, and VfLRR1 significantly increased catechin concentrations in tung roots, respectively. These data indicate that Pb stress-induced changes in the expression patterns of those genes regulate the accumulation of catechins. Our findings will help to clarify the molecular mechanism of Pb response in plants.
Collapse
Affiliation(s)
- Xiang Dong
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Otobong Donald Akan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria
| | - Chancan Liao
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Cao
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
2
|
Luo D, Xian C, Zhang W, Qin Y, Li Q, Usman M, Sun S, Xing Y, Dong D. Physiological and Transcriptomic Analyses Reveal Commonalities and Specificities in Wheat in Response to Aluminum and Manganese. Curr Issues Mol Biol 2024; 46:367-397. [PMID: 38248326 PMCID: PMC10814679 DOI: 10.3390/cimb46010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Aluminum (Al) and manganese (Mn) toxicity are the top two constraints of crop production in acid soil. Crops have evolved common and specific mechanisms to tolerate the two stresses. In the present study, the responses (toxicity and tolerance) of near-isogenic wheat lines (ET8 and ES8) and their parents (Carazinho and Egret) to Al and Mn were compared by determining the physiological parameters and conducting transcriptome profiling of the roots. The results showed the following: (1) Carazinho and ET8 exhibited dual tolerance to Al and Mn compared to Egret and ES8, indicated by higher relative root elongation and SPAD. (2) After entering the roots, Al was mainly distributed in the roots and fixed in the cell wall, while Mn was mainly distributed in the cell sap and then transported to the leaves. Both Al and Mn stresses decreased the contents of Ca, Mg, and Zn; Mn stress also inhibited the accumulation of Fe, while Al showed an opposite effect. (3) A transcriptomic analysis identified 5581 differentially expressed genes (DEGs) under Al stress and 4165 DEGs under Mn stress. Among these, 2774 DEGs were regulated by both Al and Mn stresses, while 2280 and 1957 DEGs were exclusively regulated by Al stress and Mn stress, respectively. GO and KEGG analyses indicated that cell wall metabolism responds exclusively to Al, while nicotianamine synthesis exclusively responds to Mn. Pathways such as signaling, phenylpropanoid metabolism, and metal ion transport showed commonality and specificity to Al and Mn. Transcription factors (TFs), such as MYB, WRKY, and AP2 families, were also regulated by Al and Mn, and a weighted gene co-expression network analysis (WGCNA) identified PODP7, VATB2, and ABCC3 as the hub genes for Al tolerance and NAS for Mn tolerance. The identified genes and pathways can be used as targets for pyramiding genes and breeding multi-tolerant varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dengfeng Dong
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (D.L.); (C.X.); (W.Z.); (Y.Q.); (Q.L.); (M.U.); (S.S.); (Y.X.)
| |
Collapse
|
3
|
Zhou Y, Meng F, Zhang J, Zhang H, Han K, Liu C, Gao J, Chen F. Transcriptomic analysis revealing the molecular response to arsenic stress in desert Eremostachys moluccelloides Bunge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115608. [PMID: 37856981 DOI: 10.1016/j.ecoenv.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
The saline, alkaline environment of arid soils is conducive to the diffusion of the metalloid arsenic (As). Desert plants in this area are of great ecological importance and practical value. However, there are few studies on the mechanism of arsenic action in desert plants. Therefore, in this study, Eremostachys moluccelloides Bunge was treated with different concentrations of As2O5 [As(V)] to analyze the physiological, biochemical, and transcriptomic changes of its roots and leaves and to explore the molecular mechanism of its response to As(Ⅴ) stress. The activities of catalase, superoxidase, peroxidase, and the contents of malondialdehyde and proline in roots and leaves first increased and then decreased under the As(Ⅴ) stress of different concentrations. The content of As was higher in roots than in leaves, and the As content was positively correlated with As(Ⅴ) stress concentration. In the differentially expressed gene analysis, the key enzymes of the oxidative stress response in roots and leaves were significantly enriched in the GO classification. In the KEGG pathway, genes related to the abscisic acid signal transduction pathway were co-enriched and up-regulated in roots and leaves. The related genes in the phenylpropanoid biosynthesis pathway were significantly enriched and down-regulated only in roots. In addition, the transcription factors NAC, HB-HD-ZIP, and NF-Y were up-regulated in roots and leaves. These results suggest that the higher the As(V) stress concentration, the more As is taken up by roots and leaves of E. molucelloides Bunge. In addition to causing greater oxidative damage, this may interfere with the production of secondary metabolites. Moreover, it may improve As(V) tolerance by regulating abscisic acid and transcription factors. The results will deepen our understanding of the molecular mechanism of As(Ⅴ) response in E. moluccelloides Bunge, lay the foundation for developing and applying desert plants, and provide new ideas for the phytoremediation of As pollution in arid areas.
Collapse
Affiliation(s)
- Yongshun Zhou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Fanze Meng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jinling Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Haonan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Kai Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Changyong Liu
- Green Food Testing Center of the Ministry of Agriculture, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832003, People's Republic of China
| | - Jianfeng Gao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China.
| | - Fulong Chen
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Li J, Pan Y, Chen J, Liu Y. Metabolic Responses to Manganese Toxicity in Soybean Roots and Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:3615. [PMID: 37896078 PMCID: PMC10610265 DOI: 10.3390/plants12203615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Soybean is one of the most crucial beans in the world. Although Mn (manganese) is a kind of important nutritive element helpful to plant growth and health, excess Mn is harmful to crops. Nevertheless, the effect of Mn toxicity on soybean roots and leaves metabolism is still not clear. To explore this, water culture experiments were conducted on the development, activity of enzyme, and metabolic process of soybeans under varying levels of Mn treatment (5 and 100 μM). Compared with the control, the soybeans under Mn stress showed inhibited growth and development. Moreover, the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and the soluble protein content in leaves and roots of soybean were all increased. However, soluble sugar and proline contents in soybean roots and leaves showed the opposite trend. In addition, the Mg (magnesium) and Fe (iron) ion contents in soybean leaves significantly decreased, and the Mn ion content greatly increased. In roots, the Mn and Fe ion content increased, whereas the Mg ion content decreased. Furthermore, the metabolomic analysis based on nontargeted liquid chromatography-mass spectrometry identified 136 and 164 differential metabolites (DMs) that responded to Mn toxicity in roots and leaves of soybean, respectively. These DMs might participate in five different primary metabolic pathways in soybean leaves and roots, suggesting that soybean leaves and roots demonstrate different kinds of reactions in response to Mn toxicity. These findings indicate that Mn toxicity will result in enzymes activity being changed and the metabolic pathway being seriously affected, hence inhibiting the development of soybean.
Collapse
Affiliation(s)
| | | | | | | | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.)
| |
Collapse
|
5
|
Li Z, Xiao Y, Zhou K, Jin X, Li W, Li W, Zhang L, Wang J, Hu R, Lin L. Water extract of Fagopyrum dibotrys (D. Don) Hara straw increases selenium accumulation in peach seedlings under selenium-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:569-578. [PMID: 37684742 DOI: 10.1080/15226514.2023.2255287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.
