1
|
Li M, Zhao X, Yan P, Xie H, Zhang J, Wu S, Wu H. A review of per- and polyfluoroalkyl substances (PFASs) removal in constructed wetlands: Mechanisms, enhancing strategies and environmental risks. ENVIRONMENTAL RESEARCH 2024; 262:119967. [PMID: 39260718 DOI: 10.1016/j.envres.2024.119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
PER: Polyfluoroalkyl substances (PFASs), typical persistent organic pollutants detected in various water environments, have attracted widespread attention due to their undesirable effects on ecology and human health. Constructed wetlands (CWs) have emerged as a promising, cost-effective, and nature-based solution for removing persistent organic pollutants. This review summarizes the removal performance of PFASs in CWs, underlying PFASs removal mechanisms, and influencing factors are also discussed comprehensively. Furthermore, the environmental risks of PFASs-enriched plants and substrates in CWs are analyzed. The results show that removal efficiencies of total PFASs in various CWs ranged from 21.3% to 98%. Plant uptake, substrate absorption and biotransformation are critical pathways in CWs for removing PFASs, which can be influenced by the physiochemical properties of PFASs, operation parameters, environmental factors, and other pollutants. Increasing dissolved oxygen supply and replacing traditional substrates in CWs, and combining CWs with other technologies could significantly improve PFASs removal. Further, CWs pose relatively lower ecological and environmental risks in removing PFASs, which indicates CWs could be an alternative solution for controlling PFASs in aquatic environments.
Collapse
Affiliation(s)
- Mingjun Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Peihao Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China
| | - Suqing Wu
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
2
|
Pietrini F, Wyrwicka-Drewniak A, Passatore L, Nogués I, Zacchini M, Donati E. PFOA accumulation in the leaves of basil (Ocimum basilicum L.) and its effects on plant growth, oxidative status, and photosynthetic performance. BMC PLANT BIOLOGY 2024; 24:556. [PMID: 38877484 PMCID: PMC11177490 DOI: 10.1186/s12870-024-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.
Collapse
Affiliation(s)
- Fabrizio Pietrini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| | - Anna Wyrwicka-Drewniak
- Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, University of Lodz, ul. Banacha 12/16, Lodz, 90-237, Poland
| | - Laura Passatore
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| | - Isabel Nogués
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| | - Massimo Zacchini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy.
| | - Enrica Donati
- Institute for Biological Systems (ISB), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| |
Collapse
|
3
|
Ye B, Wang J, Zhou L, Yu X, Sui Q. Perfluoroalkyl acid precursors in agricultural soil-plant systems: Occurrence, uptake, and biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168974. [PMID: 38036134 DOI: 10.1016/j.scitotenv.2023.168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Perfluoroalkyl acid (PFAA) precursors have been used in various consumer and industrial products due to their hydrophobic and oleophobic properties. In recent years, PFAA precursors in agricultural soil-plant systems have received increasing attention as they are susceptible to biotransformation into metabolites with high biotoxicity risks to human health. In this review, we systematically assessed the occurrence of PFAA precursors in agricultural soils, taking into account their sources and biodegradation pathways. In addition, we summarized the findings of the relevant literature on the uptake and biotransformation of PFAA precursors by agricultural plants. The applications of biosolids/composts and pesticides are the main sources of PFAA precursors in agricultural soils. The physicochemical properties of PFAA precursors, soil organic carbon (SOC) contents, and plant species are the key factors influencing plant root uptakes of PFAA precursors from soils. This review revealed, through toxicity assessment, the potential of PFAA precursors to generate metabolites with higher toxicity than the parent precursors. The results of this paper provide a reference for future research on PFAA precursors and their metabolites in soil-plant systems.
Collapse
Affiliation(s)
- Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Guida Y, Torres FBM, Barizon RRM, Assalin MR, Rosa MA. Confirming sulfluramid (EtFOSA) application as a precursor of perfluorooctanesulfonic acid (PFOS) in Brazilian agricultural soils. CHEMOSPHERE 2023; 325:138370. [PMID: 36914008 DOI: 10.1016/j.chemosphere.2023.138370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a manmade chemical with several industrial applications and also a potential byproduct of many other per- and polyfluorinated substances (PFAS) in the environment. Due to the gathered evidence on its environmental persistence, long-range transport, toxicity, and bioaccumulative and biomagnifying properties, PFOS, its salts and perfluorooctane sulfonyl fluoride (PFOSF), were listed for global restriction under the Stockholm Convention on Persistent Organic Pollutants in 2009. Nevertheless, Brazil has granted an acceptable purpose exemption for using PFOSF to produce sulfluramid (EtFOSA) and to apply it as insecticide to control leaf-cutting ants of the genus Atta and Acromyrmex. Previous studies have pointed out EtFOSA as a precursor of PFOS in the environment, including in soils. Therefore, we aimed to confirm the role of EtFOSA in PFOS formation in soils representing areas where sulfluramid-based ant baits are used. A biodegradation assay was carried out by applying technical EtFOSA in triplicate samples of ultisol (PV) and oxisol (LVd) and measuring the contents of EtFOSA, perfluorooctane sulfonamide acetic acid (FOSAA), perfluorooctane sulfonamide (FOSA), and PFOS at seven moments (0, 3, 7, 15, 30, 60, and 120 days). The monitored byproducts started being noticed on the 15th day. After 120 days, PFOS yields were 30% for both soils, whereas FOSA yields were 46% (PV soil) and 42% (LVd soil) and FOSAA yields were 6% (PV soil) and 3% (LVd soil). It can be expected that FOSAA and FOSA contents will eventually be converted into PFOS in the environment and that the presence of plants could boost PFOS formation. Therefore, the ongoing extensive and intensive use of sulfluramid-based ant baits pose a considerable source of PFOS to the environment.
