1
|
Zhang Q, Zhao Z, Wu Z, Niu X, Zhang Y, Wang Q, Ho SSH, Li Z, Shen Z. Toxicity source apportionment of fugitive dust PM 2.5-bound polycyclic aromatic hydrocarbons using multilayer perceptron neural network analysis in Guanzhong Plain urban agglomeration, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133773. [PMID: 38382337 DOI: 10.1016/j.jhazmat.2024.133773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in urban fugitive dust, known for their toxicity and ability to generate reactive oxygen species (ROS), are a major public health concern. This study assessed the spatial distribution and health risks of 15 PAHs in construction dust (CD) and road dust (RD) samples collected from June to November 2021 over the cities of Tongchuan (TC), Baoji (BJ), Xianyang (XY), and Xi'an (XA) in the Guanzhong Plain, China. The average concentration of ΣPAHs in RD was 39.5 ± 20.0 μg g-1, approximately twice as much as in CD. Four-ring PAHs from fossil fuels combustion accounted for the highest proportion of ΣPAHs in fugitive dust over all four cities. Health-related indicators including benzo(a)pyrene toxic equivalency factors (BAPTEQ), oxidative potential (OP), and incremental lifetime cancer risk (ILCR) all presented higher risk in RD than those in CD. The multilayer perceptron neural network algorithm quantified that vehicular and industrial emissions contributed 86 % and 61 % to RD and CD BAPTEQ, respectively. For OP, the sources of biomass and coal combustion were the key generator which accounted for 31-54 %. These findings provide scientific evidence for the direct efforts toward decreasing the health risks of fugitive dust in Guanzhong Plain urban agglomeration, China.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Ziyi Zhao
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhichun Wu
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinyi Niu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuhang Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno NV89512, United States
| | - Zhihua Li
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
3
|
Nie B, Liu X, Lei C, Liang X, Zhang D, Zhang J. The role of lysosomes in airborne particulate matter-induced pulmonary toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170893. [PMID: 38342450 DOI: 10.1016/j.scitotenv.2024.170893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
An investigation of the potential role of lysosomes in airborne particulate matter (APM) induced health risks is essential to fully comprehend the pathogenic mechanisms of respiratory diseases. It is commonly accepted that APM-induced lung injury is caused by oxidative stress, inflammatory responses, and DNA damage. In addition, there exists abundant evidence that changes in lysosomal function are essential for cellular adaptation to a variety of particulate stimuli. This review emphasizes that disruption of the lysosomal structure/function is a key step in the cellular metabolic imbalance induced by APMs. After being ingested by cells, most particles are localized within lysosomes. Thus, lysosomes become the primary locus where APMs accumulate, and here they undergo degradation and release toxic components. Recent studies have provided incontrovertible evidence that a wide variety of APMs interfere with the normal function of lysosomes. After being stimulated by APMs, lysosome rupture leads to a loss of lysosomal acidic conditions and the inactivation of proteolytic enzymes, promoting an inflammatory response by activating the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Moreover, APMs interfere with autophagosome production or block autophagic flux, resulting in autophagy dysfunction. Additionally, APMs disrupt the normal function of lysosomes in iron metabolism, leading to disruption on iron homeostasis. Therefore, understanding the impacts of APM exposure from the perspective of lysosomes will provide new insights into the detrimental consequences of air pollution.
Collapse
Affiliation(s)
- Bingxue Nie
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chengying Lei
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xue Liang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Daoqiang Zhang
- Weihai Central Hospital Central Laboratory, Weihai 264400, Shandong, China.
| | - Jie Zhang
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
4
|
Lopez AM, Pacheco JL, Fendorf S. Metal toxin threat in wildland fires determined by geology and fire severity. Nat Commun 2023; 14:8007. [PMID: 38086795 PMCID: PMC10716285 DOI: 10.1038/s41467-023-43101-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Accentuated by climate change, catastrophic wildfires are a growing, distributed global public health risk from inhalation of smoke and dust. Underrecognized, however, are the health threats arising from fire-altered toxic metals natural to soils and plants. Here, we demonstrate that high temperatures during California wildfires catalyzed widespread transformation of chromium to its carcinogenic form in soil and ash, as hexavalent chromium, particularly in areas with metal-rich geologies (e.g., serpentinite). In wildfire ash, we observed dangerous levels (327-13,100 µg kg-1) of reactive hexavalent chromium in wind-dispersible particulates. Relatively dry post-fire weather contributed to the persistence of elevated hexavalent chromium in surficial soil layers for up to ten months post-fire. The geographic distribution of metal-rich soils and fire incidents illustrate the broad global threat of wildfire smoke- and dust-born metals to populations. Our findings provide new insights into why wildfire smoke exposure appears to be more hazardous to humans than pollution from other sources.
