1
|
Eck-Varanka B, Hubai K, Kováts N, Teke G. Biomonitoring polycyclic aromatic hydrocarbon levels in domestic kitchens using commonly grown culinary herbs. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:295-303. [PMID: 38887758 PMCID: PMC11180055 DOI: 10.1007/s40201-024-00898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/06/2024] [Indexed: 06/20/2024]
Abstract
Cooking is a significant source of polycyclic aromatic hydrocarbon (PAHs) emissions in indoor environments. A one-month biomonitoring study was carried out in previously selected rural Hungarian kitchens to evaluate cooking-related PAHs concentrations in 4 common kitchen vegetables such as basil, parsley, rocket and chives. The study had two mainobjectives: firstly, to follow PAHs accumulation pattern and to find out if this pattern can be associated with different cooking habits. Also, the usefulness of culinary herbs for indoor bioaccumulation studies was assessed. The 2-ring naphthalene was the dominant PAH in the majority of the samples, its concentrations were in the range of 25.4 µg/kg and 274 µg/kg, of 3-ring PAHs the prevalency of phenanthrene was observed, with highest concentration of 62 µg/kg. PAHs accumulation pattern in tested plants clearly indicated differences in cooking methods and cooking oils used in the selected households. Use of lard and animal fats in general resulted in the high concentrations of higher molecular weight (5- and 6-ring) PAHs, while olive oil usage could be associated with the emission of 2- and 3-ring PAHs. Culinary herbs, however, accumulated carcinogenic PAHs such as benzo[a]anthracene (highest concentration 11.9 µg/kg), benzo[b]fluoranthene (highest concentration 13.8 µg/kg) and chrysene (highest concentration 20.1 µg/kg) which might question their safe use.
Collapse
Affiliation(s)
- Bettina Eck-Varanka
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200 Veszprém, Hungary
| | - Katalin Hubai
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200 Veszprém, Hungary
| | - Nora Kováts
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200 Veszprém, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd, 8184 Balatonfűzfő, Hungary
| |
Collapse
|
2
|
Tarigholizadeh S, Sushkova S, Rajput VD, Ranjan A, Arora J, Dudnikova T, Barbashev A, Mandzhieva S, Minkina T, Wong MH. Transfer and Degradation of PAHs in the Soil-Plant System: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:46-64. [PMID: 38108272 DOI: 10.1021/acs.jafc.3c05589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, persistent organic pollutants that threaten ecosystems and human health. Consistent monitoring is essential to minimize the entry of PAHs into plants and reduce food chain contamination. PAHs infiltrate plants through multiple pathways, causing detrimental effects and triggering diverse plant responses, ultimately increasing either toxicity or tolerance. Primary plant detoxification processes include enzymatic transformation, conjugation, and accumulation of contaminants in cell walls/vacuoles. Plants also play a crucial role in stimulating microbial PAHs degradation by producing root exudates, enhancing bioavailability, supplying nutrients, and promoting soil microbial diversity and activity. Thus, synergistic plant-microbe interactions efficiently decrease PAHs uptake by plants and, thereby, their accumulation along the food chain. This review highlights PAHs uptake pathways and their overall fate as contaminants of emerging concern (CEC). Understanding plant uptake mechanisms, responses to contaminants, and interactions with rhizosphere microbiota is vital for addressing PAH pollution in soil and ensuring food safety and quality.
Collapse
Affiliation(s)
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Anuj Ranjan
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida 201301, India
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Andrey Barbashev
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Hong Kong, China; Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
3
|
Panwar R, Mathur J. Comparative analysis of remediation efficiency and ultrastructural translocalization of polycyclic aromatic hydrocarbons in Medicago sativa, Helianthus annuus, and Tagetes erecta. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1743-1761. [PMID: 36935611 DOI: 10.1080/15226514.2023.2189967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile anthropogenic contaminants that can damage soil fertility and threaten the environment due to their hazardous effects on various ecological parameters. The experimental objective was divided into two parts because PAHs are always present in mixtures. The toxicity of anthracene, phenanthrene, pyrene, and fluoranthene was examined and investigated the potential of three phytoremediator plants species viz Tagetes erecta, Helianthus annuus, and Medicago sativa for remediation and translocation of individual PAH. PAHs were shown to have inhibitory or stimulating effects on growth, antioxidant properties, and impact on the structure of plant cells. The result showed that M. sativa significantly enhances the removal rate of PAHs in the soil. The dissipation rate reached 96.2% in M. sativa planted soil, followed by H. annuus and T. erecta. Among the plant species, M. sativa exhibited the highest root and shoot concentrations (314.37 and 169.55 mg kg-1), while the lowest concentration was 187.56 and 76.60 mg kg-1 in T. erecta. SEM-EDX and fluorescence micrographs confirmed that pyrene altered plant tissue's ultrastructure and cell viability and was found to be the most toxic and resistant. M. sativa was proven to be the most effective plant for the mitigation of PAHs.