Collapse
Affiliation(s)
- Yago Guida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio Janeiro, RJ, 21941-902, Brazil
| | - Fábio Barbosa Machado Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio Janeiro, RJ, 21941-902, Brazil
| | | | - Márcia Regina Assalin
- Brazilian Agricultural Research Corporation - Embrapa. SP 340 Road. Zip code:13918-110. Jaguaríúna, SP, Brazil
| | - Maria Aparecida Rosa
- Brazilian Agricultural Research Corporation - Embrapa. SP 340 Road. Zip code:13918-110. Jaguaríúna, SP, Brazil
| |
Collapse
|
5
|
Kaiser AM, Forsthuber M, Widhalm R, Granitzer S, Weiss S, Zeisler H, Foessleitner P, Salzer H, Grasl-Kraupp B, Moshammer H, Hartmann C, Uhl M, Gundacker C. Prenatal exposure to per- and polyfluoroalkyl substances and pregnancy outcome in Austria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115006. [PMID: 37182303 DOI: 10.1016/j.ecoenv.2023.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of persistent industrial chemicals that can harm reproductive health. PFAS levels were analysed to determine the current sources of exposure and possible associations between prenatal PFAS exposure and adverse pregnancy outcome. Samples from 136 mother-newborn pairs recruited between 2017 and 2019 were analysed for the presence of 31 target PFAS in maternal serum, umbilical cord serum, and placental tissue by high-performance liquid chromatography coupled to a tandem mass spectrometer. Questionnaires and medical records were used to survey sources of exposure and pregnancy outcome, including small for gestational age (SGA), fetal growth restriction (FGR), preeclampsia (PE), preterm birth, large for gestational age (LGA) and gestational diabetes mellitus (GDM). Data were analysed for individual PFAS and sum4PFAS (sum of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) serum levels) in logistic regression analyses and categorical regression analyses. Compared to data from a previous Viennese study in 2010-12, sum4PFAS levels were generally lower. Sum4PFAS serum levels of three women (2.2%) exceeded 6.9 µg/L, a level that corresponds to the recently established tolerable weekly intake (TWI) of EFSA for nursing mothers aged 35 years; in the 2010/2012 study it was 13.6%. The large contribution of unidentified extractable organofluorine (EOF) fractions to total PFAS exposure is a concern. Study site, mean maternal corpuscular hemoglobin (MCH), use of facial lotion, and owning upholstered furniture were significantly influencing maternal exposure. While no effect of sum4PFAS on pregnancy outcome could be detected, we found highest placental PFDA levels in SGA births. PFHxS levels in umbilical cord and placenta were highest in preterm births. Further studies are needed to elucidate the relationship of prenatal PFAS exposure and pregnancy outcome, in particular to confirm whether and how placental PFDA levels may contribute to an increased risk for SGA.
Collapse
Affiliation(s)
- Andreas-Marius Kaiser
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria; Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria; Department of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | - Raimund Widhalm
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stefan Weiss
- Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna, Austria
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University Vienna, A-1090 Vienna, Austria
| | - Philipp Foessleitner
- Department of Obstetrics and Gynecology, Medical University Vienna, A-1090 Vienna, Austria; Department of Gynecology and Obstetrics, University Hospital St. Pölten, A-3100 St. Pölten, Austria
| | - Hans Salzer
- Clinic for Pediatrics and Adolescent Medicine, University Hospital Tulln, A-3430 Tulln, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Hanns Moshammer
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | | | - Maria Uhl
- Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna, Austria
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
6
|
Wu S, Zhu L, Ye Q, Zhu Y, Zhang T, Chen X, Zhong W. Mechanisms for the structural dependent transformation of 6:2 and 8:2 polyfluoroalkyl phosphate diesters in wheat (Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131536. [PMID: 37146340 DOI: 10.1016/j.jhazmat.2023.131536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are widely used and detected in various environmental media and organisms, but little is known about their behaviors in plants. In this study, the uptake, translocation and transformation of 6:2 and 8:2 diPAP in wheat using hydroponic experiments were investigated. 6:2 diPAP was more easily taken up by roots and translocated to shoots than 8:2 diPAP. Their phase I metabolites were fluorotelomer saturated carboxylates (FTCAs), fluorotelomer unsaturated carboxylates (FTUCAs) and perfluoroalkyl carboxylic acids (PFCAs). PFCAs with even-numbered chain length were the primary phase I terminal metabolites suggesting that they were mainly generated through β-oxidation. Cysteine and sulfate conjugates were the primary phase II transformation metabolites. The higher levels and ratios of phase II metabolites in the 6:2 diPAP exposure group indicated that the phase I metabolites of 6:2 diPAP were more susceptible to phase II transformation than that of 8:2 diPAP, which was confirmed by density functional theory calculation. Enzyme activity analyses and in vitro experiments demonstrated that cytochrome P450 and alcohol dehydrogenase actively participated in the phase Ⅰ transformation of diPAPs. Gene expression analyses showed that glutathione S-transferase (GST) was involved in the phase Ⅱ transformation, and the subfamily GSTU2 played a dominant role.