Collapse
Affiliation(s)
- Alandra Marie Lopez
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Juan Lezama Pacheco
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Scott Fendorf
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Wang W, Luo Z, Liu X, Dai Y, Hu G, Zhao J, Yue T. Heterogeneous aggregation of carbon and silicon nanoparticles with benzo[a]pyrene modulates their impacts on the pulmonary surfactant film. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132340. [PMID: 37597387 DOI: 10.1016/j.jhazmat.2023.132340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Inhaled nanoparticles (NPs) can deposit in alveoli where they interact with the pulmonary surfactant (PS) and potentially induce toxicity. Although nano-bio interactions are influenced by the physicochemical properties of NPs, isolated NPs used in previous studies cannot accurately represent those found in atmosphere. Here we used molecular dynamics simulations to investigate the interplay between two types of NPs associated with benzo[a]pyrene (BaP) at the PS film. Silicon NPs (SiNPs), regardless of aggregation and adsorption, directly penetrated through the PS film with minimal disturbance. Meanwhile, BaPs adsorbed on SiNPs were rapidly solubilized by PS, increasing the BaP's bioaccessibility in alveoli. Carbon NPs (CNPs) showed aggregation and adsorption-dependent effects on the PS film. Compared to isolated CNPs, which extracted PS to form biomolecular coronas, aggregated CNPs caused more pronounced PS disruption, especially around irregularly shaped edges. SiNPs in mixture exacerbated the PS perturbation by piercing PS film around the site of CNP interactions. BaPs adsorbed on CNPs were less solubilized and suppressed PS extraction, but aggravated biophysical inhibition by prompting film collapse under compression. These results suggest that for proper assessment of inhalation toxicity of airborne NPs, it is imperative to consider their heterogeneous aggregation and adsorption of pollutants under atmospheric conditions.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhen Luo
- Department of Engineering Mechanics, State of Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State of Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhou D, Chang W, Qi J, Chen G, Li N. Lung protective effects of dietary malate esters derivatives from Bletilla striata against SiO 2 nanoparticles through activation of Nrf2 pathway. CHINESE HERBAL MEDICINES 2023; 15:76-85. [PMID: 36875434 PMCID: PMC9975635 DOI: 10.1016/j.chmed.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To study the protective activities of the dietary malate esters derivatives of Bletilla striata against SiO2 nanoparticles-induced A549 cell lines and its mechanism action. Methods The components were isolated and elucidated by spectroscopic methods such as 1D NMR and 2D NMR. And MTT assays was used to tested these components on the A549 cell survival rates and ROS or proteins levels were detected by Western blotting. Results A new glucosyloxybenzyl 2-isobutylmalate (a malate ester derivative), along with 31 known compounds were isolated and identified from n-BuOH extract of EtOH extract of B. striata. Among them, compounds 3, 4, 11, 12 and 13 possessed noteworthy proliferative effects for damaged cells, with ED50 of 14.0, 13.1, 3.7, 11.6 and 11.5 µmol/L, respectively, compared to positive control resveratrol (ED50, 14.7 µmol/L). Militarine (8) prominently inhibited the intracellular ROS level, and increased the expression of Nrf2 and its downstream genes (HO-1 and γ-GCSc). Furthermore, Nrf2 activation mediates the interventional effects of compound 8 against SiO2 nanoparticles (nm SiO2)-induced lung injury. Moreover, treatment with compound 8 significantly reduced lung inflammation and oxidative stress in nm SiO2-instilled mice. Molecular docking experiment suggested that 8 bound stably to the HO-1 protein by hydrogen bond interactions. Conclusion The dietary malate esters derivatives of B. striata could significantly increase the viability of nm SiO2-induced A549 cells and decrease the finer particles-induced cell damages. Militarine is especially promising compound for chemoprevention of lung cancer induced by nm SiO2 through activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Di Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenhui Chang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Qi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Wang Q, Liu S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:493-506. [PMID: 37056681 PMCID: PMC10086390 DOI: 10.2147/copd.s402122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous disease, is the leading cause of death worldwide. In recent years, air pollution, especially particulate matter (PM), has been widely studied as a contributing factor to COPD. As an essential component of PM, PM2.5 is associated with COPD prevalence, morbidity, and acute exacerbations. However, the specific pathogenic mechanisms were still unclear and deserve further research. The diversity and complexity of PM2.5 components make it challenging to get its accurate effects and mechanisms for COPD. It has been determined that the most toxic PM2.5 components are metals, polycyclic aromatic hydrocarbons (PAHs), carbonaceous particles (CPs), and other organic compounds. PM2.5-induced cytokine release and oxidative stress are the main mechanisms reported leading to COPD. Nonnegligibly, the microorganism in PM 2.5 may directly cause mononuclear inflammation or break the microorganism balance contributing to the development and exacerbation of COPD. This review focuses on the pathophysiology and consequences of PM2.5 and its components on COPD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
- Correspondence: Sha Liu, Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, 35 Jiefang Avenue, Zhengxiang District, Hengyang, Hunan, 421001, People’s Republic of China, Email
| |
Collapse
|
8
|