Collapse
Affiliation(s)
- Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
4
|
Jia M, Zhu SQ, Wang YH, Liu JX, Tan SS, Liu H, Shu S, Tao JP, Xiong AS. Morphological characteristics, anatomical structure, and dynamic change of ascorbic acid under different storage conditions of celery. PROTOPLASMA 2023; 260:21-33. [PMID: 35396652 DOI: 10.1007/s00709-022-01760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Ascorbic acid (AsA) is a crucial antioxidant in vegetables. Celery (Apium graveolens L.) is a vegetable of Apiaceae and is rich in AsA. Till now, the effects of different storage conditions on celery morphological characteristics, anatomical features, and antioxidant accumulation are unclear. Here, the celery cvs. 'Sijixiaoxiangqin' and 'Liuhehuangxinqin' were selected as experimental materials, and the two celery plants grown for 65 days were harvested from soils and stored in light at room temperature (25 °C), darkness at low temperature (4 °C), and darkness at room temperature (25 °C) for 0, 6, 24, 30, 48, and 54 h, respectively. The results showed that celery in darkness had better water retention capacity than celery in light. Morphological changes in celery mesophyll, leaf veins, and petioles were the least in darkness at low temperature (4 °C). The weight loss rate and wilting degree in darkness at low temperature (4 °C) were the lowest, and the AsA content remained at a high level. The expression patterns of GDP-D-mannose pyrophosphorylase (AgGMP) and L-galactose dehydrogenase (AgGalDH) were similar to the change of AsA content. The results indicated that low temperature and dark was the optimized storage condition for 'Sijixiaoxiangqin' and 'Liuhehuangxinqin' celery. AgGMP and AgGalDH genes may play an important role in the accumulation of AsA in celery. This paper will provide potential references for prolonging the shelf life of celery and other horticultural crops.
Collapse
Affiliation(s)
- Min Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sheng-Qi Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shan-Shan Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sheng Shu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Suqian Academy of Protected Horticultures, Suqian, 223800, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
5
|
Hubai K, Kováts N, Sainnokhoi TA, Eck-Varanka B, Hoffer A, Tóth Á, Teke G. Phytotoxicity of particulate matter from controlled burning of different plastic waste types. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:852-858. [PMID: 35908223 PMCID: PMC9636295 DOI: 10.1007/s00128-022-03581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
According to careful estimations, open burning of plastic waste affects app. 2 billion people worldwide. While human health risks have become more and more obvious, much less information is available on the phytotoxicity of these emissions. In our study phytotoxicity of particulate matter samples generated during controlled combustion of different plastic waste types such as polyvinyl chloride (PVC), polyurethane (PUR), polypropylene (PP), polystyrene (PS) and polyethylene (PE) was evaluated based on peroxidase levels. While different samples showed different concentration-effect relationship patterns, higher concentration(s) caused decreased peroxidase activities in each sample indicating serious damage.
Collapse
Affiliation(s)
- Katalin Hubai
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Nora Kováts
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary.
- , 8200 Veszprém Egyetem Str. 10, Veszpr?m, Hungary.