Collapse
Affiliation(s)
- Sihan Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qingqing Ye
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
7
|
Kavusi E, Shahi Khalaf Ansar B, Ebrahimi S, Sharma R, Ghoreishi SS, Nobaharan K, Abdoli S, Dehghanian Z, Asgari Lajayer B, Senapathi V, Price GW, Astatkie T. Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. ENVIRONMENTAL RESEARCH 2023; 217:114844. [PMID: 36403653 DOI: 10.1016/j.envres.2022.114844] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.
Collapse
Affiliation(s)
- Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Samira Ebrahimi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, India
| | - Seyede Shideh Ghoreishi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
8
|
Kolanczyk RC, Saley MR, Serrano JA, Daley SM, Tapper MA. PFAS Biotransformation Pathways: A Species Comparison Study. TOXICS 2023; 11:toxics11010074. [PMID: 36668800 PMCID: PMC9862377 DOI: 10.3390/toxics11010074] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 05/30/2023]
Abstract
Limited availability of fish metabolic pathways for PFAS may lead to risk assessments with inherent uncertainties based only upon the parent chemical or the assumption that the biodegradation or mammalian metabolism map data will serve as an adequate surrogate. A rapid and transparent process, utilizing a recently created database of systematically collected information for fish, mammals, poultry, plant, earthworm, sediment, sludge, bacteria, and fungus using data evaluation tools in the previously described metabolism pathway software system MetaPath, is presented. The fish metabolism maps for 10 PFAS, heptadecafluorooctyl(tridecafluorohexyl)phosphinic acid (C6/C8 PFPiA), bis(perfluorooctyl)phosphinic acid (C8/C8 PFPiA), 2-[(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2-tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), N-Ethylperfluorooctane-1-sulfonamide (Sulfuramid; N-EtFOSA), N-Ethyl Perfluorooctane Sulfonamido Ethanol phosphate diester (SAmPAP), Perfluorooctanesulfonamide (FOSA), 8:2 Fluorotelomer phosphate diester (8:2 diPAP), 8:2 fluorotelomer alcohol (8:2 FTOH), 10:2 fluorotelomer alcohol (10:2 FTOH), and 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), were compared across multiple species and systems. The approach demonstrates how comparisons of metabolic maps across species are aided by considering the sample matrix in which metabolites were quantified for each species, differences in analytical methods used to identify metabolites in each study, and the relative amounts of metabolites quantified. Overall, the pathways appear to be well conserved across species and systems. For PFAS lacking a fish metabolism study, a composite map consisting of all available maps would serve as the best basis for metabolite prediction. This emphasizes the importance and utility of collating metabolism into a searchable database such as that created in this effort.
Collapse
Affiliation(s)
- Richard C. Kolanczyk
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Megan R. Saley
- Oak Ridge Institute for Science and Education, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Jose A. Serrano
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sara M. Daley
- Oak Ridge Institute for Science and Education, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Mark A. Tapper
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 6201 Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
9
|
McDermett K, Anderson T, Jackson WA, Guelfo J. Assessing Potential Perfluoroalkyl Substances Trophic Transfer to Crickets (Acheta domesticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2981-2992. [PMID: 36102845 DOI: 10.1002/etc.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Although many studies have assessed the bioaccumulation of perfluoroalkyl substances (PFAS) in plant tissues, to date there has been minimal research on the bioaccumulation of PFAS in soil invertebrates that results from consuming PFAS-contaminated media. The present study focused on two different consumption pathways in a population of crickets: individuals consuming PFAS-contaminated alfalfa and individuals consuming PFAS-spiked drinking water. Alfalfa was grown in a greenhouse and irrigated with PFAS-spiked water (∼1 ppm) containing seven unique PFAS. The alfalfa was then harvested and fed to crickets. Another population of crickets was supplied with PFAS-spiked drinking water at similar concentrations to irrigation water for direct consumption. Alfalfa accumulation of PFAS and subsequent consumption by the crickets resulted in overall similar tissue concentrations in the crickets who consumed PFAS-spiked water directly. This indicates that source concentration (water) may be an important factor in assessing the bioaccumulation of PFAS in organisms. To our knowledge, ours is the first study not only to assess the direct trophic transfer of PFAS from contaminated vegetation to invertebrates, but also to highlight the similarities in bioaccumulation regardless of ingestion pathway. Environ Toxicol Chem 2022;41:2981-2992. © 2022 SETAC.
