1
|
Fu K, Hua J, Zhang Y, Du M, Han J, Li N, Wang Q, Yang L, Li R, Zhou B. Integrated Studies on Male Reproductive Toxicity of Bis(2-ethylhexyl)-tetrabromophthalate: in Silico, in Vitro, ex Vivo, and in Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:194-206. [PMID: 38113192 DOI: 10.1021/acs.est.3c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bis(2-ethylhexyl)tetrabromophthalate (TBPH) has been widely detected in the environment and organisms; thus, its toxic effects on male reproduction were systematically studied. First, we found that TBPH can stably bind to the androgen receptor (AR) based on in silico molecular docking results and observed an antagonistic activity, but not agonistic activity, on the AR signaling pathway using a constructed AR-GRIP1 yeast assay. Subsequently, we validated the adverse effects on male germ cells by observing inhibited androgen production and proliferation in Leydig cells upon in vitro exposure and affected general motility and motive tracks of zebrafish sperm upon ex vivo exposure. Finally, the in vivo reproductive toxicity was demonstrated in male zebrafish by reduced mating behavior in F0 generation when paired with unexposed females and abnormal development of their offspring. In addition, reduced sperm motility and impaired germ cells in male zebrafish were also observed, which may be related to the disturbed homeostasis of sex hormones. Notably, the specifically suppressed AR in the brain provides further evidence for the antagonistic effects as above-mentioned. These results confirmed that TBPH affected male reproduction through a classical nuclear receptor-mediated pathway, which would be helpful for assessing the ecological and health risks of TBPH.
Collapse
Affiliation(s)
- Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingpu Du
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ruiwen Li
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Tan J, Li F, Liu L, Zhang J, Gui P, He M, Zhou X. Effect-Targeted Mapping of Potential Estrogenic Agonists and Antagonists in Wastewater via a Conformation-Specific Reporter-Mediated Biosensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15617-15626. [PMID: 37802504 DOI: 10.1021/acs.est.3c03223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Wastewater treatment plants (WWTPs) are regarded as the main sources of estrogens that reach the aquatic environment. Hence, continuous monitoring of potential estrogenic-active compounds by a biosensor is an appealing approach. However, existing biosensors cannot simultaneously distinguish and quantify estrogenic agonists and antagonists. To overcome the challenge, we developed an estrogen receptor-based biosensor that selectively screened estrogenic agonists and antagonists by introducing rationally designed agonist/antagonist conformation-specific reporters. The double functional conformation-specific reporters consist of a Cy5.5-labeled streptavidin moiety and a peptide moiety, serving as signal recognition and signal transduction elements. In addition, the conformation recognition mechanism was further validated at the molecular level through molecular docking. Based on the two-step "turn-off" strategy, the biosensor exhibited remarkable sensitivity, detecting 17β-estradiol-binding activity equivalent (E2-BAE) at 7 ng/L and 4-hydroxytamoxifen-binding activity equivalent (4-OHT-BAE) at 91 ng/L. To validate its practicality, the biosensor was employed in a case study involving wastewater samples from two full-scale WWTPs across different treatment stages to map their estrogenic agonist and antagonist binding activities. Comparison with the yeast two-hybrid bioassay showed a strong liner relationship (r2 = 0.991, p < 0.0001), indicating the excellent accuracy and reliability of this technology in real applications.
Collapse
Affiliation(s)
- Jisui Tan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fangxu Li
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- School of Ecology and Environmental Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Zhang
- Key Laboratory of Water Safety for Beijing-Tianjin-Hebei Region of Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ping Gui
- China Academy of Urban Planning & Design, Beijing 100037, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Elucidation of Agonist and Antagonist Dynamic Binding Patterns in ER-α by Integration of Molecular Docking, Molecular Dynamics Simulations and Quantum Mechanical Calculations. Int J Mol Sci 2021; 22:ijms22179371. [PMID: 34502280 PMCID: PMC8431471 DOI: 10.3390/ijms22179371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17β-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.