| | - Tsend-Ayush Sainnokhoi
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Bettina Eck-Varanka
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - András Hoffer
- University of Pannonia, MTA-PE Air Chemistry Research Group, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Ádám Tóth
- University of Pannonia, MTA-PE Air Chemistry Research Group, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd, 8184, Balatonfűzfő, Hungary
| |
Collapse
|
6
|
Neves DA, Oliveira WDS, Petrarca MH, Rodrigues MI, Godoy HT. A multivariate approach to overcome chlorophyll interferences in the determination of polycyclic aromatic hydrocarbons in jambu (Acmella olerarea (L.) R.K. Jansen). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kováts N, Hubai K, Diósi D, Hoffer A, Teke G. Foliar Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons from Diesel Emissions. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1977347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nora Kováts
- Institute of Environmental Sciences, University of Pannonia, Veszprem, Hungary
| | - Katalin Hubai
- Institute of Environmental Sciences, University of Pannonia, Veszprem, Hungary
| | - Dorina Diósi
- Institute of Environmental Sciences, University of Pannonia, Veszprem, Hungary
| | - András Hoffer
- Institute of Environmental Sciences, University of Pannonia, Veszprem, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., Balatonfuzfo, Hungary
| |
Collapse
|
8
|
Mukhopadhyay S, Dutta R, Das P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. CHEMOSPHERE 2020; 251:126441. [PMID: 32443242 DOI: 10.1016/j.chemosphere.2020.126441] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons having two or more fused aromatic rings, released from natural (like forest fires and volcanic eruption) as well as man-made sources (like burning of fossil fuel & wood, automobile emission). They are persistent priority pollutants and continue to last for a long time in the environment causing severe damage to human health owing to their genotoxicity, mutagenicity and carcinogenicity. The study of PAHs in environment has therefore aroused a global concern. PAHs adsorption to plant cell wall is facilitated by transpiration and plant root lipids which help PAHs transfer from roots to leaves and stalks, causing more accumulation of contaminants with the increase in lipid content. Hence, these bioaccumulators can be utilized as biomonitors for indirect assessment of ambient air pollution. Efficacy of specific plants, lichens and mosses as useful biomonitors of airborne PAHs pollution has been discussed in this review along with prevalent classical and modified extraction techniques coupled with proper analytical procedures in order to gain an insight into the assessment of atmospheric PAHs concentrations. Different modern and modified solvent extraction techniques along with conventional Soxhlet method are identified for extraction of PAHs from accumulative bioindicators and analytical methods are also developed for accurate determination of PAHs. Process parameters like choice of solvent, temperature, time of extraction, pressure and matrix characteristics are usually checked. An approach of biomonitoring of PAHs using plants, lichens and mosses has been discussed here as they usually trap the atmospheric PAHs and mineralize them.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
9
|
Shen Y, Li J, He F, Zhu J, Han Q, Zhan X, Xing B. Phenanthrene-triggered tricarboxylic acid cycle response in wheat leaf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:107-112. [PMID: 30772538 DOI: 10.1016/j.scitotenv.2019.02.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 05/28/2023]
Abstract
Tricarboxylic acid cycle (TCA cycle) is the most effective energy metabolism pathway in higher plants and animals. However, there is no information about its response in plants under environmental stress, especially under polycyclic aromatic hydrocarbons (PAHs) pollution. Here, this study is the first to discuss the intermediate and related enzyme changes in TCA cycle in plants. We applied high performance liquid chromatography (HPLC) and isobaric tags for relative and absolute quantitation (iTRAQ) proteomics to analyze the intermediate concentration and related protein response in wheat leaf cells, respectively. The concentrations of citrate and malate (0.37 and 0.57 mg kg-1) in the treatment with 1.0 mg L-1 phenanthrene were higher than those in the control, and the concentrations of the other five intermediates (i.e., α-ketoglutarate, fumarate, oxaloacetate, pyruvate and succinate) in the treatment were lower than those in the control. Three detected proteins (pyruvate dehydrogenase, dihydrolipoyllysine-residue succinyltransferase and fumarate hydratase) involved in TCA cycle were up-regulated when phenanthrene was accumulated in wheat leaf cells. Meanwhile, real-time PCR results of seven key TCA cycle enzymes genes further confirmed the aforementioned enzyme results. The gene expressions of ketoglutarate dehydrogenase, fumarase and pyruvate dehydrogenase were promoted when phenanthrene was accumulated, while the other four genes were suppressed. In general, pyruvate decrease is the key reason for TCA cycle inactivation under exposure to phenanthrene. Meanwhile, malate concentration increases significantly (P < 0.05), and all the three conversion enzymes turn active. Our results offer helpful information for understanding TCA cycle energy metabolism response to PAH exposure.