Collapse
Affiliation(s)
- Kaylin McDermett
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas, USA
- Geosyntec Consultants, Pittsburgh, Pennsylvania, USA
| | - Todd Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - W Andrew Jackson
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Jennifer Guelfo
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
10
|
Guo J, Zhou J, Liu S, Shen L, Liang X, Wang T, Zhu L. Underlying Mechanisms for Low-Molecular-Weight Dissolved Organic Matter to Promote Translocation and Transformation of Chlorinated Polyfluoroalkyl Ether Sulfonate in Wheat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15617-15626. [PMID: 36272151 DOI: 10.1021/acs.est.2c04356] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) such as fulvic acid (FA) and humic acid (HA) in soil considerably affects the fate of per- and polyfluoroalkyl substances (PFASs). However, the effect of DOM on their behavior in plants remains unclear. Herein, hydroponic experiments indicate that FA and HA reduce the accumulation of an emerging PFAS of high concern, 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), in wheat roots by reducing its bioavailability in the solution. Nevertheless, FA with low molecular weight (MW) promotes its absorption and translocation from the roots to the shoots by stimulating the activity and the related genes of the plasma membrane H+-ATPase, whereas high-MW HA shows the opposite effect. Moreover, in vivo and in vitro experiments indicate that 6:2 Cl-PFESA undergoes reductive dechlorination, which is regulated mainly using nitrate reductase and glutathione transferase. HA and FA, particularly the latter, promote the dechlorination of 6:2 Cl-PFESA in wheat by enhancing electron transfer efficiency and superoxide production. Transcriptomic analysis indicates that FA also stimulates catalytic activity, cation binding, and oxidoreductase activity, facilitating 6:2 Cl-PFESA transformation in wheat.
Collapse
Affiliation(s)
- Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Lina Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Xiaoxue Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300071, P. R. China
| |
Collapse
|
11
|
Miranda DDA, Peaslee GF, Zachritz AM, Lamberti GA. A worldwide evaluation of trophic magnification of per- and polyfluoroalkyl substances in aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1500-1512. [PMID: 35029321 DOI: 10.1002/ieam.4579] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A review of the published literature on the trophic magnification factor (TMF) for per- and polyfluoroalkyl substances (PFAS) was conducted to assess how biomagnification varies across aquatic systems worldwide. Although the TMF has been recognized as the most reliable tool for assessing the biomagnification of organic contaminants, peer-reviewed studies reporting TMFs for PFAS are few and with limited geographical distribution. We found 25 published studies of the biomagnification of 35 specific PFAS, for which the TMF was generated through linear regression of individual log-PFAS concentration and the δ15 N-based trophic position of each organism in the food webs. Studies were concentrated mainly in China, North America, and Europe, and the most investigated compound was perfluorooctane sulfonate (PFOS), which was frequently shown to be biomagnified in the food web (TMFs ranging from 0.8 to 20). Other long-chain carboxylates displayed substantial variation in trophic magnification. Observed differences in the TMF were associated with length of the food web, geographic location, sampling methodologies, tissue analyzed, and distance from known direct PFAS inputs. In addition to biomagnification of legacy PFAS, precursor substances were observed to bioaccumulate in the food web, which suggests they may biotransform to more persistent PFAS compounds in upper trophic levels. This review discusses the variability of environmental characteristics driving PFAS biomagnification in natural ecosystems and highlights the different approaches used by each study, which can make comparisons among studies challenging. Suggestions on how to standardize TMFs for PFAS are also provided in this review. Integr Environ Assess Manag 2022;18:1500-1512. © 2022 SETAC.