Collapse
Affiliation(s)
- Zhiyu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunying Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Kexuan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xin Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wanzhi Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Rongping Hu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Xin J, Li Y, Zhao C, Ge W, Tian R. An integrated transcriptome, metabolomic, and physiological investigation uncovered the underlying tolerance mechanisms of Monochoria korsakowii in response to acute/chronic cadmium exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107888. [PMID: 37442048 DOI: 10.1016/j.plaphy.2023.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Identifying the physiological response and tolerance mechanism of wetland plants to heavy metal exposure can provide theoretical guidance for an early warning for acute metal pollution and metal-contaminated water phytoremediation. A hydroponic experiment was employed to investigate variations in the antioxidant enzyme activity, chlorophyll content, and photosynthesis in leaves of Monochoria korsakowii under 0.12 mM cadmium ion (Cd2+) acute (4 d) and chronic (21 d) exposure. Transcriptome and metabolome were analyzed to elucidate the underlying defensive strategies. The acute/chronic Cd2+ exposure decreased chlorophyll a and b contents, and disturbed photosynthesis in the leaves. The acute Cd2+ exposure increased catalase activity by 36.42%, while the chronic Cd2+ exposure markedly increased ascorbate peroxidase, superoxide dismutase, and glutathione peroxidase activities in the leaves. A total of 2 685 differentially expressed genes (DEGs) in the leaves were identified with the plants exposed to the acute/chronic Cd2+ contamination. In the acute Cd2+ exposure treatment, DEGs were preferentially enriched in the plant hormone transduction pathway, followed by phenylrpopanoid biosynthesis. However, the chronic Cd2+ exposure induced DEGs enriched in the biosynthesis of secondary metabolites pathway as priority. With acute/chronic Cd2+ exposure, a total of 157 and 227 differentially expressed metabolites were identified in the leaves. Conjoint transcriptome and metabolome analysis indicated the plant hormone signal transduction pathway and biosynthesis of secondary metabolites was preferentially activated by the acute and chronic Cd2+ exposure, respectively. The phenylpropanoid pathway functioned as a chemical defense, and the positive role of deoxyxylulose phosphate pathway in leaves against acute/chronic Cd2+ exposure was impaired.
Collapse
Affiliation(s)
- Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yan Li
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wenjia Ge
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
7
|
Pivetta CP, Chitolina SF, Dartora N, Pelegrin CMGD, Santos MVD, Cassol F, Batista LS. Copper exposure leads to changes in chlorophyll content and secondary metabolite profile in Lantana fucata leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:571-584. [PMID: 37187188 DOI: 10.1071/fp23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of plants in environments polluted by metals at toxic levels can affect the biosynthesis of secondary metabolites. Here, we analysed the effect caused by excess copper on the concentration of chlorophylls a and b and the profile of secondary metabolites of Lantana fucata leaves. Five copper (Cu) treatments (mg Cukg-1 soil) were tested: T0, 0; T1, 210; T2, 420; T3, 630; and T4, 840. We found that the concentrations of chlorophylls in the plants decreased when compared to the control. However, this did not lead to a significant reduction in its growth, possibly due to the low translocation of the metal to shoots and the activation of plant defence systems to tolerate the environment in which they are exposed, increasing the emission of lateral roots and activating pathways for the production of secondary metabolites. Therefore, we found a decrease in the concentration of two key compounds in secondary metabolism, p -coumaric and cinnamic acids in treatments with higher copper concentrations. We also found an increase in phenolics. Decreases in p -coumaric and cinnamic acids may have occurred because these are precursors in the synthesis of phenolic compounds, which are increased in the high Cu treatments. Six secondary metabolites were characterised, described for the first time for this plant species. Thus, the presence of excess Cu in the soil may have triggered an increase in the amount of reactive oxygen species in the plants, which that led to the synthesis of antioxidant compounds, as a defence strategy.
Collapse
Affiliation(s)
- Carlise Patrícia Pivetta
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | | | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Laura Spohr Batista
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| |
Collapse
|
8
|
Liu H, Jiao Q, Fan L, Jiang Y, Alyemeni MN, Ahmad P, Chen Y, Zhu M, Liu H, Zhao Y, Liu F, Liu S, Li G. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131366. [PMID: 37030231 DOI: 10.1016/j.jhazmat.2023.131366] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) contamination has resulted in serious reduction of crop yields. Silicon (Si), as a beneficial element, regulates plant growth to heavy metal toxicity mainly through reducing metal uptake and protecting plants from oxidative injury. However, the molecular mechanism underlying Si-mediated Cd toxicity in wheat has not been well understood. This study aimed to reveal the beneficial role of Si (1 mM) in alleviating Cd-induced toxicity in wheat (Triticum aestivum) seedlings. The results showed that exogenous supply of Si decreased Cd concentration by 67.45% (root) and 70.34% (shoot), and maintained ionic homeostasis through the function of important transporters, such as Lsi, ZIP, Nramp5 and HIPP. Si ameliorated Cd-induced photosynthetic performance inhibition through up-regulating photosynthesis-related genes and light harvesting-related genes. Si minimized Cd-induced oxidative stress by decreasing MDA contents by 46.62% (leaf) and 75.09% (root), and helped re-establish redox homeostasis by regulating antioxidant enzymes activities, AsA-GSH cycle and expression of relevant genes through signal transduction pathway. The results revealed molecular mechanism of Si-mediated wheat tolerance to Cd toxicity. Si fertilizer is suggested to be applied in Cd contaminated soil for food safety production as a beneficial and eco-friendly element.
Collapse
Affiliation(s)
- Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, PR China
| | - Haiping Liu
- School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
9
|
Alsherif EA, Hajjar D, AbdElgawad H. Future Climate CO 2 Reduces the Tungsten Effect in Rye Plants: A Growth and Biochemical Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1924. [PMID: 37653841 PMCID: PMC10222005 DOI: 10.3390/plants12101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Heavy metal pollution is one of the major agronomic challenges. Tungsten (W) exposure leads to its accumulation in plants, which in turn reduces plant growth, inhibits photosynthesis and induces oxidative damage. In addition, the predicted increase in CO2 could boost plant growth under both optimal and heavy metal stress conditions. The aim of the present study was to investigate the effect of W on growth, photosynthetic parameters, oxidative stress and redox status in rye plants under ambient and elevated (eCO2) levels. To this end, rye plants were grown under the following conditions: ambient CO2 (aCO2, 420 ppm), elevated CO2 (eCO2, 720 ppm), W stress (350 mg kg-1 soil) and W+eCO2. W stress induced significant (p < 0.05) decreases in growth and photosynthesis, increases in oxidative damages (lipid peroxidation) and the antioxidant defense system, i.e., ascorbate (ASC), reduced glutathione (GSH), GSH reductase (GR), peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), ASC peroxide (APX) and dehydroascorbate reductase (DHAR). On the other hand, eCO2 decreased W uptake and improved photosynthesis, which sequentially improved plant growth. The obtained results showed that eCO2 can decrease the phytotoxicity risks of W in rye plants. This positive impact of eCO2 on reducing the negative effects of soil W was related to their ability to enhance plant photosynthesis, which in turn provided energy and a carbon source for scavenging the reactive oxygen species (ROS) accumulation caused by soil W stress.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Dina Hajjar
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2018 Antwerp, Belgium;
| |
Collapse
|
10
|
Wu J, Lv S, Zhao L, Gao T, Yu C, Hu J, Ma F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. PLANTA 2023; 257:108. [PMID: 37133783 DOI: 10.1007/s00425-023-04136-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION This review summarizes the anti-stress effects of flavonoids in plants and highlights its role in the regulation of polar auxin transport and free radical scavenging mechanism. As secondary metabolites widely present in plants, flavonoids play a vital function in plant growth, but also in resistance to stresses. This review introduces the classification, structure and synthetic pathways of flavonoids. The effects of flavonoids in plant stress resistance were enumerated, and the mechanism of flavonoids in plant stress resistance was discussed in detail. It is clarified that plants under stress accumulate flavonoids by regulating the expression of flavonoid synthase genes. It was also determined that the synthesized flavonoids are transported in plants through three pathways: membrane transport proteins, vesicles, and bound to glutathione S-transferase (GST). At the same time, the paper explores that flavonoids regulate polar auxin transport (PAT) by acting on the auxin export carrier PIN-FORMED (PIN) in the form of ATP-binding cassette subfamily B/P-glycoprotein (ABCB/PGP) transporter, which can help plants to respond in a more dominant form to stress. We have demonstrated that the number and location of hydroxyl groups in the structure of flavonoids can determine their free radical scavenging ability and also elucidated the mechanism by which flavonoids exert free radical removal in cells. We also identified flavonoids as signaling molecules to promote rhizobial nodulation and colonization of arbuscular mycorrhizal fungi (AMF) to enhance plant-microbial symbiosis in defense to stresses. Given all this knowledge, we can foresee that the in-depth study of flavonoids will be an essential way to reveal plant tolerance and enhance plant stress resistance.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chang Yu
- Kerchin District Branch Office, Tongliao City Ecological Environment Bureau, Tongliao, 028006, China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian, 116032, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
11
|
Li X, Sun HF, Fan JH, Li YY, Ma LJ, Wang LL, Li XM. Transcriptome modulation by endophyte drives rice seedlings response to Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114740. [PMID: 36907094 DOI: 10.1016/j.ecoenv.2023.114740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the growth, SPAD value, chlorophyll fluorescence and transcriptome response of endophyte uninoculated and inoculated rice seedlings under Pb stress after treatment of 1 d and 5 d. Inoculation of endophytes significantly improved the plant height, SPAD value, Fv/F0, Fv/Fm and PIABS by 1.29, 1.73, 0.16, 1.25 and 1.90 times on the 1 d, by 1.07, 2.45, 0.11, 1.59 and 7.90 times on the 5 d, respectively, however, decreased the root length by 1.11 and 1.65 times on the 1 d and 5 d, respectively under Pb stress. Analysis of rice seedlings leaves by RNA-seq, there were 574 down-regulated and 918 up-regulated genes after treatment of 1 d, 205 down-regulated and 127 up-regulated genes after treatment of 5 d, of which 20 genes (11 up-regulated and 9 down-regulated) exhibited the same changing pattern after treatment of 1 d and 5 d. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to annotate these DEGs, and it was found that many of DEGs involved in photosynthesis, oxidative detoxification, hormone synthesis and signal transduction, protein phosphorylation/kinase and transcription factors. These findings provide new insights into the molecular mechanism of interaction between endophyte and plants under heavy metal stress, and contribute to agricultural production in limited environments.