Collapse
|
4
|
Shi Y, Liu P, Wu X, Shi H, Huang H, Wang H, Gao S. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics. WATER RESEARCH 2021; 195:116980. [PMID: 33684678 DOI: 10.1016/j.watres.2021.116980] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 05/27/2023]
Abstract
Bisphenol A polycarbonate (BPA-PC) is a kind of widely used engineering plastics. However, excessive usage causes the production of plastic wastes, following property changes of polymers and high risks of released chemicals during outdoor weathering. In this study, we systematically investigated the photoaging behavior of PC microplastics (MPs) in aquatic environment and evaluated the potential risk of released intermediates. Light irradiation along with mechanical abrasion facilitated the fragmentation of PC MPs and stimulated photooxidative modification during 640 h of ultraviolet (UV) exposure. Continuous degradation of the polymer was accompanied with dramatic decline of molecular weight. Also, BPA was released from irradiated PC MPs with a trend of an initial rapid increase followed by a decrease versus the irradiation time, and the maximum concentration of dropped BPA was detected up to 652.80 ± 72.89 μg/g (43.39% and 56.61% respectively in particles and leachates). However, the releasing amount of BPA in the leachate merely occupied 2.7% of the total organic carbon (TOC) leached out, suggesting that a great number of unknown organic products were produced other than BPA. Liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis showed that these organic compounds forming MPs-derived dissolved organic matter (MPs DOM) were partly composed of 4,4'-dihydroxybenzophenone (DHB), p-hydroxybenzoic acid (p-HBA) and methyparaben (MeP), which would also contribute to the estrogenic activity. The degradation pathway of PC MPs was elaborated with the photolysis process of PC dimer and BPA, and the remarkable photoaging of PC MPs was mainly dominated by the generated reactive oxygen species (ROS). The findings of this study indicated that understanding the photoaging process of PC MPs was vital to evaluate their integral cumulative estrogenic activity in aquatic environment, and further highlighted the notable possible risks of plastic leachates to exposed biota.
Collapse
Affiliation(s)
- Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaowei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Hanyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| |
Collapse
|
5
|
Serra H, Scholze M, Altenburger R, Busch W, Budzinski H, Brion F, Aït-Aïssa S. Combined effects of environmental xeno-estrogens within multi-component mixtures: Comparison of in vitro human- and zebrafish-based estrogenicity bioassays. CHEMOSPHERE 2019; 227:334-344. [PMID: 30999174 DOI: 10.1016/j.chemosphere.2019.04.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 05/15/2023]
Abstract
Some recent studies showed that in vitro bioassays based on fish or human estrogen receptor (ER) activation may have distinct responses to environmental samples, highlighting the need to better understand bioassay-specific ER response to environmental mixtures. For this purpose, we investigated a 12-compound mixture in two mixture ratios (M1 and M2) on zebrafish (zf) liver cells stably expressing zfERα (ZELHα cells) or zfERβ2 (ZELHβ2 cells) and on human ER-reporter gene (MELN) cells. The mixture included the well-known ER ligands bisphenol A (BPA) and genistein (GEN), and other compounds representatives of a freshwater background contamination. In this context, the study aimed at assessing the robustness of concentration addition (CA) model and the potential confounding influence of other chemicals by testing subgroups of ER activators, ER inhibitors or ER activators and inhibitors combined. Individual chemical testing showed a higher prevalence of ER inhibitors in zebrafish than human cells (e.g. propiconazole), and some chemicals inhibited zfER but activated hER response (e.g. benzo(a)pyrene, triphenylphosphate). The estrogenic activity of M1 and M2 was well predicted by CA in MELN cells, whereas it was significantly lower than predicted in ZELHβ2 cells, contrasting with the additive effects observed for BPA and GEN binary mixtures. When testing the subgroups of ER activators and inhibitors combined, the deviation from additivity in ZELHβ2 cells was caused by zebrafish-specific inhibiting chemicals. This study provides novel information on the ability of environmental pollutants to interfere with zfER signalling and shows that non-estrogenic chemicals can influence the response to a mixture of xeno-estrogens in a bioassay-specific manner.
Collapse
Affiliation(s)
- Hélène Serra
- Institut National de l'Environnement Industriel et des risques (INERIS), Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France; UMR-CNRS EPOC/LPTC, Université de Bordeaux, Talence, France
| | | | - Rolf Altenburger
- UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Wibke Busch
- UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - François Brion
- Institut National de l'Environnement Industriel et des risques (INERIS), Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des risques (INERIS), Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
6
|
Jia Y, Hammers-Wirtz M, Crawford SE, Chen Q, Seiler TB, Schäffer A, Hollert H. Effect-based and chemical analyses of agonistic and antagonistic endocrine disruptors in multiple matrices of eutrophic freshwaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1096-1104. [PMID: 30266054 DOI: 10.1016/j.scitotenv.2018.09.199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
In the present study, both bioanalytical and instrumental tools were employed to examine the endocrine-disruptive potentials of water samples, cyanobloom samples, and sediment samples collected from in the northern region of Taihu Lake (China) during cyanobloom season. Results from cell-based bioassays suggested the occurrence of estrogenic, anti-estrogenic, anti-androgenic, and anti-glucocorticogenic activities, while no androgenic and glucocorticogenic activities were observed in the collected samples. Using an UPLC-MS/MS system, 29 endocrine disrupting compounds including seven estrogens, seven androgens, six progestogens, and five adrenocortical hormones and four industrial pollutants were simultaneously detected. 17, 20 and 12 chemicals were detected at least in one of the water samples, cyanobloom samples and sediment samples, respectively. Since both agonistic and antagonistic endocrine-disruptive activities were detected in the present study, commonly used receptor-based in vitro bioassays resulted in net effects, suggesting that the hormone receptor agonistic potentials might be underestimated with this practice. The EDCs detected in cyanobloom samples also highlight the necessity to consider the phytoplankton matrix for understanding the mass fluxes of endocrine disruptors in eutrophic freshwaters and to consider it in monitoring strategies.