Collapse
Affiliation(s)
- Daniele de A Miranda
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, USA
| | - Graham F Peaslee
- Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, USA
| | - Alison M Zachritz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
12
|
Jiang T, Zhang W, Liang Y. Uptake of individual and mixed per- and polyfluoroalkyl substances (PFAS) by soybean and their effects on functional genes related to nitrification, denitrification, and nitrogen fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156640. [PMID: 35697220 DOI: 10.1016/j.scitotenv.2022.156640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, we set up a soil-microbe-soybean system spiked with PFOA, PFOS, or a PFAS mixture of eight PFAS and investigated the distribution of PFAS in the system and impacts on the abundance and expression level of genes involved in the nitrogen (N) cycle. When soybean was exposed to the PFAS mixtures, synergistic uptake by shoots was detected. PFAS exhibited remarkable impacts on abundance of nitrification and denitrification genes in both bulk soil and rhizosphere as well as expression of N fixation gene in soybean nodules. The abundance of nitrification genes AOA and AOB amoA and denitrification gene nirK was significantly reduced (p < 0.05) in almost all treatments in bulk soil, except PFOA at 10 μg/kg. The abundance of other functional genes, such as nirS and norZ was affected differently depending on PFAS concentrations and sample location, either bulk soil or the rhizosphere. Interestingly, the N fixation gene nifH in soybean nodules was overexpressed by a PFAS mixture at 100 μg/kg. Hence, this work provided in-depth knowledge regarding the distribution of PFAS and their impacts on the N cycle for the studied system. Results from this study provide insights on assessing risks posed by individual or mixed PFAS to soybean.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
13
|
Perfluorobutanoic Acid (PFBA) Induces a Non-Enzymatic Oxidative Stress Response in Soybean (Glycine max L. Merr.). Int J Mol Sci 2022; 23:ijms23179934. [PMID: 36077331 PMCID: PMC9456126 DOI: 10.3390/ijms23179934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Short-chain perfluoroalkyl substances (PFAS) are generally considered to be of less environmental concern than long-chain analogues due to their comparatively shorter half-lives in biological systems. Perfluorobutanoic acid (PFBA) is a short-chain PFAS with the most root–shoot transfer factor of all PFAS. We investigated the impact of extended exposure of soybean plants to irrigation water containing environmentally relevant (100 pg–100 ng/L) to high (100 µg–1 mg/L) concentrations of PFBA using phenotypical observation, biochemical characterization, and transcriptomic analysis. The results showed a non-monotonous developmental response from the plants, with maximum stimulation and inhibition at 100 ng/L and 1 mg/L, respectively. Higher reactive oxygen species and low levels of superoxide dismutase (SOD) and catalase (CAT) activity were observed in all treatment groups. However transcriptomic analysis did not demonstrate differential expression of SOD and CAT coding genes, whereas non-enzymatic response genes and pathways were enriched in both groups (100 ng/L and 1 mg/L) with glycine betaine dehydrogenase showing the highest expression. About 18% of similarly downregulated genes in both groups are involved in the ethylene signaling pathway. The circadian rhythm pathway was the only differentially regulated pathway between both groups. We conclude that, similar to long chain PFAS, PFBA induced stress in soybean plants and that the observed hormetic stimulation at 100 ng/L represents an overcompensation response, via the circadian rhythm pathway, to the induced stress.
Collapse
|
14
|
Molecular Cloning of a TCHQD Class Glutathione S-Transferase and GST Function in Response to GABA Induction of Melon Seedlings under Root Hypoxic Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutathione-S-transferase (GST), a versatile enzyme that occurs widely in plants, plays a key role in plant resistance to environmental stresses. Previous results have demonstrated that GST proteins are involved in alleviating root hypoxic injury caused by gamma-aminobutyric acid (GABA); however, the induction mechanism of the GST gene in the melon under root hypoxic stress and its functional mechanisms remain unclear. In this study, based on gene cloning and bioinformatics analysis, GST gene expression and activity and glutathione (GSH) content were assessed under root hypoxic and normoxic conditions with or without GABA. The results showed that the CmGST locus includes an 804 bp gene sequence that encodes 267 amino acids. The sequence was highly similar to those of other plant TCHQD GSTs, and the highest value (94%) corresponded to Cucumis sativus. Real-time PCR results showed that the CmGST gene was induced by root hypoxic stress and GABA, and this induction was accompanied by increased GST activity and GSH content. Root hypoxic stress significantly upregulated CmGST expression in melon roots (0.5–6 d), stems, and leaves (0.5–4 d), and GST activity and GSH content were also significantly increased. Exogenous GABA treatment upregulated CmGST gene expression, GST activity, and GSH content, particularly under root hypoxic conditions. As a result, CmGST expression in GABA-treated roots and leaves at 0.5–4 d and stems at 0.5–6 d was significantly higher than that under root hypoxic stress alone. This study provides evidence that the TCHQD CmGST may play a vital role in how GABA increases melon hypoxia tolerance by upregulating gene expression and improving metabolism.