Collapse
Affiliation(s)
- Xin Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - He-Fei Sun
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Jia-Hui Fan
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Yue-Ying Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lian-Ju Ma
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lan-Lan Wang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Xue-Mei Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China.
| |
Collapse
|
12
|
Wang Y, Cheng J, Wei S, Jiang W, Li Y, Guo W, Dai W, Liao B. Metabolomic Study of Flavonoids in Camellia drupifera under Aluminum Stress by UPLC-MS/MS. PLANTS (BASEL, SWITZERLAND) 2023; 12:1432. [PMID: 37050058 PMCID: PMC10097190 DOI: 10.3390/plants12071432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Aluminum (Al) affects the yield of forest trees in acidic soils. The oil tea plant (Camellia drupifera Lour.) has high Al tolerance, with abundant phenolic compounds in its leaves, especially flavonoid compounds. The role of these flavonoids in the Al resistance of oil tea plants is unclear. In this metabolomic study of C. drupifera under Al stress, ultra-pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was utilized to identify metabolites, while principal component analysis, cluster analysis, and orthogonal partial least squares discriminant analysis were applied to analyze the data on the flavonoid metabolites. The leaf morphology of C. drupifera revealed significant damage by excess aluminum ions under each treatment compared with the control group. Under Al stress at 2 mmol/L (GZ2) and 4 mmol/L (GZ4), the total flavonoid content in C. drupifera leaves reached 24.37 and 35.64 mg/g, respectively, which are significantly higher than the levels measured in the control group (CK) (p < 0.01). In addition, we identified 25 upregulated and 5 downregulated metabolites in the GZ2 vs. CK comparison and 31 upregulated and 7 downregulated flavonoid metabolites in GZ4 vs. CK. The results demonstrate that different levels of Al stress had a significant influence on the metabolite profile of C. drupifera. It was found that the abundance of the 24 differential flavonoid metabolites was gradually elevated with increasing concentrations of Al stress, including catechin, epicatechin, naringenin-7-glucoside, astilbin, taxifolin, miquelianin, quercitrin, and quercimeritrin. Moreover, the most significant increase in antioxidant activity (about 30%) was observed in C. drupifera precultured in leaf extracts containing 7.5 and 15 μg/mL of active flavonoids. The qRT-PCR results showed that the expression levels of key genes involved in the synthesis of flavonoids were consistent with the accumulation trends of flavonoids under different concentrations of Al. Therefore, our results demonstrate the key role of flavonoid compounds in the oil tea plant C. drupifera in response to Al stress, which suggests that flavonoid metabolites in C. drupifera, as well as other aluminum-tolerant plants, may help with detoxifying aluminum.
Collapse
|
13
|
Kaur S, Tiwari V, Kumari A, Chaudhary E, Sharma A, Ali U, Garg M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J Biotechnol 2023; 361:12-29. [PMID: 36414125 DOI: 10.1016/j.jbiotec.2022.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Global warming is the major cause of abiotic and biotic stresses that reduce plant growth and productivity. Various stresses such as drought, low temperature, pathogen attack, high temperature and salinity all negatively influence plant growth and development. Due to sessile beings, they cannot escape from these adverse conditions. However, plants develop a variety of systems that can help them to tolerate, resist, and escape challenges imposed by the environment. Among them, anthocyanins are a good example of stress mitigators. They aid plant growth and development by increasing anthocyanin accumulation, which leads to increased resistance to various biotic and abiotic stresses. In the primary metabolism of plants, anthocyanin improves the photosynthesis rate, membrane permeability, up-regulates many enzyme transcripts related to anthocyanin biosynthesis, and optimizes nutrient uptake. Generally, the most important genes of the anthocyanin biosynthesis pathways were up-regulated under various abiotic and biotic stresses. The present review will highlight anthocyanin mediated stress tolerance in plants under various abiotic and biotic stresses. We have also compiled literature related to genetically engineer stress-tolerant crops generated using over-expression of genes belonging to anthocyanin biosynthetic pathway or its regulation. To sum up, the present review provides an up-to-date description of various signal transduction mechanisms that modulate or enhance anthocyanin accumulation under stress conditions.
Collapse
Affiliation(s)
- Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Vandita Tiwari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Era Chaudhary
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anjali Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India.
| |
Collapse
|
14
|
Pu Y, Wang C, Jiang Y, Wang X, Ai Y, Zhuang W. Metabolic profiling and transcriptome analysis provide insights into the accumulation of flavonoids in chayote fruit during storage. Front Nutr 2023; 10:1029745. [PMID: 36937343 PMCID: PMC10019507 DOI: 10.3389/fnut.2023.1029745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Chayote (Sechium edulel) fruits are rich in flavonoids, folate, and low-calorie food. However, studies about the flavonoids and the corresponding regulatory mechanism of flavonoid synthesis in chayote fruits was still unclear. In present study, an integrated transcriptome and metabolite analysis of chayote fruits at three different storage stages were conducted to explore the flavonoid compositions and gene expression associated with flavonoid synthesis. Through the UPLC-MS/MS analysis, a total of 57 flavonoid compounds were detected. Of these, 42 flavonoid glycosides were significantly differential accumulation in chayote fruits at three different storage stages. Many genes associated with flavonoid synthesis were differentially expressed in chayote fruits at three different storage stages through RNA-seq analysis, including structural genes and some TFs. There was a high correlation between RNA-seq analysis and metabolite profiling, and the expression level of candidate genes in the flavonoid synthesis pathway were consistent with the dynamic changes of flavonoids. In addition, one R2R3-MYB transcription factor, FSG0057100, was defined as the critical regulatory gene of flavonoid synthesis. Furthermore, exogenous application of phenylalanine increased the total content of flavonoids and promoted some flavonoid biosynthesis-related gene expression in chayote fruits. The above results not only make us better understand the molecular mechanism of flavonoid synthesis in chayote fruits, but also contribute to the promotion and application of chayote products.