Lei Y, Wang Z, Xu H, Feng R, Zhang N, Zhang Y, Du W, Zhang Q, Wang Q, Li L, Qu L, Hang Ho SS, Shen Z, Cao J. Characteristics and health risks of parent, alkylated, and oxygenated PAHs and their contributions to reactive oxygen species from PM 2.5 vehicular emissions in the longest tunnel in downtown Xi'an, China. ENVIRONMENTAL RESEARCH 2022; 212:113357. [PMID: 35580669 DOI: 10.1016/j.envres.2022.113357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A vehicular emission study was conducted in the longest inner-city tunnel in Xi'an, northwestern China in four time periods (I: 07:30-10:30, II: 11:00-14:00, III: 16:30-19:30, and IV: 20:00-23:00 LST). A sum of 40 PAHs, including parent (p-PAHs), alkylated (a-PAHs), and oxygenated (o-PAHs) in fine particulate matter (PM2.5) were quantified. The relationships between the PAHs and the formation of reactive oxygen species (ROS) were also studied. The average total quantified PAHs concentration was 236.3 ± 48.3 ng m-3. The p-PAHs were found to be the most dominated group, accounting for an average of 88.1% of the total quantified PAHs, followed by a-PAHs (6.1%) and o-PAHs (5.8%). On the base of the number of aromatic rings, the groups of ≤5 rings (92.5 ± 1.2%) had higher fractions than the high ones (≥6 rings, 7.5 ± 1.2%) for pPAHs. Diurnal variations of PAHs subgroups exhibited the highest levels in Period III, consistent with the largest traffic counts in evening rush hours. However, less reduction of few PAHs in the night period demonstrates that the emissions of compressed natural gas (CNG) and methanol-fueled vehicles cannot be ignored while their contribution increased. High ROS activity levels were observed in the traffic-dominated samples, implying the potential oxidative damages to humans. Additionally, diurnal variation of the ROS activity was consistent with the total quantified PAHs and toxic equivalency of benzo[a]pyrene. Good correlations (R > 0.6, p < 0.05) were seen between individual groups of PAHs (especially for 3-5 rings p-PAHs, 4 rings a-PAHs, and 2-3 rings o-PAHs) and ROS activity, supporting that the vehicular emitted PAHs possibly initiate oxidative stress. The multiple linear regression analysis further illustrated that chrysene contributed the highest (25.0%) to ROS activity. In addition to highlighting the potential hazards to the PAHs from the vehicular emission, their roles to mitigate the health effects by formations of ROS were firstly reported in northwestern China.
Collapse
Affiliation(s)
- Yali Lei
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Zexuan Wang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China.
| | - Rong Feng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ningning Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Yue Zhang
- Henan Research Academy of Ecological and Environmental Sciences, Zhengzhou, 450003, China
| | - Wei Du
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Lijuan Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong SAR, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, United States
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| |
Collapse
|
9
|
Niu X, Wang Y, Chuang HC, Shen Z, Sun J, Cao J, Ho KF. Real-time chemical composition of ambient fine aerosols and related cytotoxic effects in human lung epithelial cells in an urban area. ENVIRONMENTAL RESEARCH 2022; 209:112792. [PMID: 35093308 DOI: 10.1016/j.envres.2022.112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter with aerodynamic diameters ≤1 μm (PM1) in the atmosphere, especially that which is emitted from anthropogenic sources, can induce considerable negative effects on the cardiopulmonary system. To investigate the chemical emission characteristics and organic sources in Yuen Long (Hong Kong), both offline and online approaches for PM1 samples were applied by filter-based samplers and a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), respectively. The toxicological effects on human A549 lung alveolar epithelial cells were investigated, and associations between cytotoxicity and organic sources and compositions were evaluated. The organics from the Q-ACSM measurement were the largest contributor to submicron aerosols in both seasons of our study, and the mass fraction was higher in winter (60%) than it was in autumn (46%). Regarding organic sources, the mass fraction of hydrocarbon-like organics (HOA) increased from 7% in autumn to 38% in winter, whereas cooking organics (COA) decreased from 30% in autumn to 18% in winter, and oxygenated organics (OOA) decreased from 63% to 45%. Organic compounds contributed more during pollution episodes, and more secondary ions were formed by means of the oxidation process. Oxidative and inflammatory responses in A549 cells were found with PM1 exposures; the differences in chemical compositions resulted in the higher cytotoxicity in winter than autumn. The cooking organic aerosol in residential area was significantly correlated with cell inflammation. Both elemental carbon and specific inorganic ions (SO42- and Mg2+) contributed to the intracellular cytotoxicity. This study demonstrated that specific atmospheric particulate matter chemical properties and sources can trigger distinct cell reactions; the inorganic ions from cooking emissions cannot be disregarded in terms of their pulmonary health risks in residential areas.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yichen Wang
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Lee SH, Ha SM, Jeong MJ, Park DJ, Polo CN, Seo YJ, Kim SH. Effects of reactive oxygen species generation induced by Wonju City particulate matter on mitochondrial dysfunction in human middle ear cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49244-49257. [PMID: 33932209 DOI: 10.1007/s11356-021-14216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric particulate matter (PM) contains different components that can elicit varying adverse health effects in humans and animals. Studies on PM toxicity and its underlying mechanisms in the middle ear are limited, and they generally use a PM standard. However, as PM composition varies temporally and geographically, it is crucial to identify the toxic PM constituents according to season and region and investigate their associated health effects. Thus, we sought to determine whether PM induces cytotoxicity and inflammatory factor and reactive oxygen species (ROS) generation in human middle ear epithelial cells obtained from patients with otitis media. The cells were treated with both standard urban PM and PM directly captured from the atmosphere in Wonju City. The association between mitochondrial dysfunction and PM was investigated. PM exposure significantly increased COX-2 and TNF-α mRNA expression, increased ROS generation, induced inflammatory responses, and caused abnormalities in mitochondrial motility and function. Furthermore, PM induced cell apoptosis, which consequently reduced cell survival, particularly at the concentration of 100 μg/mL. Overall, our study provides new insights into the toxic effects of standard and atmospheric PM on middle ear cell line.