Collapse
Affiliation(s)
- Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA; College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Fang He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Qian Han
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Kováts N, Horváth E, Eck-Varanka B, Csajbók E, Hoffer A. Adapting the Vegetative Vigour Terrestrial Plant Test for assessing ecotoxicity of aerosol samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15291-15298. [PMID: 28502046 DOI: 10.1007/s11356-017-9103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/24/2017] [Indexed: 05/26/2023]
Abstract
Plants, being recognized to show high sensitivity to air pollution, have been long used to assess the ecological effects of airborne contaminants. However, many changes in vegetation are now generally attributed to atmospheric deposition of aerosol particles; the dose-effect relationships of this process are usually poorly known. In contrast to bioindication studies, ecotoxicological tests (or bioassays) are controlled and reproducible where ecological responses are determined quantitatively. In our study, the No. 227 OECD Guideline for the Testing of Chemicals: Terrestrial Plant Test: Vegetative Vigour Test (hereinafter referred to as 'Guideline') was adapted and its applicability for assessing the ecotoxicity of water-soluble aerosol compounds of aerosol samples was evaluated. In the aqueous extract of the sample, concentration of metals, benzenes, aliphatic hydrocarbons and PAHs was determined analytically. Cucumis sativus L. plants were sprayed with the aqueous extract of urban aerosol samples collected in a winter sampling campaign in Budapest. After the termination of the test, on day 22, the following endpoints were measured: fresh weight, shoot length and visible symptoms. The higher concentrations applied caused leaf necrosis due to toxic compounds found in the extract. On the other hand, the extract elucidated stimulatory effect at low concentration on both fresh weight and shoot length. The test protocol, based on the Guideline, seems sensitive enough to assess the phytotoxicity of aqueous extract of aerosol and to establish clear cause-effect relationship.
Collapse
Affiliation(s)
- Nora Kováts
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
| | - Eszter Horváth
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Bettina Eck-Varanka
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Eszter Csajbók
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - András Hoffer
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| |
Collapse
|
11
|
Goswami L, Arul Manikandan N, Pakshirajan K, Pugazhenthi G. Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 2017; 7:37. [PMID: 28439813 PMCID: PMC5403768 DOI: 10.1007/s13205-016-0597-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/23/2016] [Indexed: 11/30/2022] Open
Abstract
This study investigated simultaneous heavy metals removal and anthracene biodegradation by Rhodococcus opacus at different initial anthracene concentrations in the range 50–200 mg L−1. The heavy metals tested were Fe(III), Cu(II), Zn(II), Cd(II), Ni(II), and Pb(II) at 10 mg L−1 initial concentration: The organism was found to be well capable of removing the heavy metals along with high anthracene biodegradation efficiency. However, anthracene biodegradation rate by the organism was reduced due to these heavy metals. In addition, the heavy metals effect on R. opacus biomass growth followed the order: Cd > Ni > Pb > Cu > Zn > Fe. The total time to anthracene biodegradation increased from 144 to 216 h in the presence of Fe, Zn, Cu, or Pb, and it was up to 240 h in the presence of Cd or Ni. Compared with 70.2% (w/w) lipid accumulation by the bacterium in the absence of these heavy metals, a significant decline in the same was observed in the presence of the different heavy metals. These values were 41.2, 44.1, 52.1, 54.1, 58.6, and 63.1% (w/w) for Cd, Ni, Pb, Cu, Zn, and Fe, respectively. Field emission scanning electron microscopy integrated with energy dispersive X-ray spectroscopy and transmission electron microscopy of the biomass grown in the presence and absence of these heavy metals further confirmed a change in morphology of the bacterium due to the heavy metals. Fourier transmission infrared spectroscopy spectra of the biomass obtained during its growth in the presence and absence of the heavy metals confirmed the involvement of N–H, C–H bend, –CH2–(C=O), C–N stretch, C–H and O–H bending, and –C–Cl groups on the biomass for heavy metal uptake by the bacterium.
Collapse
Affiliation(s)
- Lalit Goswami
- Center for the Environment, Indian Institute Technology Guwahati, Guwahati, Assam, 781039, India
| | - N Arul Manikandan
- Department of Chemical Engineering, Indian Institute Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kannan Pakshirajan
- Center for the Environment, Indian Institute Technology Guwahati, Guwahati, Assam, 781039, India.
- Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati, Assam, 781039, India.
| | - G Pugazhenthi
- Center for the Environment, Indian Institute Technology Guwahati, Guwahati, Assam, 781039, India
- Department of Chemical Engineering, Indian Institute Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
12
|
Goswami L, Kumar RV, Arul Manikandan N, Pakshirajan K, Pugazhenthi G. Anthracene Biodegradation by Oleaginous Rhodococcus opacus for Biodiesel Production and Its Characterization. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1302971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lalit Goswami
- Center for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - R. Vinoth Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - N. Arul Manikandan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kannan Pakshirajan
- Center for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - G. Pugazhenthi
- Center for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
13
|
Marszałek K, Krzyżanowska J, Woźniak Ł, Skąpska S. Kinetic modelling of tissue enzymes inactivation and degradation of pigments and polyphenols in cloudy carrot and celery juices under supercritical carbon dioxide. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Gworek B, Klimczak K, Kijeńska M, Gozdowski D. Comparison of PAHs uptake by selected Monocotyledones and Dicotyledones from municipal and industrial sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19461-70. [PMID: 27381356 PMCID: PMC5031754 DOI: 10.1007/s11356-016-7130-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/20/2016] [Indexed: 06/01/2023]
Abstract
The study was focused on two goals: (i) the confirmation of the existence of a general relation between the content of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and in plants growing in it, regardless of the type and content of sewage sludge, and (ii) if so, the answer to the question whether the uptake of PAHs by plants depends on their type. To realize the set aims, the contents of PAHs in four differentiated plant species were measured, two belonging to the Monocotyledones and two belonging to Dicotyledones group, growing in municipal and industrial sewage sludge in two locations. All the investigations were carried out during the period of 3 years. The results clearly demonstrated that the uptake of PAHs by a plant depended on polyaromatic hydrocarbon concentration in the sewage sludge. The relation between accumulation coefficient of PAHs in plant material vs. the content of PAH in sewage sludge was of exponential character. The results indicate that in case of four- and five-ring PAHs, the root uptake mechanism from soil solution occurs, regardless of the type and origin of sewage sludge and the type of plant. For three-ring PAHs, we can assume for Monocotyledones that the root uptake mechanism occurs because we observe a significant correlation between the content of fluorene, phenanthrene, and anthracene in plant material and in the sewage sludge. For Dicotyledones, the correlation is insignificant, and in this case probably two mechanisms occur-the uptake by roots and by leaves.
Collapse
Affiliation(s)
- Barbara Gworek
- National Research Institute, Institute of Environmental Protection, Krucza 5/11 d, Warsaw, Poland
| | - Katarzyna Klimczak
- Department of Soil Environment Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, Poland
| | - Marta Kijeńska
- National Research Institute, Institute of Environmental Protection, Krucza 5/11 d, Warsaw, Poland.
| | - Dariusz Gozdowski
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, Poland
| |
Collapse
|
15
|
Huang W, Wang GL, Li H, Wang F, Xu ZS, Xiong AS. Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery. Mol Genet Genomics 2016; 291:2131-2143. [PMID: 27604234 DOI: 10.1007/s00438-016-1247-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Ascorbic acid (AsA) is an important nutrient in the human body and performs various healthy functions. With considerable medicinal properties, celery (Apium graveolens L.) could be a good source of AsA for human health. However, the biosynthetic, recycling, and degradation pathways of AsA in celery have yet to be characterized. To study the metabolic pathways involved in AsA, the genes involved in AsA biosynthesis, recycling, and degradation were isolated from celery, and their expression profiles and AsA levels were analyzed in the leaf blades and petioles of two celery varieties at three different growth stages. AsA levels were higher in 'Ventura' compared with 'Liuhehuangxinqin' in both tissues possibly because of different transcription levels of genes, such as L-galactose dehydrogenase (GalDH), L-galactono-1,4-lactone dehydrogenase (GalLDH), and glutathione reductase (GR). Results revealed that the D-mannose/L-galactose pathway may be the predominant pathway in celery, and the D-galacturonic acid pathway appeared to contribute largely to AsA accumulation in petioles than in leaf blades in 'Liuhehuangxinqin.' AsA contents are regulated by complex regulatory mechanisms and vary at different growth stages, tissues, and varieties in celery. The results provide novel insights into AsA metabolic pathways in leaf during celery growth and development.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|