Collapse
Affiliation(s)
- YuTing Pu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - YongWen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - XiaoJing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- *Correspondence: XiaoJing Wang,
| | - YuJie Ai
- Tea Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
- YuJie Ai,
| | - WeiBing Zhuang
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Memorial Sun Yat-sen, Institute of Botany, Nanjing, China
- WeiBing Zhuang,
| |
Collapse
|
15
|
Kumar S, Wang M, Liu Y, Zhu Z, Fahad S, Qayyum A, Zhu G. Vanadium Stress Alters Sweet Potato ( Ipomoea batatas L.) Growth, ROS Accumulation, Antioxidant Defense System, Stomatal Traits, and Vanadium Uptake. Antioxidants (Basel) 2022; 11:antiox11122407. [PMID: 36552615 PMCID: PMC9774804 DOI: 10.3390/antiox11122407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Vanadium (V) is a heavy metal found in trace amounts in many plants and widely distributed in the soil. This study investigated the effects of vanadium concentrations on sweet potato growth, biomass, root morphology, photosynthesis, photosynthetic assimilation, antioxidant defense system, stomatal traits, and V accumulation. Sweet potato plants were grown hydroponically and treated with five levels of V (0, 10, 25, 50, and 75 mg L-1). After 7 days of treatment, V content at low concentration (10 mg L-1) enhanced the plant growth and biomass; in contrast, drastic effects were observed at 25, 50, and 75 mg L-1. Higher V concentrations negatively affect the relative water content, photosynthetic assimilation, photosynthesis, and root growth and reduce tolerance indices. The stomatal traits of sweet potato, such as stomatal length, width, pore length, and pore width, were also decreased under higher V application. Furthermore, V concentration and uptake in the roots were higher than in the shoots. In the same way, reactive oxygen species (ROS) production (hydrogen peroxide), lipid peroxidation (malondialdehyde), osmolytes, glutathione, and enzymes (catalase and superoxide dismutase) activities were increased significantly under V stress. In conclusion, V at a low level (10 mg L-1) enhanced sweet potato growth, and a higher level of V treatment (25, 50, and 75 mg L-1) had a deleterious impact on the growth, physiology, and biochemical mechanisms, as well as stomatal traits of sweet potato.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (G.Z.); (M.W.)
| | - Yonghua Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhixin Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (G.Z.); (M.W.)
| |
Collapse
|
16
|
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223158. [PMID: 36432887 PMCID: PMC9699315 DOI: 10.3390/plants11223158] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
- Faculty of Environmental Studies, Dehli School of Journalism, University of Delhi, Delhi 110007, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Noreen Zahra
- Department of Botany, Government College for Women University, Faisalabad 38000, Pakistan
| | - Vaishali Yadav
- Department of Botany, Multanimal Modi College Modinagar, Ghaziabad 201204, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
17
|
Kumar S, Wang M, Fahad S, Qayyum A, Chen Y, Zhu G. Chromium Induces Toxicity at Different Phenotypic, Physiological, Biochemical, and Ultrastructural Levels in Sweet Potato ( Ipomoea batatas L.) Plants. Int J Mol Sci 2022; 23:13496. [PMID: 36362283 PMCID: PMC9656234 DOI: 10.3390/ijms232113496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/23/2023] Open
Abstract
Crop productivity is enormously exposed to different environmental stresses, among which chromium (Cr) stress raises considerable concerns and causes a serious threat to plant growth. This study explored the toxic effect of Cr on sweet potato plants. Plants were hydroponically grown, and treatments of 0, 25, 50, 100, and 200 µM Cr were applied for seven days. This study exhibited that a low level of Cr treatment (25 µM) enhanced the growth, biomass, photosynthesis, osmolytes, antioxidants, and enzyme activities. However, significant deleterious effects in growth, biomass, photosynthetic attributes, antioxidants, and enzymes were observed at higher levels of Cr treatment. The remarkable reduction in plant growth traits was associated with the over-accumulation of H2O2 and MDA contents (410% and 577%, respectively) under the highest rate of Cr (200 µM). Under 200 µM Cr, the uptake in the roots were 27.4 mg kg-1 DW, while in shoots were 11 mg kg-1 DW with the highest translocation rate from root to shoot was 0.40. The results showed that the higher accumulation of Cr negatively correlated with the phenotypic and physiological parameters. It may be proposed that Cr toxicity causes oxidative damage as sustained by augmented lipid peroxidation, reactive oxygen species, and reduced photosynthetic rate, chlorophyll, and stomatal traits. The chloroplastic ultrastructure was damaged, and more apparent damage and size reduction were observed at higher Cr levels. Furthermore, aggregated Cr concentration positively correlates with the increase of osmolytes and superoxide dismutase (SOD) activity in the leaves of sweet potato. Moreover, improved osmolytes and SOD do not help protect sweet potato against high Cr stress. Overall, these findings will improve the understanding of the defense mechanisms of sweet potato to Cr stress.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Zhu Y, Qiu W, He X, Wu L, Bi D, Deng Z, He Z, Wu C, Zhuo R. Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in Sedum plumbizincicola. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113149. [PMID: 34974361 DOI: 10.1016/j.ecoenv.2021.113149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Sedum plumbizincicola, a cadmium (Cd) hyperaccumulating herbaceous plant, can accumulate large amounts of Cd in the above-ground tissues without being poisoned. However, the molecular mechanisms regulating the processes are not fully understood. In this study, Transcriptional and proteomic analyses were integrated to investigate the response of S. plumbizincicola plants to Cd stress and to identify key pathways that are potentially responsible for Cd tolerance and accumulation. A total of 630 DAPs (differentially abundant proteins, using fold change >1.5 and adjusted p-value <0.05) were identified from Tandem Mass Tag (TMT)- based quantitative proteomic profiling, which were enriched in processes including phenylpropanoid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of secondary metabolites. Combined with the previous transcriptomic study, 209 genes and their corresponding proteins showed the identical expression pattern. The identified genes/proteins revealed the potential roles of several metabolism pathways, including phenylpropanoid biosynthesis, oxidative phosphorylation, phagosome, and glutathione metabolism, in mediating Cd tolerance and accumulation. Lignin staining and Cd accumulation assay of the transgenic lines over-expressing a selected Cd up-regulated gene SpFAOMT (Flavonoid 3',5'-methyltransferase) showed its functions in adapting to Cd stress, and provided insight into its role in lignin biosynthesis and Cd accumulation in S. plumbizincicola during Cd stress.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Xiaoyang He
- Agricultural Technology Extension Centre of Dongtai, Jiangsu 224200, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, PR China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei, PR China.
| | - Chao Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| |
Collapse
|
19
|
Selim S, AbdElgawad H, Reyad AM, Alowaiesh BF, Hagagy N, Al-Sanea MM, Alsharari SS, Madany MMY. Potential use of a novel actinobacterial species to ameliorate tungsten nanoparticles induced oxidative damage in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:226-239. [PMID: 34973889 DOI: 10.1016/j.plaphy.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Tungsten nanoparticles (WNPs) could induce hazard impact on plant growth and development; however, no study investigated their phytotoxicity. On the other hand, plant growth-promoting bacteria (PGPB) can effectively reduce WNPs toxicity. To this end, Nocardiopsis sp. was isolated and employed to mitigate the phytotoxic effect of WNPs on three crops (wheat, barley, and oat). Soil contamination with WPNs induced the W accumulation in all tested crops, inhibited both growth and photosynthesis and induced oxidative damage. On the other hand, pre-inoculation with Nocardiopsis sp. significantly reduced W level in treated plants. Concomitantly, Nocardiopsis sp. strikingly mitigated the inhibitory effect of WNPs by augmenting both growth and reactive oxygen species (ROS) homeostasis. To cope with heavy metal stress, all the tested species orchestrated their antioxidant homeostasis through enhancing the production of antioxidant metabolites (e.g., phenolics, flavonoids and tocopherols) and elevated the activities of ROS-scavenging enzymes (e.g., APX, POX, CAT, as well as the enzymes involved in AsA/GSH cycle). Moreover, pre-inoculation with Nocardiopsis sp. improved the detoxification metabolism by enhancing the accumulation of phytochelatins (PCs), metallothionein (MTC) and glutathione-S-transferase (GST) in grasses grown in WNPs-contaminated soils. Overall, restrained ROS homeostasis and improved WNPs detoxification systems were the bases underlie the WNPs stress mitigating impact of Nocardiopsis sp treatment.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72341, Saudi Arabia.