Collapse
Affiliation(s)
- Su Hoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Sun Mok Ha
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Min Jae Jeong
- Department of Environmental Engineering, College of Public Health, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Carlos Noriega Polo
- College of Medicine, Universitat de València, Av. de Blasco Ibáñez, 13, 46010, València, Valencia, Spain
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea.
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea.
| | - Seong Heon Kim
- Department of Environmental Engineering, College of Public Health, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea.
| |
Collapse
|
11
|
Liu F, Wang Z, Wei Y, Liu R, Jiang C, Gong C, Liu Y, Yan B. The leading role of adsorbed lead in PM 2.5-induced hippocampal neuronal apoptosis and synaptic damage. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125867. [PMID: 34492814 DOI: 10.1016/j.jhazmat.2021.125867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Neurodegenerative diseases may be caused by air pollution, such as PM2.5. However, particles still need to be elucidated the mechanism of synergistic neurotoxicity induced by pollutant-loading PM2.5. In this study, we used a reductionist approach to study leading role of lead (Pb) in PM2.5-induced hippocampal neuronal apoptosis and synaptic damage both in vivo and in vitro. Pb in PM2.5 caused neurotoxicity: 1) by increasing ROS levels and thus causing apoptosis in neuronal cells and 2) by decreasing the expression of PSD95 via interfering with the calcium signaling pathway through cAMP/CREB/pCREB/BDNF/PSD95 pathway and reducing the synapse length by 50%. This study clarifies a key factor in PM2.5-induced neurotoxicity and provides the experimental basis for reducing PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengjin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongyi Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rongrong Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chen Gong
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Liu G, Yan X, Wang S, Yu Q, Jia J, Yan B. Elucidation of the Critical Role of Core Materials in PM 2.5-Induced Cytotoxicity by Interrogating Silica- and Carbon-Based Model PM 2.5 Particle Libraries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6128-6139. [PMID: 33825456 DOI: 10.1021/acs.est.1c00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An insoluble core with adsorbed pollutants constitutes the most toxic part of PM2.5 particles. However, the toxicological difference between carbon and silica cores remains unknown. Here, we employed 32-membered carbon- and silica-based model PM2.5 libraries that each was loaded with four toxic airborne pollutants including Cr(VI), As(III), Pb2+, and BaP in all possible combinations to explore their contributions to cytotoxicity in normal human bronchial cells. The following three crucial findings were revealed: (1) more adsorption of polar pollutants in a silica core (such as Cr(VI), As(III), and Pb2+) and nonpolar ones in a carbon core (such as BaP); (2) about 41% more cell uptake of carbon- than silica-based particles; and (3) about 59% less toxicity in silica- than carbon-based particles when pollutants other than Cr(VI) were loaded. This was reversed after Cr(VI) loading (silica particles were 56% more toxic). The difference maker is that compared to stable silica, carbon particles reduce Cr(VI) to less toxic Cr(III). Our findings highlight the different roles of carbon and silica cores in inducing health risks of PM2.5 particles.
Collapse
Affiliation(s)
- Guohong Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shenqing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qianhui Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Kolpakova AF, Sharipov RN, Volkova OA, Kolpakov FA. Role of air pollution by particulate matter in the pathogenesis of cardiovascular diseases. Prevention measures. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The review highlights contemporary concepts about the role of atmospheric air pollution by particulate matter (PM) in pathogenesis of cardiovascular diseases (CVD). We used publications from the PubMed and Russian Science Citation Index databases. The influence of PM on the development and progression of CVD is considered depending on size, origin, chemical composition, concentration in air. PM with an aerodynamic diameter of ≤2,5 μm (PM2,5) are recognized as the most dangerous. Epidemiological studies have established a dose-dependent effect PM. Oxidative stress, damage of genome of cell and epigenetic changes associated with PM effect are the important component of CVD pathogenesis. Systematization of scientific data through a formalized description helps to understand the pathogenesis of CVD and facilitates its practical use for assessing the risk of occurrence, early diagnosing, prognostication, increasing the effectiveness of treatment, and developing preventive measures.