Collapse
Affiliation(s)
- Yunlu Jia
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany.
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Aachen, Germany
| | - Sarah E Crawford
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Qiqing Chen
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Andreas Schäffer
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, China
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany; Research Institute for Ecosystem Analysis and Assessment - gaiac, Aachen, Germany; Tongji University, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, China; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, China.
| |
Collapse
|
7
|
Yu H, Caldwell DJ, Suri RP. In vitro estrogenic activity of representative endocrine disrupting chemicals mixtures at environmentally relevant concentrations. CHEMOSPHERE 2019; 215:396-403. [PMID: 30336316 DOI: 10.1016/j.chemosphere.2018.10.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure to mixtures of endocrine disrupting compounds (EDCs) has been hypothesized to produce potential synergistic or antagonistic effects that can cause undesired effects that are not reflected by the individual compounds. In this study, the estrogenic activities of 11 EDCs of global environmental concern were systematically investigated using the yeast estrogen screen (YES). The contribution of the individual chemical to the total endocrine activity of environmentally relevant mixtures was evaluated. Compared to 17β-estradiol (E2) as a standard, estrone (E1), estriol (E3), ethinyl estradiol (EE2), bisphenol-A (BPA), and genistein (GEN) showed estrogenic effects, while dibutyl phthalate (DBP), n-butyl benzyl phthalate (BBP), Bis(2-ethylhexyl) phthalate (DEHP), nonyl phenol (NP) and 4-tert-octyl phenol (OP) showed anti-estrogenic effects. The 11 EDCs mixture at a constant environmentally relevant ratio also showed estrogenic activity. The mixtures data were fit to concentration addition (CA), response addition (RA) and interaction (IR) models, respectively. The IR model was not statistically different from the observed value and better predicted results than the CA model for mixtures of all 11 compounds. For the mixtures with the 6 estrogenic compounds only, additive effects were observed, and the data were well predicted by the CA and IR models. Further, in the 11 EDCs mixture the presence of EE2 at an environmentally relevant concentration did not increase the estrogenic activity as compared to a 10 EDCs mixture without EE2.
Collapse
Affiliation(s)
- Hui Yu
- NSF Water & Environmental Technology (WET) Center, Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Daniel J Caldwell
- NSF Water & Environmental Technology (WET) Center, Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA; Johnson & Johnson, Environmental Health, Safety and Sustainability, New Brunswick, NJ, 08901, USA
| | - Rominder P Suri
- NSF Water & Environmental Technology (WET) Center, Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
8
|
Yuan S, Huang C, Ji X, Ma M, Rao K, Wang Z. Prediction of the combined effects of multiple estrogenic chemicals on MCF-7 human breast cancer cells and a preliminary molecular exploration of the estrogenic proliferative effects and related gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:1-9. [PMID: 29783106 DOI: 10.1016/j.ecoenv.2018.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
The environmental risks of environmental estrogens (EEs) are often assessed via the same mode of action in the concentration addition (CA) model, neglecting the complex combined mechanisms at the genetic level. In this study, the cell proliferation effects of estrone, 17α-ethinylestradiol, 17β-estradiol, estriol, diethylstilbestrol, estradiol valerate, bisphenol A, 4-tert-octylphenol and 4-nonylphenol were determined individually using the CCK-8 method, and the proliferation effects of a multicomponent mixture of estrogenic chemicals mixed at equipotent concentrations using a fixed-ratio design were studied using estrogen-sensitive MCF-7 cells. Furthermore, transcription factors related to cell proliferation were analyzed using RT-PCR assays to explore the potential molecular mechanisms related to the estrogenic proliferative effects. The results showed that the estrogenic chemicals act together in an additive mode, and the combined proliferative effects could be predicted more accurately by the response addition model than the CA model with regard to their adverse outcomes. Furthermore, different signaling pathways were involved depending on the different mixtures. The RT-PCR analyses showed that different estrogens have distinct avidities and preferences for different estrogen receptors at the gene level. Furthermore, the results indicated that estrogenic mixtures increased ERα, PIK3CA, GPER, and PTEN levels and reduced Akt1 level to display combined estrogenicity. These findings indicated that the potential combined environmental risks were greater than those found in some specific assessment procedures based on a similar mode of action due to the diversity of environmental pollutions and their multiple unknown modes of action. Thus, more efforts are needed for mode-of-action-driven analyses at the molecular level. Furthermore, to more accurately predict and assess the individual responses in vivo from the cellular effects in vitro, more parameters and correction factors should be taken into consideration in the addition model.
Collapse
Affiliation(s)
- Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|