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Mohamed Reyad
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Bassam F Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka, P.O. Box 72341, Saudi Arabia
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammad M Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, 72341, Aljouf Province, Saudi Arabia
| | - Salam S Alsharari
- Biology Department, College of Science, Jouf University, Sakaka, P.O. Box 72341, Saudi Arabia
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
20
|
Liu H, Liang C, Ma L, Liu J, Wang Q. Analysis of antioxidant response in pomelo fruitlets subjected to external injury stress: Significance of naringin biosynthesis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Wang K, Yu H, Zhang X, Ye D, Huang H, Wang Y, Zheng Z, Li T. A transcriptomic view of cadmium retention in roots of cadmium-safe rice line (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126379. [PMID: 34329031 DOI: 10.1016/j.jhazmat.2021.126379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
A better understanding of the mechanisms controlling cadmium (Cd) accumulation in rice will benefit the development of strategies to minimize Cd accumulation in grains. A Cd-safe rice line designated D62B accumulated less than 0.2 mg Cd kg-1 in brown rice due to its strong capacity for Cd retention in roots. Here transcriptomic was used to clarify the underlying mechanisms of Cd response in roots of D62B compared with a high Cd-accumulating line (Wujin4B). There were 777, 1058 differentially expressed genes (DEGs) in D62B and Wujin4B, respectively, when exposed to Cd. The functions of DEGs were clearly line-specific. Cell wall biosynthesis responded more intensively to Cd stress in D62B, facilitating Cd restriction. Meanwhile, more glutathione (GSH) and phytochelatins synthesized in D62B with the upregulation of sulphur and GSH metabolism. Besides, membrane proteins played critical roles in Cd response in D62B, whereas 18 terms involved in regulation were enriched in Wujin4B. Exogenous GSH further induced the expression of genes related to GSH metabolism and cell wall biosynthesis, leading to the retention of more Cd. Great responsiveness of cell wall biosynthesis and GSH metabolism could be considered the most important specific mechanisms for Cd retention in the roots of Cd-safe rice line.
Collapse
Affiliation(s)
- Keji Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Haiying Yu
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Xizhou Zhang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Daihua Ye
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Huagang Huang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yongdong Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Zicheng Zheng
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tingxuan Li
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
22
|
Yu ZC, Lin W, Zheng XT, Cai ML, Zhang TJ, Luo YN, Peng CL. Interpretation of the difference in shade tolerance of two subtropical forest tree species of different successional stages at the transcriptome and physiological levels. TREE PHYSIOLOGY 2021; 41:1669-1684. [PMID: 33611548 DOI: 10.1093/treephys/tpab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Differences in plant shade tolerance constitute a major mechanism driving the succession of forest communities in subtropical forests. However, the indirect effects of differences in light requirements on the growth of mid- and late-successional tree species are unclear, and this potential growth effect has not been explained at the transcriptome level. Here, a typical mid-successional dominant tree species, Schima superba Gardn. et Champ, and a typical late-successional dominant tree species, Cryptocarya concinna Hance were used as materials and planted under 100% full light (FL) and 30% FL (low light, LL) to explore the responses of tree species in different successional stages of subtropical forests to different light environments. Transcriptome sequencing was used to analyze the expression changes in genes related to growth and photoprotection under different light environments. The young leaves of S. superba accumulated more malondialdehyde (MDA) and superoxide radicals (${\mathrm{O}}_2^{{{}^{\bullet}}^{-}}$) under LL. A lower hormone content (auxin, cytokinin, gibberellin) in the young leaves, a weaker photosynthetic capacity in the mature leaves and significant downregulation of related gene expression were also found under LL, which resulted in the total biomass of S. superba under LL being lower than that under FL. The young leaves of C. concinna had less MDA and ${\mathrm{O}}_2^{{{}^{\bullet}}^{-}}$, and a higher hormone contents under LL than those under FL. There was no significant difference in photosynthetic capacity between mature leaves in contrasting light environments. Although the biomass of C. concinna under LL was less than that under FL, the height of C. concinna under LL was higher than that under FL, indicating that C. concinna could grow well under the two light environments. Our results describing the acclimatization of light at the physiological, molecular and transcriptome levels are important for a complete understanding of successional mechanisms.
Collapse
Affiliation(s)
- Zheng-Chao Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Wei Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiao-Ting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Min-Ling Cai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Tai-Jie Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Yan-Na Luo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
23
|
Shen CC, Chen MX, Xiao T, Zhang C, Shang J, Zhang KL, Zhu FY. Global proteome response to Pb(II) toxicity in poplar using SWATH-MS-based quantitative proteomics investigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112410. [PMID: 34126303 DOI: 10.1016/j.ecoenv.2021.112410] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 05/07/2023]
Abstract
Lead (Pb) toxicity is a growing serious environmental pollution that threatens human health and crop productivity. Poplar, as an important economic and ecological forest species, has the characteristics of fasting growth and accumulating heavy metals, which is a powerful model plant for phytoremediation. Here, a novel label-free quantitative proteomic platform of SWATH-MS was applied to detect proteome changes in poplar seedling roots following Pb treatment. In total 4388 unique proteins were identified and quantified, among which 542 proteins showed significant abundance changes upon Pb(II) exposure. Functional categorizations revealed that differentially expressed proteins (DEPs) primarily distributed in specialized biological processes. Particularly, lignin and flavonoid biosynthesis pathway were strongly activated upon Pb exposure, implicating their potential roles for Pb detoxification in poplar. Furthermore, hemicellulose and pectin related cell wall proteins exhibited increased abundances, where may function as a sequestration reservoir to reduce Pb toxicity in cytoplasm. Simultaneously, up-regulation of glutathione metabolism may serve as a protective role for Pb-induced oxidative damages in poplar. Further correlation investigation revealed an extra layer of post-transcriptional regulation during Pb response in poplar. Overall, our work represents multiply potential regulators in mediating Pb tolerance in poplar, providing molecular targets and strategies for phytoremediation.