Collapse
Affiliation(s)
- A. F. Kolpakova
- Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences
| | | | - O. A. Volkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - F. A. Kolpakov
- Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences;
LLC BIOSOFT.RU
| |
Collapse
|
14
|
He W, Peng H, Ma J, Wang Q, Li A, Zhang J, Kong H, Li Q, Sun Y, Zhu Y. Autophagy changes in lung tissues of mice at 30 days after carbon black-metal ion co-exposure. Cell Prolif 2020; 53:e12813. [PMID: 32515860 PMCID: PMC7377941 DOI: 10.1111/cpr.12813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Accumulating studies have investigated the PM2.5-induced pulmonary toxicity, while gaps still remain in understanding its toxic mechanism. Due to its high specific surface area and adsorption capacity similar to nanoparticles, PM2.5 acts as a significant carrier of metals in air and then leads to altered toxic effects. In this study, we aimed to use CBs and Ni as model materials to investigate the autophagy changes and pulmonary toxic effects at 30 days following intratracheal instillation of CBs-Ni mixture. MATERIALS AND METHODS Groups of mice were instilled with 100 µL normal saline (NS), 20 µg CBs, and 4 µg Ni or CBs-Ni mixture, respectively. At 7 and 30 days post-instillation, all the mice were weighed and then sacrificed. The evaluation system was composed of the following: (a) autophagy and lysosomal function assessment, (b) trace element biodistribution observation in lungs, (c) pulmonary lavage biomedical analysis, (d) lung histopathological evaluation, (e) coefficient analysis of major organs and (f) CBs-Ni interaction and cell proliferation assessment. RESULTS We found that after CBs-Ni co-exposure, no obvious autophagy and lysosomal dysfunction or pulmonary toxicity was detected, along with complete clearance of Ni from lung tissues as well as recovery of biochemical indexes to normal range. CONCLUSIONS We conclude that the damaged autophagy and lysosomal function, as well as physiological function, was repaired at 30 days after exposure of CBs-Ni. Our findings provide a new idea for scientific assessment of the impact of fine particles on environment and human health, and useful information for the comprehensive treatment of air pollution.
Collapse
Affiliation(s)
- Wei He
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongzhen Peng
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jifei Ma
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Aiguo Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jichao Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Huating Kong
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qingnuan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Balram D, Lian KY, Sebastian N. Air quality warning system based on a localized PM 2.5 soft sensor using a novel approach of Bayesian regularized neural network via forward feature selection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109386. [PMID: 31255868 DOI: 10.1016/j.ecoenv.2019.109386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
It is highly significant to develop efficient soft sensors to estimate the concentration of hazardous pollutants in a region to maintain environmental safety. In this paper, an air quality warning system based on a robust PM2.5 soft sensor and support vector machine (SVM) classifier is reported. The soft sensor for the estimation of PM2.5 concentration is proposed using a novel approach of Bayesian regularized neural network (BRNN) via forward feature selection (FFS). Zuoying district of Taiwan is selected as the region of study for implementation of the estimation system because of the high pollution in the region. Descriptive statistics of various pollutants in Zuoying district is computed as part of the study. Moreover, seasonal variation of particulate matter (PM) concentration is analyzed to evaluate the impact of various seasons on the increased levels of PM in the region. To investigate the linear dependence of concentration of different pollutants to the concentration of PM2.5, Pearson correlation coefficient, Kendall's tau coefficient, and Spearman coefficient are computed. To achieve high performance for the PM2.5 estimation, selection of appropriate forward features from the input variables is carried out using FFS technique and Bayesian regularization is incorporated to the neural network system to avoid the overfitting problem. The comparative evaluation of performance of BRNN/FFS estimation system with various other methods shows that our proposed estimation system has the lowest mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE). Moreover, the coefficient of determination (R-squared) is around 0.95 for the proposed estimation method, which denotes a good fit. Evaluation of the SVM classifier showed good performance indicating that the proposed air quality warning system is efficient.
Collapse
Affiliation(s)
- Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, Republic of China
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, Republic of China.