Collapse
|
15
|
Zhang W, Liang Y. Interactions between Lemna minor (common duckweed) and PFAS intermediates: Perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (6:2 FTSA). CHEMOSPHERE 2021; 276:130165. [PMID: 33714153 DOI: 10.1016/j.chemosphere.2021.130165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (FTSA) are widely present intermediates of per- and polyfluorinated substances (PFAS). Although detected at high concentrations in landfill leachate and groundwater, the interactions of these two compounds with plants have not been investigated much. In this work, uptake of these two PFAS intermediates at 10 and 200 μg/L by Lemna minor (common duckweed) were studied in detail. It was found that the biomass production of L. minor was not impacted negatively by PFOSA and FTSA at concentrations equal to or lower than 200 μg/L. Between these two target compounds, FTSA had much higher concentrations in L. minor when the concentrations and exposure times were the same as those for PFOSA. In addition, this compound at 200 μg/L inhibited the activities of catalase in L. minor significantly compared to the controls. This study indicates that PFOSA with low water solubility has low toxicity to L. minor, while FTSA at high concentration may accumulate in the floating plants and cause adverse effects on plant's antioxidative defense system. Longer-term studies of L. minor with these two and other PFAS are warranted given the important role of this floating plant in the ecosystem.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
16
|
Niu B, Yu M, Sun C, Wang L, Zang K, Hu X, Zhou L, Zheng Y. Open hollow structured Calotropis gigantea fiber activated persulfate for decomposition of perfluorooctanoic acid at room temperature. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Zhang W, Pang S, Lin Z, Mishra S, Bhatt P, Chen S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115908. [PMID: 33190976 DOI: 10.1016/j.envpol.2020.115908] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C-F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Tang T, Liu X, Wang L, Zuh AA, Qiao W, Huang J. Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115385. [PMID: 32798984 DOI: 10.1016/j.envpol.2020.115385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Bioaccumulation and toxicity of per-and polyfluoroalkyl substances and metal in plants have been confirmed, however their contamination in soil and plants still requires extensive investigation. In this study the combined effects of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium (Cr) on water spinach (Ipomoea aquatica Forsk) were investigated. Compared with each single stress, the combination of F53B and Cr (VI) reduced the biomass and height and increasingly accumulated in the roots and destroyed the cell structure. Besides, the co-contamination led to the immobilization of F53B and Cr (VI) in soil, which affected their migration in soil and transfer to plants. The antioxidant response and photosynthesis of the plant weakened under the single Cr (VI) and enhanced under the single F53B treatment; however the contamination of F53B and Cr (VI) could also reduce this effect, as confirmed by the gene expression of MTa, psbA and psbcL genes. This study provides an evidence of the environmental risks resulting from the coexistence of F53B and Cr (VI).
Collapse
Affiliation(s)
- Tianhao Tang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaochun Liu
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Longqian Wang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Achuo Anitta Zuh
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Zhou J, Yang Z, Liu Q, Liu Y, Liu M, Wang T, Zhu L. Insights into Uptake, Translocation, and Transformation Mechanisms of Perfluorophosphinates and Perfluorophosphonates in Wheat ( Triticum aestivum L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:276-285. [PMID: 31795634 DOI: 10.1021/acs.est.9b05656] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As emerging alternatives of legacy perfluoroalkyl substances, perfluorophosphinates (PFPiAs) and perfluorophosphonates (PFPAs) are widely applied in industrial and agricultural fields and are supposed to be large partitioned to soil and highly persistent. It is of particular interest to understand their transfer from roots to shoots and transformation in plants, such as wheat. The results of hydroponic experiments indicated that C6/C6 PFPiA, C8/C8 PFPiA, perfluorooctanophosphonic acid (PFOPA), and perfluorohexaphosphonic acid (PFHxPA) were quickly adsorbed on the epidermis of wheat root (Triticum aestivum L.), which was driven by their hydrophobicity. A small fraction of the accumulated PFPiAs and PFPAs in the wheat root was subjected to absorption via an active process dependent on H+-ATPase. PFHxPA, which has the smallest molecular weight and medium hydrophilicity (log Kow < 4), displayed the strongest absorption efficiency via the water and anion channels and had the highest translocation potential from roots to shoots in wheat. C6/C6 and C8/C8 PFPiAs experienced phase I metabolism in wheat, although at a low rate, to form more persistent PFHxPA and PFOPA, respectively, as well as 1H-perfluorohexane (1H-PFHx) and 1H-perfluorooctane (1H-PFO), which were regulated by cytochrome P450 in wheat root. As a result, exposure to PFPiAs in roots ultimately caused the accumulation of more persistent PFPAs in the above-ground parts of plants, raising concerns on their potential risks on human health.
Collapse
Affiliation(s)
- Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Zhengshuang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Yiman Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, P. R. China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
20
|
Zhao S, Wang B, Zhong Z, Liu T, Liang T, Zhan J. Contributions of enzymes and gut microbes to biotransformation of perfluorooctane sulfonamide in earthworms (Eisenia fetida). CHEMOSPHERE 2020; 238:124619. [PMID: 31450114 DOI: 10.1016/j.chemosphere.2019.124619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonamide (FOSA) is known as a key intermediate of perfluorooctane sulfonic acid (PFOS) precursors, which can be frequently detected in the environment and biota. FOSA could be bioaccumulated in earthworms from soil, but the contributions of enzymes and gut microbes involved in the biotransformation of FOSA in earthworms have not been identified. Therefore, the effects of enzyme inhibitors and intestinal microflora on biotransformation of FOSA in earthworms were investigated in the present study. FOSA was biotransformed to form PFOS by earthworms obtained from in vivo and in vitro tests. The addition of FOSA had significantly positive effects on cytolchrome P450 (CYP450) and glutathione-s-transferase (GST) activities, suggesting CYP450 and GST are likely involved in the enzymatic transformation. In addition, both 1-Aminobenzotriazole (ABT) and ezatiostat hydrochloride (TLK199), which were selected to inhibit the CYP and GST enzymes, respectively, demonstrated inhibition effects on biotransformation of FOSA in earthworms with a dose-dependent relationship. However, the concentrations of FOSA weren't changed by the bacteria isolated from worm gut, suggesting that gut bacteria did not contribute to FOSA biotransformation in earthworms. The results of this study confirm that the transformation of FOSA in earthworms is mediated mainly by enzymes rather than by gut microbes.