Collapse
Affiliation(s)
- Cong-Cong Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tian Xiao
- Department of Cell Biology and Genetics, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China; International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Shang
- SpecAlly Life Technology Co., Ltd and Wuhan Institute of Biotechnology, Wuhan, China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China; International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Naing AH, Kim CK. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. PHYSIOLOGIA PLANTARUM 2021; 172:1711-1723. [PMID: 33605458 DOI: 10.1111/ppl.13373] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 05/23/2023]
Abstract
Abiotic stresses, such as heat, drought, salinity, low temperature, and heavy metals, inhibit plant growth and reduce crop productivity. Abiotic stresses are becoming increasingly extreme worldwide due to the ongoing deterioration of the global climate and the increase in agrochemical utilization and industrialization. Plants grown in fields are affected by one or more abiotic stresses. The consequent stress response of plants induces reactive oxygen species (ROS), which are then used as signaling molecules to activate stress-tolerance mechanism. However, under extreme stress conditions, ROS are overproduced and cause oxidative damage to plants. In such conditions, plants produce anthocyanins after ROS signaling via the transcription of anthocyanin biosynthesis genes. These anthocyanins are then utilized in antioxidant activities by scavenging excess ROS for their sustainability. In this review, we discuss the physiological, biochemical, and molecular mechanisms underlying abiotic stress-induced anthocyanins in plants and their role in abiotic stress tolerance. In addition, we highlight the current progress in the development of anthocyanin-enriched transgenic plants and their ability to increase abiotic stress tolerance. Overall, this review provides valuable information that increases our understanding of the mechanisms by which anthocyanins respond to abiotic stress and protect plants against it. This review also provides practical guidance for plant biologists who are engineering stress-tolerant crops using anthocyanin biosynthesis or regulatory genes.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
25
|
Aihemaiti A, Gao Y, Meng Y, Chen X, Liu J, Xiang H, Xu Y, Jiang J. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135637. [PMID: 31810710 DOI: 10.1016/j.scitotenv.2019.135637] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Vanadium is a multivalent redox-sensitive metal that is widely distributed in the environment. Low levels of vanadium elevate plant height, root length, and biomass production due to enhanced chlorophyll biosynthesis, seed germination, essential element uptake, and nitrogen assimilation and utilization. However, high vanadium concentrations disrupt energy metabolism and matter cycling; inhibit key enzymes mediating energy production, protein synthesis, ion transportation, and other important physiological processes; and lead to growth retardation, root and shoot abnormalities, and even death of plants. The threshold level of toxicity is highly plant species-specific, and in most cases, the half maximal effective concentration (EC50) of vanadium for plants grown under hydroponic conditions and in soil varies from 1 to 50 mg/L, and from 18 to 510 mg/kg, respectively. Plants such as Chinese green mustard, chickpea, and bunny cactus could accumulate high concentrations of vanadium in their tissues, and thus are suitable for decontaminating and reclaiming of vanadium-polluted soils on a large scale. Soil pH, organic matter, and the contents of iron and aluminum (hydr)oxides, phosphorus, calcium, and other coexisting elements affect the bioavailability, toxicity, and plant uptake of vanadium. Mediation of these conditions or properties in vanadium-contaminated soils could improve plant tolerance, accumulation, or exclusion, thereby enhancing phytoremediation efficiency. Phytoremediation with the assistance of soil amendments and microorganisms is a promising method for decontamination of vanadium polluted soils.
Collapse
Affiliation(s)
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuejing Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiwei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Honglin Xiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yiwen Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Xu X, Chen Q, Mo S, Qian Y, Wu X, Jin Y, Ding H. Transcriptome -wide modulation combined with morpho-physiological analyses of Typha orientalis roots in response to lead challenge. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121405. [PMID: 31629596 DOI: 10.1016/j.jhazmat.2019.121405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is a common pollutant in many environments, including in the soil, water, and/or air. Typha orientalis Presl, a large emergent aquatic plant, has been reported to function as a Pb-tolerant and Pb-accumulating plant; however, very little molecular information regarding the tolerance of T. orientalis towards Pb is known. In this study, Pb accumulation and key factors involved in the Pb stress response at different Pb concentrations were investigated. Pb was primarily accumulated in the roots and was mainly located in the cell wall and membrane systems. Differentially expressed genes (DEGs) were identified in T. orientalis roots after Pb exposure via RNA-seq analyses. In the 0.10 mM and 0.25 mM Pb2+-treated groups, a total of 3275 DEGs were detected relative to the control. Many of these genes were associated with oxidation-reduction processes, metal transport, protein kinase/phosphorylation, and DNA binding transcription factors, which were shown to be Pb-responsive DEGs. Mapping Kyoto Encyclopedia of Genes and Genomes (KEGG) database, "phenylpropanoid biosynthesis" was analyzed as the major pathway of the important modules of overlapping DEGs of 0.10 mM and 0.25 mM Pb2+ treatments. Furthermore, a lead response gene named ToLR1 with unknown function was of particular interest. The full-length of ToLR1 sequence was cloned using rapid amplification of cDNA ends (RACE) and overexpressed in Arabidopsis thaliana, which resulted in enhanced resistance to Pb stress. This is the first report providing genomic information detailing Pb responsive genes in T. orientalis. Moreover, this study provides novel insights into the molecular mechanisms underlying the response of T. orientalis and other accumulators towards Pb stress. The key genes identified in this study may serve as potential targets for genetic engineering targeting phytoremediation.
Collapse
Affiliation(s)
- Xiaoying Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Shuangrong Mo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ying Qian
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxia Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yingen Jin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Haidong Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
27
|
Wang MQ, Bai ZY, Xiao YF, Li Y, Liu QL, Zhang L, Pan YZ, Jiang BB, Zhang F. Transcriptomic analysis of Verbena bonariensis roots in response to cadmium stress. BMC Genomics 2019; 20:877. [PMID: 31747870 PMCID: PMC6868873 DOI: 10.1186/s12864-019-6152-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cadmium (Cd) is a serious heavy metal (HM) soil pollutant. To alleviate or even eliminate HM pollution in soil, environmental-friendly methods are applied. One is that special plants are cultivated to absorb the HM in the contaminated soil. As an excellent economical plant with ornamental value and sound adaptability, V. bonariensis could be adapted to this very situation. In our study, the Cd tolerance in V. bonariensis was analyzed as well as an overall analysis of transcriptome. RESULTS In this study, the tolerance of V. bonariensis to Cd stress was investigated in four aspects: germination, development, physiological changes, and molecular alterations. The results showed that as a non-hyperaccumulator, V. bonariensis did possess the Cd tolerance and the capability to concentration Cd. Under Cd stress, all 237, 866 transcripts and 191, 370 unigenes were constructed in the transcriptome data of V. bonariensis roots. The enrichment analysis of gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that differentially expressed genes (DEGs) under Cd stress were predominately related to cell structure, reactive oxygen species (ROS) scavenging system, chelating reaction and secondary metabolites, transpiration and photosynthesis. DEGs encoding lignin synthesis, chalcone synthase (CHS) and anthocyanidin synthase (ANS) were prominent in V. bonariensis under Cd stress. The expression patterns of 10 DEGs, validated by quantitative real-time polymerase chain reaction (qRT-PCR), were in highly accordance with the RNA-Sequence (RNA-Seq) results. The novel strategies brought by our study was not only benefit for further studies on the tolerance of Cd and functional genomics in V. bonariensis, but also for the improvement molecular breeding and phytoremediation.
Collapse
Affiliation(s)
- Meng-qi Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Zhen-yu Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Ya-fang Xiao
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yan Li
- Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025 People’s Republic of China
| | - Qing-lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuan-zhi Pan
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Bei-bei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|
28
|
Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol 2019; 202:1-16. [DOI: 10.1007/s00203-019-01730-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
|
29
|
Guo SM, Tan Y, Chu HJ, Sun MX, Xing JC. Transcriptome sequencing revealed molecular mechanisms underlying tolerance of Suaeda salsa to saline stress. PLoS One 2019; 14:e0219979. [PMID: 31335886 PMCID: PMC6650071 DOI: 10.1371/journal.pone.0219979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022] Open
Abstract
The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In the present study, S. salsa seedlings were treated with 30‰ salinity and then leaves and roots were subjected to Illumina sequencing. Compared with the control, 68,599 and 77,250 unigenes were significantly differentially expressed in leaves and roots in saline treatment, respectively. KEGG enrichment analyses indicated that photosynthesis process, carbohydrate, lipid and amino acid metabolisms were all downregulated in saline treatment, which should inhibit growth of S. salsa. Expression levels of Na+/H+ exchanger, V-H+ ATPase, choline monooxygenase, potassium and chloride channels were upregulated in saline treatment, which could relieve reduce over-accumulation of Na+ and Cl-. Fe-SOD, glutathione, L-ascorbate and flavonoids function as antioxidants in plants. Genes in relation to them were all upregulated, suggesting that S. salsa initiated various antioxidant mechanisms to tolerate high salinity. Besides, plant hormones, especially auxin, ethylene and jasmonic acid signaling transduction pathways were all upregulated in response to saline treatment, which were important to gene regulations of ion transportation and antioxidation. These changes might comprehensively contribute to tolerance of S. salsa to salinity. Overall, the present study provided new insights to understand the mechanisms underlying tolerance to salinity in halophytes.