| | - Neethu Sebastian
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, Republic of China
| |
Collapse
|
16
|
Choudri BS, Charabi Y, Ahmed M. Ecological and human health risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1072-1079. [PMID: 31386779 DOI: 10.1002/wer.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
The literature review presented in this paper covers the risk assessment process that is important to human health as well as the health of ecology in the form of receptors. One of the important objectives of present review is to provide summary of the scientific studies published in the year 2018. The review starts with literature published on the assessment of health risks, which are valuable to human and ecology. Most of the literature in the entire article focuses on techniques used for the analysis of scientific data and methods. In addition, review also highlights data interpretation, uncertainty, policy, and regulatory guidance associated with the management of human and ecological risks. Particularly, the review on the risk assessment related to human health and ecology is divided into two main sections. These sections provide broad state of knowledge on the risk assessment process used to health of human and ecological systems focused on investigation of polluted sites, techniques of remediation, and tools required for natural resource management.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Mushtaque Ahmed
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
17
|
Xu Y, Zhong Q, Yun X, Shen H, Shen G, Liu J, Ma J, Hu J, Wan Y, Wang X, Tian C, Tao S. PM 2.5-Associated Health Impacts of Beehive Coke Oven Ban in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11337-11344. [PMID: 31486635 DOI: 10.1021/acs.est.9b04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Historically, beehive coke ovens (BCOs) were extensively operated in China and emitted large quantities of pollutants, including primary PM2.5 and secondary PM2.5 precursors, and other climate forcers. Although these ovens were legally banned in 1996 by the Coal Law, the process of phasing them out took over a decade to accomplish. Based on historical operation data derived from remote sensing images, temporal trends and the spatial distribution of the emissions of various pollutants from BCOs were compiled and used to model the resulting perturbation in ambient PM2.5, population exposure, and PM2.5-associated adverse health impacts. Historically, PM2.5 originating from BCOs affected a vast region across China, which peaked in approximately 1996 and decreased afterward until the ovens' final elimination in 2011. According to the results of a supply-demand model, emissions from the BCOs would have continued to increase after 1996 if they had not been banned. As a result, national average PM2.5 attributable to BCOs in 2014 would have been more than three times as high as that in 1996. It was estimated that the cumulative number of premature deaths associated with BCO-originating PM2.5 from 1982 to 2014 was as high as 365 000 (95% confidence interval 259 000-402 000). The number would have nearly tripled if BCOs had not been banned and halved if the ban had been implemented immediately after the regulation was in force, suggesting the importance of legislation implementation.
Collapse
Affiliation(s)
- Yang Xu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Qirui Zhong
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Xiao Yun
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Huizhong Shen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Junfeng Liu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Jianying Hu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Yi Wan
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| | - Chongguo Tian
- Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai , Shangdong 264003 , China
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science , Peking University , Beijing 100871 , China
| |
Collapse
|
18
|
Pardo M, Xu F, Shemesh M, Qiu X, Barak Y, Zhu T, Rudich Y. Nrf2 protects against diverse PM 2.5 components-induced mitochondrial oxidative damage in lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:303-313. [PMID: 30878937 DOI: 10.1016/j.scitotenv.2019.01.436] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Michal Shemesh
- Cell Observatory of the MICC Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
19
|
Jia J, Yuan X, Peng X, Yan B. Cr(VI)/Pb 2+ are responsible for PM2.5-induced cytotoxicity in A549 cells while pulmonary surfactant alleviates such toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:152-158. [PMID: 30708226 DOI: 10.1016/j.ecoenv.2019.01.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 05/05/2023]
Abstract
The composition of PM2.5 is extremely complicated, making the causes of PM2.5-induced toxicity hard to understand. To identify the major toxic components of PM2.5 particles, we used reductionism approach, synthesized and investigated a model PM2.5 library containing 24 carbon nanoparticles with adsorbed pollutants including Cr(VI), Pb2+, As(III) and BaP either individually or in combinations. Our data showed that major physicochemical characteristics of model PM2.5 library members were similar to PM2.5 particles from Guangzhou city (PM2.5-GZ). Cytotoxicity of lung cells (A549) was increasing as the member of adsorbed pollutants at environment relevant concentrations. Using these model particles, we identified that co-existence of Cr(VI) and Pb2+ components contributed to the PM2.5-induced cytotoxicity in A549 cells. Besides, pulmonary surfactant reduced the PM2.5-induced cytotoxicity in A549 cells probably via enhancing cell autophagy. The findings from this study suggest that systematic investigation using model PM2.5 particle library helps identify key toxic pollutants in otherwise very complex PM2.5 particles and facilitate our understanding of the underlying biological mechanisms.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Xiaoru Yuan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaowu Peng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
20
|
Lv Y, Zhou Y, Wang H, Zhao T, Liu T, He X, Zhang L, Liu J. Study on the multivariate prediction model and exposure level of indoor and outdoor particulate concentration in severe cold region of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:708-715. [PMID: 30580165 DOI: 10.1016/j.ecoenv.2018.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Atmospheric particulate matter( PM10, PM2.5) has been the main pollutant in most cities of China in recent years, and the exposure concentration is related to the incidence of human diseases and mortality. The time spent indoors is more than 80% for modern people. Therefore, study on the correlation and exposure level of indoor and outdoor atmospheric particles is important. To research the exposure level in the heating season and non-heating season of indoor and outdoor particulate concentration in severe cold region of China, a total of 110 samples of four types of buildings (office, classroom, urban residence and rural residence) in Daqing, a typical city of severe cold region in China, were tested by particle monitor. Based on the indoor and outdoor environmental parameters, multiple linear regression (MLR) and principal component regression (PCR), established the indoor particulate concentration prediction models. The short and long term exposure of different people in different environments in severe cold region of China was analyzed based on the people's time-activity pattern with the measured data and model. The results showed that as for the short term indoor and outdoor exposure of different people, the average combined exposure of urban people in heating season is 60.0% higher than that in non-heating season, and rural people in heating season 30.2% higher than that in non-heating season. As for the long term indoor and outdoor exposure of different people, the annual average combined exposure of urban people was 9.6% higher than that of rural people. While all for urban and rural people, differences in respiratory rates between genders resulted in an average potential dose of 21. 8% higher in male than in female.