Collapse
Affiliation(s)
- Shuyan Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE),; School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, PR China.
| | - Bohui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE),; School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Zhe Zhong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE),; School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Tianqi Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE),; School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Tiankun Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE),; School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE),; School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| |
Collapse
|
21
|
Feng M, Li H, You S, Zhang J, Lin H, Wang M, Zhou J. Effect of hexavalent chromium on the biodegradation of tetrabromobisphenol A (TBBPA) by Pycnoporus sanguineus. CHEMOSPHERE 2019; 235:995-1006. [PMID: 31561316 DOI: 10.1016/j.chemosphere.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The influence of Cr(VI) on the degradation of tetrabromobisphenol A (TBBPA) by a typical species of white rot fungi, Pycnoporus sanguineus, was investigated in this study. The results showed that P. sanguineus together with its intracellular and extracellular enzyme could effectively degrade TBBPA. The degradation efficiency of TBBPA by both P. sanguineus and its enzymes decreased significantly when Cr(VI) concentration increased from 0 to 40 mg/L. The subsequent analysis about cellular distribution of TBBPA showed that the extracellular amount of TBBPA increased with the increment of Cr(VI) concentration, but the content of TBBPA inside fungal cells exhibited an opposite variation tendency. The inhibition of TBBPA degradation by P. sanguineus was partly attributed to the increase of cell membrane permeability and the decrease of cell membrane fluidity caused by Cr(VI). In addition, the decline of H+-ATPase and Mg2+-ATPase activities was also an important factor contributing to the suppression of TBBPA degradation in the system containing concomitant Cr(VI). Moreover, the activities of two typical extracellular lignin-degrading enzymes of P. sanguineus, MnP and Lac, were found to descend with ascended Cr(VI) level. Cr(VI) could also obviously suppress the gene expression of four intracellular enzymes implicated in TBBPA degradation, including two cytochrome P450s, glutathione S-transferases and pentachlorophenol 4-monooxygenase, which resulted in a decline of TBBPA degradation efficiency by fungal cells and intracellular enzyme in the presence of Cr(VI). Overall, this study provides new insights into the characteristics and mechanisms involved in TBBPA biodegradation by white rot fungi in an environment where heavy metals co-exist.
Collapse
Affiliation(s)
- Mi Feng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China.
| | - Haixiang Li
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Shaohong You
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Jun Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Hua Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Meiqian Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jiahua Zhou
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| |
Collapse
|
22
|
Zhao S, Liu T, Wang B, Fu J, Liang T, Zhong Z, Zhan J, Liu L. Accumulation, biodegradation and toxicological effects of N-ethyl perfluorooctane sulfonamidoethanol on the earthworms Eisenia fetida exposed to quartz sands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:138-145. [PMID: 31176248 DOI: 10.1016/j.ecoenv.2019.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
While N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) is a precursor of perfluorooctane sulfonate (PFOS), its bioaccumulation, transformation and toxicological effects in earthworms (Eisenia fetida) exposed to quartz sands are poorly understood. The present study showed that except for parent EtFOSE, N-ethylperfluorooctane sulfonamide acetate (EtFOSAA), N-ethyl perfluorooctane sulfonamide (EtFOSA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS were detected in earthworms, with EtFOSAA as the primary biotransformation product. The biota-to-sand accumulation factor (BSAF) and uptake rate coefficient (ku) of EtFOSE were 5.7 and 0.542/d, respectively. The elimination rate constants (ke) decreased in the order EtFOSA (0.167/d) ∼ FOSAA (0.147/d) > FOSA (0.119/d) ∼ EtFOSAA (0.117/d) > EtFOSE (0.095/d) > PFOS (0.069/d). No significant effects were observed in malondialdehyde (MDA) contents and acetylcholinesterase (AChE) activities between EtFOSE treatments and controls. EtFOSE could cause significant accumulation of reactive oxygen species (ROS) in earthworms. Peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were significantly activated by 41.4-74.3%, 37.2-44.4% and 32.4-52.3% from day 4-10, respectively, while 8-Hydroxy-2-deoxyguanosine (8-OHdG) levels were elevated by 47.7-70.3% from day 8-10, demonstrating that EtFOSE induced oxidative stress and oxidative DNA damage in earthworms. Significant increase of glutathione-S-transferase (GST) with 41.6-62.8% activation (8-10 d) gave indirect evidence on the conjugation of EtFOSE or its corresponding metabolites during phase II of detoxication. This study provides important information on the fate and potential risks of EtFOSE to terrestrial invertebrates.