Collapse
Affiliation(s)
- Su-Ming Guo
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Ying Tan
- College of Architecture, Southeast University, Nanjing City, Jiangsu Province, P. R. China
| | - Han-Jie Chu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Mei-Xia Sun
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Jin-Cheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, P. R. China
| |
Collapse
|
30
|
Qiao K, Liang S, Wang F, Wang H, Hu Z, Chai T. Effects of cadmium toxicity on diploid wheat (Triticum urartu) and the molecular mechanism of the cadmium response. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:1-10. [PMID: 30974226 DOI: 10.1016/j.jhazmat.2019.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is a widespread soil contaminant that readily accumulates in wheat, and posing a potential threat to human health. Our aim is to investigate Cd toxicity effect and molecular mechanisms for wheat. In this study, the physiological indexes, morphology, and gene expression patterns of diploid wheat (Triticum urartu) seedlings were evaluated after 2 and 5 d of a Cd treatment (10 μM CdSO4). The Cd treatment resulted in increased proline and glutathione contents in shoots and roots, slight damage to leaf tips, severe damage to root tips, and increased root secretions. Transcriptome analysis showed that there were significantly more differentially expressed genes (DEGs) in shoots and roots after 5 d of Cd stress than after 2 d of Cd stress, and the DEGs of the shoots were more different than the roots. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the pathways enriched under Cd treatment were "DNA replication" and "phenylpropanoid biosynthesis". These findings provide information about the responses to Cd stress in wheat, and provide a theoretical basis for reducing Cd toxicity and protecting food safety.
Collapse
Affiliation(s)
- Kun Qiao
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuang Liang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Fanhong Wang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; The Innovative Academy of Seed Design (INASEED), Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Muszyńska E, Labudda M, Różańska E, Hanus-Fajerska E, Znojek E. Heavy metal tolerance in contrasting ecotypes of Alyssum montanum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:305-317. [PMID: 29890432 DOI: 10.1016/j.ecoenv.2018.05.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 05/11/2023]
Abstract
The response of metallicolous (M) and nonmetallicolous (NM) Alyssum montanum ecotypes to multi-metal stress was investigated under in vitro condition and compared in this study. Shoot cultures were simultaneously treated with 0.7 mM ZnSO4, 3.0 μM Pb(NO3)2 and 16.4 μM CdCl2 for 8 weeks and evaluated for their morphogenetic and ultrastructural reaction, growth tolerance as well as ability to Zn, Pb, and Cd uptake. Moreover, tissue localization and concentrations of antioxidant compounds were determined in order to elucidate the potential role of ROS-scavenging machinery in plant tolerance to metal toxicity. The results clearly demonstrated that M specimens treated with heavy metals showed less phytotoxic symptoms and low level of lipid peroxidation than reference NM one. The enhanced tolerance of M ecotype resulted from heavy metals detoxification in trichomes and intracellular leaf compartments as well as balanced ROS accumulation. The inactivation of ROS in M plants was based on peroxidase-flavonoid system, while in NM plants such relationship was not detected and amounts of antioxidant enzymes or phenolic compounds was comparable to untreated specimens or decreased significantly. Considering the procumbent growth of such hemicryptophyte which reproduce effectively in the presence of heavy metals but is characterized by low biomass production, it is proposed to exploit M ecotype of A. montanum in revegetation schemes of polluted calamine wastes to provide the prompt stabilization of areas prone to erosion.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland.
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland
| | - Ewa Hanus-Fajerska
- Institute of Plant Biology and Biotechnology, University of Agriculture, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Ewa Znojek
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland
| |
Collapse
|
32
|
Cheng D, Tan M, Yu H, Li L, Zhu D, Chen Y, Jiang M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genomics 2018; 19:709. [PMID: 30257650 PMCID: PMC6158873 DOI: 10.1186/s12864-018-5109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background Metal tolerance is often an integrative result of metal uptake and distribution, which are fine-tuned by a network of signaling cascades and metal transporters. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, comparative RNAseq-based transcriptome analysis was conducted to dissect differentially expressed genes (DEGs) in maize roots exposed to cadmium (Cd) stress. Results To unveil conserved Cd-responsive genes in cereal plants, the obtained 5166 maize DEGs were compared with 2567 Cd-regulated orthologs in rice roots, and this comparison generated 880 universal Cd-responsive orthologs groups composed of 1074 maize DEGs and 981 rice counterparts. More importantly, most of the orthologous DEGs showed coordinated expression pattern between Cd-treated maize and rice, and these include one large orthologs group of pleiotropic drug resistance (PDR)-type ABC transporters, two clusters of amino acid transporters, and 3 blocks of multidrug and toxic compound extrusion (MATE) efflux family transporters, and 3 clusters of heavy metal-associated domain (HMAD) isoprenylated plant proteins (HIPPs), as well as all 4 groups of zinc/iron regulated transporter protein (ZIPs). Additionally, several blocks of tandem maize paralogs, such as germin-like proteins (GLPs), phenylalanine ammonia-lyases (PALs) and several enzymes involved in JA biosynthesis, displayed consistent co-expression pattern under Cd stress. Out of the 1074 maize DEGs, approximately 30 maize Cd-responsive genes such as ZmHIPP27, stress-responsive NAC transcription factor (ZmSNAC1) and 9-cis-epoxycarotenoid dioxygenase (NCED, vp14) were also common stress-responsive genes reported to be uniformly regulated by multiple abiotic stresses. Moreover, the aforementioned three promising Cd-upregulated genes with rice counterparts were identified to be novel Cd-responsive genes in maize. Meanwhile, one maize glutamate decarboxylase (ZmGAD1) with Cd co-modulated rice ortholog was selected for further analysis of Cd tolerance via heterologous expression, and the results suggest that ZmGAD1 can confer Cd tolerance in yeast and tobacco leaves. Conclusions These novel findings revealed the conserved function of Cd-responsive orthologs and paralogs, which would be valuable for elucidating the genetic basis of the plant response to Cd stress and unraveling Cd tolerance genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Haijuan Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dandan Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Tomlinson KR, Bailey AM, Alicai T, Seal S, Foster GD. Cassava brown streak disease: historical timeline, current knowledge and future prospects. MOLECULAR PLANT PATHOLOGY 2018; 19:1282-1294. [PMID: 28887856 PMCID: PMC5947582 DOI: 10.1111/mpp.12613] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 05/09/2023]
Abstract
Cassava is the second most important staple food crop in terms of per capita calories consumed in Africa and holds potential for climate change adaptation. Unfortunately, productivity in East and Central Africa is severely constrained by two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). CBSD was first reported in 1936 from northeast Tanzania. For approximately 70 years, CBSD was restricted to coastal East Africa and so had a relatively low impact on food security compared with CMD. However, at the turn of the 21st century, CBSD re-emerged further inland, in areas around Lake Victoria, and it has since spread through many East and Central African countries, causing high yield losses and jeopardizing the food security of subsistence farmers. This recent re-emergence has attracted intense scientific interest, with studies shedding light on CBSD viral epidemiology, sequence diversity, host interactions and potential sources of resistance within the cassava genome. This review reflects on 80 years of CBSD research history (1936-2016) with a timeline of key events. We provide insights into current CBSD knowledge, management efforts and future prospects for improved understanding needed to underpin effective control and mitigation of impacts on food security.