Collapse
Affiliation(s)
- Yang Lv
- College of Civil Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yuwei Zhou
- College of Civil Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haifeng Wang
- Qingdao Beiyang Architectural Design Co. Ltd., Qingdao 266000, China
| | - Tongke Zhao
- College of Civil Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tao Liu
- College of Environment, Dalian University of Technology, Dalian 116024, China
| | - Xin He
- College of Environment, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- College of Geoscience, Northeast Petroleum University, Daqing 163318, China
| | - Jing Liu
- Key Laboratory of Energy-saving and Utilization of buildings in Heilongjiang Province, Harbin 150000, China; School of Architecture, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
21
|
Zhang S, Ren Q, Qi H, Liu S, Liu Y. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS NANO 2019; 13:2729-2748. [PMID: 30773006 DOI: 10.1021/acsnano.8b08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current understanding of the health risks and adverse effects upon exposure to fine particles is premised on the direct association of particles with target organs, particularly the lung; however, fine-particle exposure has also been found to have detrimental effects on sealed cavities distant to the portal-of-entry, such as joints. Moreover, the fundamental toxicological issues have been ascribed to the direct toxic mechanisms, in particular, oxidative stress and proinflammatory responses, without exploring the indirect mechanisms, such as compensated, adaptive, and secondary effects. In this Review, we recapitulate the current findings regarding the detrimental effects of fine-particle exposure on joints, the surrounding cells, and microenvironment, as well as their deteriorating impact on the progression of arthritis. We also elaborate the likely molecular mechanisms underlying the particle-induced detrimental influence on joints, not limited to direct toxicity, but also considering the other indirect mechanisms. Because of the similarities between fine air particles and engineered nanomaterials, we compare the toxicities of engineered nanomaterials to those of fine air particles. Arthritis and joint injuries are prevalent, particularly in the elderly population. Considering the severity of global exposure to fine particles and limited studies assessing the detrimental effects of fine-particle exposure on joints and arthritis, this Review aims to appeal to a broad interest and to promote more research efforts in this field.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Hui Qi
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
- Beijing Research Institute of Traumatology and Orthopaedics , Beijing 100035 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Yajun Liu
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
| |
Collapse
|
22
|
Yang Y, Xu X, Zhang Y, Zheng S, Wang L, Liu D, Gustave W, Jiang L, Hua Y, Du S, Tang L. Seasonal size distribution and mixing state of black carbon aerosols in a polluted urban environment of the Yangtze River Delta region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:300-310. [PMID: 30445330 DOI: 10.1016/j.scitotenv.2018.11.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The optical properties of black carbon aerosols (BC) are determined by the particles size and the associated non-BC materials, which may be source-related or modified during secondary processing. The one-year long monitoring of BC was first conducted using a Single Particle Soot Photometer (SP2) from December 2013 to November 2014 in Nanjing, a megacity in the Yangtze River Delta region of China. The seasonal variation in the BC size distribution and mixing state were investigated. There was no apparent systematic variation in the mean BC core mass median diameter between seasons, as these values were 226 ± 12 nm, 217 ± 13 nm, 211 ± 15 nm and 221 ± 12 nm for winter, spring, summer and autumn respectively. The mixing state of BC was quantified as the bulk relative coating thickness (defined as particle size Dp over core size Dc, Dp/Dc), which ranged from 1.05 to 2.65. The BC was found to be significantly more coated in the winter (Dp/Dc = 1.50 ± 0.30) than in other seasons (Dp/Dc = 1.27 ± 0.09, 1.28 ± 0.10, 1.27 ± 0.11 in spring, summer and autumn respectively). Higher levels of coating during the winter may due to the contributions of the primary source (with the highest BC mass loadings between seasons) or secondary processes such as low temperature that facilitated the condensation. It was found that the photochemical process may enhance the coatings on BC in summer. At nighttime, the reduced and stabilized planetary boundary layer and the nighttime secondary formation may also lead to BC becoming well mixed with other components. Moreover, BC was shown to be less coated when the NOx concentration was high. However, during all seasons, the BC coating was strongly correlated with other non-BC particulate mass, which suggests that at higher pollution levels BC was more significantly coated with other existing materials through coagulation or condensation by other secondary species.