Collapse
Affiliation(s)
- Shuyan Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China.
| | - Tianqi Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Bohui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Jia Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Tiankun Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Zhe Zhong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| |
Collapse
|
23
|
Zhao S, Liang T, Zhu L, Yang L, Liu T, Fu J, Wang B, Zhan J, Liu L. Fate of 6:2 fluorotelomer sulfonic acid in pumpkin (Cucurbita maxima L.) based on hydroponic culture: Uptake, translocation and biotransformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:804-812. [PMID: 31200206 DOI: 10.1016/j.envpol.2019.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/27/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
6:2 fluorotelomer sulfonic acid (6:2 FTSA) is currently used as an alternative to perfluorooctanesulfonate (PFOS) and is widely detected in the environment. The uptake, translocation and biotransformation of 6:2 FTSA in pumpkin (Cucurbita maxima L.) were investigated by hydroponic exposure for the first time. The root concentration factor (RCF) of 6:2 FTSA was 2.6-24.2 times as high as those of perfluoroalkyl acids (PFAAs) of the same or much shorter carbon chain length, demonstrating much higher bioaccumulative ability of 6:2 FTSA in pumpkin roots. The translocation capability of 6:2 FTSA from root to shoot depended on its hydrophobicity. Six terminal perfluorocarboxylic acid (PFCA) metabolites, including perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), perfluorobutanoic acid (PFBA), perfluoropropionic acid (PFPrA) and trifluoroacetic acid (TFA) were found in pumpkin roots and shoots. PFHpA was the primary metabolite in roots, while PFBA was the major product in shoots. 1-aminobenzotriazole (ABT), a cytochromes P450 (CYPs) suicide inhibitor, could decrease the concentrations of PFCA products with dose-dependent relationships in pumpkin tissues, implying the role of CYP enzymes involved in plant biotransformation of 6:2 FTSA. This study indicated that the application of 6:2 FTSA can lead to the occurrence of PFCAs (C2-C7) in plants.
Collapse
Affiliation(s)
- Shuyan Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China.
| | - Tiankun Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Tianqi Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Jia Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Bohui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, Liaoning, 124221, PR China
| |
Collapse
|
24
|
Hao J, Wang P, Kang Y, He H, Luo H, Kim S, Niu L, Jiang H, Ma K. Degradation of Perfluorooctane Sulfonamide by
Acinetobacter
Sp. M and Its Extracellular Enzymes. Chem Asian J 2019; 14:2780-2784. [PMID: 31207187 DOI: 10.1002/asia.201900638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/11/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Jian Hao
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Penghong Wang
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Yufei Kang
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Haitao He
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Huihua Luo
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Sarah Kim
- Department of BiologyUniversity of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Lili Niu
- School of Life SciencesShanghai University Shanghai 200444 P. R. China
| | - Haizhen Jiang
- Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Kesen Ma
- Department of BiologyUniversity of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
25
|
Chen Z, Yin H, Peng H, Lu G, Liu Z, Dang Z. Identification of novel pathways for biotransformation of tetrabromobisphenol A by Phanerochaete chrysosporium, combined with mechanism analysis at proteome level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:1352-1361. [PMID: 31096345 DOI: 10.1016/j.scitotenv.2018.12.446] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
The investigation of tetrabromobisphenol A (TBBPA) removal by Phanerochaete chrysosporium (P. chrysosporium) was conducted. Under optimal conditions (pH 5, inoculum size of 5% (v/v), initial glucose concentration of 5 g/L, TBBPA concentration of 5 mg/L), >97% of initial TBBPA was removed after 3 days. The TBBPA metabolites, tetrabromobisphenol A glycoside, tribromobisphenol A glycoside and monohydroxylated tetrabromobisphenol A, were identified for the first time by fungi transformation as being produced by glycosylation and oxidative hydroxylation, respectively. Proteome analysis showed that P. chrysosporium significantly upregulated cytochrome P450 monooxygenase, glutathione S-transferases, UDP-glucosyltransferase, O‑methyltransferase and other oxidoreductases for TBBPA oxidative hydroxylation, reductive debromination, glycosylation, O‑methylation and oxidative cleavage for detoxification. Data from cytotoxicity tests with human hepatocellular liver carcinoma (HepG2) confirmed that TBBPA toxicity was effectively decreased by P. chrysosporium treatment. Bioaugmentation with P. chrysosporium significantly improved the removal efficiency of TBBPA in water microcosms to 63.1% within 12 h. This study suggests that P. chrysosporium might be suitable for the removal of TBBPA from contaminated water.
Collapse
Affiliation(s)
- Zhanghong Chen
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|