Collapse
Affiliation(s)
| | - Andy M. Bailey
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| | - Titus Alicai
- National Crops Resources Research InstituteKampala 7084Uganda
| | - Sue Seal
- Natural Resources InstituteUniversity of GreenwichChatham MaritimeKent ME4 4TBUK
| | - Gary D. Foster
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| |
Collapse
|
34
|
Association of Proteomics Changes with Al-Sensitive Root Zones in Switchgrass. Proteomes 2018; 6:proteomes6020015. [PMID: 29565292 PMCID: PMC6027131 DOI: 10.3390/proteomes6020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 μM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cm long root tips were harvested and divided into two segments, each of 1-cm in length, for protein extraction. Al-induced changes in proteomes were identified using tandem mass tags mass spectrometry (TMT-MS)-based quantitative proteomics analysis. A total of 216 proteins (approximately 3.6% of total proteins) showed significant differences between non-Al treated control and treated groups with significant fold change (twice the standard deviation; FDR adjusted p-value < 0.05). The apical root tip tissues expressed more dramatic proteome changes (164 significantly changed proteins; 3.9% of total proteins quantified) compared to the elongation/maturation zones (52 significantly changed proteins, 1.1% of total proteins quantified). Significantly changed proteins from the apical 1-cm root apex tissues were clustered into 25 biological pathways; proteins involved in the cell cycle (rotamase FKBP 1 isoforms, and CDC48 protein) were all at a reduced abundance level compared to the non-treated control group. In the root elongation/maturation zone tissues, the identified proteins were placed into 18 pathways, among which proteins involved in secondary metabolism (lignin biosynthesis) were identified. Several STRING protein interaction networks were developed for these Al-induced significantly changed proteins. This study has identified a large number of Al-responsive proteins, including transcription factors, which will be used for exploring new Al tolerance genes and mechanisms. Data are available via ProteomeXchange with identifiers PXD008882 and PXD009125.
Collapse
|
35
|
Li H, Hu T, Amombo E, Fu J. Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stress. BMC Genomics 2017; 18:145. [PMID: 28183269 PMCID: PMC5301350 DOI: 10.1186/s12864-016-3479-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lead (Pb) is one of the most toxic heavy metal environmental pollutants. Tall fescue is an important cold season turf grass which can tolerate and accumulate substantial amount of Pb. To estimate genes related to Pb response and the molecular mechanism associated with Pb tolerance and accumulation, we analyzed the transcriptome of tall fescue in response to Pb treatment. RESULTS RNA-sequencing was performed in two tall fescue cultivars, Pb tolerant Silverado and Pb sensitive AST7001. A total of 810,146 assembled unique transcripts representing 25,415 unigenes were obtained from the tall fescue leaves. Among the panel, 3,696 differentially expressed genes (DEGs) were detected between the Pb treated (1000 mg/L) and untreated samples. Gene ontology (GO) and pathway enrichment analysis demonstrated that the DEGs were mainly implicated in energy metabolism, metabolism of terpenoids and polyketides, and carbohydrate metabolism related pathways. The expression patterns of 16 randomly selected genes were in consistent with that from the Solexa analysis using quantitative reverse-transcription PCR. In addition, compared to the common transcriptional response to Pb stress in both cultivars, the regulation of numerous genes including those involved in zeatin biosynthesis, limonene and pinene degradation, phagosome was exclusive to one cultivar. CONCLUSIONS The tall fescue assembled transcriptome provided substantial molecular resources for further genomics analysis of turfgrass in response to heavy metal stress. The significant expression difference of specific unigenes may account for Pb tolerance or accumulation in two different tall fescue cultivars. This study provided new insights for the investigation of the molecular basis of Pb tolerance and accumulation in tall fescue as well as other related turf grass species.
Collapse
Affiliation(s)
- Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China.
| |
Collapse
|
36
|
Wang G, Wu L, Zhang H, Wu W, Zhang M, Li X, Wu H. Regulation of the Phenylpropanoid Pathway: A Mechanism of Selenium Tolerance in Peanut (Arachis hypogaea L.) Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3626-35. [PMID: 27089243 DOI: 10.1021/acs.jafc.6b01054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To clarify the mechanisms of selenium (Se) tolerance in peanut seedlings, we grew peanut seedlings with sodium selenite (0, 3, and 6 mg/L), and investigated the phenylpropanoids metabolism in seedling roots. The results showed that selenite up-regulated the expression of genes and related enzyme activities involving in the phenylpropanoids biosynthesis cascade, such as phenylalanine ammonia-lyase, trans-cinnamate-4-hydroxylase, chalcone synthase, chalcone isomerase, and cinnamyl-alcohol dehydrogenase. Selenite significantly increased phenolic acids and flavonoids, which contributed to the alleviation of selenite-induced stress. Moreover, selenite enhanced the formation of endodermis in roots, which may be attributed to the up-regulation of lignin biosynthesis mediated by the selenite-induced changes of H2O2 and NO, which probably regulated the selenite uptake from an external medium. Accumulation of polyphenolic compounds via the phenylpropanoid pathway may be one of the mechanisms of the increasing selenite tolerance in plants, by which peanut seedlings survived in seleniferous soil, accompanied by accumulation of Se.
Collapse
Affiliation(s)
- Guang Wang
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Liying Wu
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Hong Zhang
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Wenjia Wu
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Mengmeng Zhang
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Xiaofeng Li
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
37
|
Zhou D, Yang Y, Zhang J, Jiang F, Craft E, Thannhauser TW, Kochian LV, Liu J. Quantitative iTRAQ Proteomics Revealed Possible Roles for Antioxidant Proteins in Sorghum Aluminum Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:2043. [PMID: 28119720 PMCID: PMC5220100 DOI: 10.3389/fpls.2016.02043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/21/2016] [Indexed: 05/19/2023]
Abstract
Aluminum (Al) toxicity inhibits root growth and limits crop yields on acid soils worldwide. However, quantitative information is scarce on protein expression profiles under Al stress in crops. In this study, we report on the identification of potential Al responsive proteins from root tips of Al sensitive BR007 and Al tolerant SC566 sorghum lines using a strategy employing iTRAQ and 2D-liquid chromatography (LC) coupled to MS/MS (2D-LC-MS/MS). A total of 771 and 329 unique proteins with abundance changes of >1.5 or <0.67-fold were identified in BR007 and SC566, respectively. Protein interaction and pathway analyses indicated that proteins involved in the antioxidant system were more abundant in the tolerant line than in the sensitive one after Al treatment, while opposite trends were observed for proteins involved in lignin biosynthesis. Higher levels of ROS accumulation in root tips of the sensitive line due to decreased activity of antioxidant enzymes could lead to higher lignin production and hyper-accumulation of toxic Al in cell walls. These results indicated that activities of peroxidases and the balance between production and consumption of ROS could be important for Al tolerance and lignin biosynthesis in sorghum.
Collapse
Affiliation(s)
- Dangwei Zhou
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- Center of Plateau Ecology, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Jinbiao Zhang
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fei Jiang
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- Agricultural Biotechnology Center, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Eric Craft
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Theodore W. Thannhauser
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Leon V. Kochian
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Cornell UniversityIthaca, NY, USA
- *Correspondence: Jiping Liu
| |
Collapse
|
38
|
Lijuan C, Huiming G, Yi L, Hongmei C. Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco. PLANT CELL REPORTS 2015; 34:885-94. [PMID: 25632925 DOI: 10.1007/s00299-015-1751-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE EaCHS1 functions in the tolerance of plantlets to salinity stress by maintaining ROS homeostasis. Chalcone synthase (CHS) is an essential enzyme in the biosynthesis of flavonoids. Expression of CHS is governed by a wide range of environmental stimuli, including UV light, pathogen attack, and circadian clocks. However, little research exists on the relationship between CHS and salinity stress. In this work, we constructed separate overexpression and RNA interference vectors of EaCHS1, and transferred them into tobacco. Overexpression of EaCHS1 increased the production of downstream flavonoids and the expressions of related genes in the phenylpropanoid pathway. It also improved resistance to salinity stress during seed germination and root development. In contrast, heterologous silencing of endogenous CHS in tobacco by a conserved EaCHS1 fragment had opposite effect. Together, our results indicated that changing the expression level of EaCHS1 in plants alters the accumulation of flavonoids and regulates plantlet tolerance to salinity stress by maintaining ROS homeostasis.
Collapse
Affiliation(s)
- Chen Lijuan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | |
Collapse
|
39
|
Lee KJ, Park Y, Kim JY, Jeong TK, Yun KS, Paek KY, Park SY. Production of biomass and bioactive compounds from adventitious root cultures of Polygonum multiflorum using air-lift bioreactors. ACTA ACUST UNITED AC 2015. [DOI: 10.5010/jpb.2015.42.1.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|