Collapse
Affiliation(s)
- Yifan Yang
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China
| | - Xiaofeng Xu
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China.
| | - Yunjiang Zhang
- Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte 60550, France; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, Gif sur Yvette 91191, France
| | - Shanshan Zheng
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China
| | - Lingrui Wang
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China; Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M139PL, UK
| | - Williamson Gustave
- Department of Environment Science, Xi'an Jiangtong Liverpoor University, Suzhou 215123, China
| | - Lei Jiang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Hua
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Songshan Du
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Lili Tang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| |
Collapse
|
23
|
Yanxiao G, Mei T, Gang G, Xiaochun W, Jianxiang L. Changes of 8-OHdG and TrxR in the Residents Who Bathe in Radon Hot Springs. Dose Response 2019; 17:1559325818820974. [PMID: 30670939 PMCID: PMC6327335 DOI: 10.1177/1559325818820974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/30/2022] Open
Abstract
This study explored the effects of long-term bathing in radon hot springs on oxidative damage and antioxidation function in humans. In this study, blood was collected from residents in the Pingshan radon hot spring area (RHSA), Jiangzha RHSA, and control area (CA). 8-Hydroxydeoxyguanosine (8-OHdG) and thioredoxin reductase (TrxR), representing oxidation and antioxidant levels, respectively, were analyzed as indices. Compared to the CA group, the RHSA group in the Pingshan and Jiangzha areas showed significantly decreased 8-OHdG levels (Z = -3.350, -3.316, respectively, P < .05) and increased TrxR levels (Z = 2.394, 3.773, respectively, P < .05). The RHSA and CA groups in Jiangzha had lower levels of TrxR and 8-OHdG compared to those in Pingshan. This finding may be related to the different radon concentration levels, bathing time and other factors. Results suggested that long-term bathing in radon hot spring may activate antioxidant function and reduce oxidative damage in the body.
Collapse
Affiliation(s)
- Gao Yanxiao
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Tian Mei
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gao Gang
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wang Xiaochun
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Liu Jianxiang
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
24
|
Wang Y, Zhou L, Wang X, Liu X, Jiang L, Wang J, Sun H, Jiang C, Xing X, Zhang Y, Pan B, Yan B. A human cell panel for evaluating safe application of nano-ZrO 2/polymer composite in water remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:474-481. [PMID: 30312946 DOI: 10.1016/j.ecoenv.2018.09.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Nanomaterials, such as ZrO2 nanoparticles (ZrO2 NPs), are very effective in water remediation. However, the safety issues related to nanoparticle release and toxicity to humans remain to be resolved. Here we evaluated the cytotoxicity of ZrO2 NPs and their adducts with pollutants using a human cell panel containing stomach, intestine, liver and kidney cells. We found that different pollutants or ZrO2NP/pollutant adducts targeted cells from different organs, suggesting the necessity of a cell panel to model oral exposures. The cooperation of ZrO2 NPs and pollutants was quite complex, consisting of synergistic, antagonistic, or additive effects. For example, ZrO2 NPs enhanced the cytotoxicity of Pb2+ in GES-1 cells and of Pb2+, Cd2+ in FHC cells, while alleviating the toxicity of Pb2+ and As (III) in HepG2 and Hek293 cells. Our results also indicated that even concentrations of pollutants that meet the national standard, the ZrO2 NPs concentration should be kept below 17 μg/mL to avoid ZrO2 NP/pollutant adduct synergistic toxicity.
Collapse
Affiliation(s)
- Yabin Wang
- Schools of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Li Zhou
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education and Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Xiaoling Wang
- Schools of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaokun Liu
- Department of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Liwen Jiang
- Department of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Jiahui Wang
- Schools of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hainan Sun
- Schools of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Cuijuan Jiang
- Department of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xueci Xing
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education and Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yi Zhang
- Schools of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bingcai Pan
- Department of Environmental Engineering, and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210093, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education and Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China; Department of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
25
|
Chen Y, Luo XS, Zhao Z, Chen Q, Wu D, Sun X, Wu L, Jin L. Summer-winter differences of PM 2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:505-509. [PMID: 30223162 DOI: 10.1016/j.ecoenv.2018.09.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/12/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Atmospheric fine particulate matters (PM2.5) induce adverse human health effects through inhalation, and the harmful effects of PM2.5 are determined not only by its air concentrations, but also by the particle components varied temporally. To investigate seasonal differences of the aerosol toxicity effects including cell viability and membrane damage, cell oxidative stress and responses of inflammatory cytokines, the human lung epithelial cells (A549) were exposed to PM2.5 samples collected in both summer and winter by the in vitro toxicity bioassays. Toxicological results showed that, the PM2.5 led to the cell viability decrease, cell membrane injury, oxidative stress level increase and inflammatory responses in a dose-dependent manner. Temporally, the cytotoxicity of winter PM2.5 was higher than summer of this studied industrial area of Nanjing, China. According to the different contents of heavy metals accumulated in PM2.5, the transition metals such as Cu might be an important contributor to the aerosol cell toxicity.
Collapse
Affiliation(s)
- Yan Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qi Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Di Wu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Sun
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lichun Wu
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|