1
|
Liu Z, Wan L, Zhang J, Bai D, Song C, Zhou Y, Shen H, Cao X. A novel strategy of bloom forming cyanobacteria Microcystis sp. in response to phosphorus deficiency: Using non-phosphorus lipids substitute phospholipids. HARMFUL ALGAE 2024; 138:102694. [PMID: 39244230 DOI: 10.1016/j.hal.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 09/09/2024]
Abstract
Despite significant reductions in phosphorus (P) loads, lakes still experience cyanobacterial blooms. Little is known regarding cellular P regulation in response to P deficiency in widely distributed bloom causing species such as Microcystis. In this study, we investigated changes in P containing and non-P lipids contents and their ratios concomitantly with the determinations of expression levels of genes encoding these lipids in cultural and field Microcystis samples. In the culture, the content of phosphatidylglycerol (PG) decreased from 2.1 μg g-1 in P replete control to 1.2 μg g-1 in P-deficient treatment, while non-P lipids, like sulfoquinovosyldiacylglycerol (SQDG) and monogalactosyldiacylglycerol (MGDG), increased dramatically from 13.6 μg g-1 to 142.3 μg g-1, and from 0.9 μg g-1 to 16.74 μg g-1, respectively. The expression of the MGDG synthesis gene, mgdE, also increased under low P conditions. Significant positive relationships between soluble reactive phosphorus (SRP) and ratios of P-containing lipids (PG) to non-P lipids, including SQDG, MGDG and digalactosyldiacylglycerol (DGDG) (P < 0.05) were observed in the field investigations. Both cultural and field data indicated that Microcystis sp. might increase non-P lipids proportion to lower P demand when suffering from P deficiency. Furthermore, despite lipid remodeling, photosynthetic activity remained stable, as indicated by comparable chlorophyll fluorescence and Fv/Fm ratios among cultural treatments. These findings suggested that Microcystis sp. may dominate in P-limited environments by substituting glycolipids and sulfolipids for phospholipids to reduce P demand without compromising the photosynthetic activity. This effective strategy in response to P deficiency meant a stricter P reduction threshold is needed in terms of Microcystis bloom control.
Collapse
Affiliation(s)
- Zhenghan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Lingling Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Jingjie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Dong Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Chunlei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Yiyong Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China
| | - Hong Shen
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China; Donghu Experimental Station of Lake Ecosystems, institute of hydrobiology, Chinese Academy of Sciences, PR China
| | - Xiuyun Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan 430072, PR China.
| |
Collapse
|
2
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Wang T, Liu H. Aquatic plant allelochemicals inhibit the growth of microalgae and cyanobacteria in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105084-105098. [PMID: 37740161 DOI: 10.1007/s11356-023-29994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Excess nitrogen and phosphorus nutrients in the aquatic environment result in the growth of algal cells and water eutrophication, which adversely affect the aquatic environment and human health. Therefore, discovering a safe and efficient algae suppression method is necessary to ensure the ecological safety of water. Recently, the allelopathic effects of aquatic plants on algae have attracted extensive attention from researchers. This review demonstrates the current research hotspot of allelopathic algal inhibition in aquatic plants and lists the common aquatic plant species and allelochemicals. In addition, the inhibition mechanism of allelochemicals from aquatic plants on algae is systematically discussed. Moreover, the key factors affecting the inhibition of allelopathy in algae, such as pH, temperature, algal cell density, and concentration of allelochemicals, are summarized. The present utilization modes of allelochemicals on algae are also presented. Finally, the problems existing in the study of allelopathic algal inhibition of aquatic plants are highlighted, and suggestions for further research are proposed.
Collapse
Affiliation(s)
- Tiantian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 21500, China
| | - Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 21500, China.
| |
Collapse
|
4
|
Shi Y, Shen A, Shao L, He P. Effects of Ginkgo biloba extract on growth, photosynthesis, and photosynthesis-related gene expression in Microcystis flos-aquae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87446-87455. [PMID: 35810242 DOI: 10.1007/s11356-022-21663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The inhibitory effect of plants on algae offers a new and promising alternative method for controlling harmful algal blooms. Previous studies showed that anti-algal effects might be obvious from extracts of fallen leaves from terrestrial plants, which had great potential for cyanobacterial control in field tests. To investigate the anti-algal activities and main algicidal mechanisms of Ginkgo biloba fallen leaves extracts (GBE) on Microcystis flos-aquae, the cell density, photosynthetic fluorescence, and gene expression under different concentrations of GBE treatments were tested. GBE (3.00 g L-1) showed a strong inhibitory effect against M. flos-aquae with an IC50 (96h) of 0.79 g L-1. All the inhibition rates of maximal quantum yield (Fv/Fm), effective quantum yield (Fq'/Fm'), and maximal relative electron transfer rate (rETRmax) were more than 70% at 96 h at 3.00 g L-1 and more than 90% at 6.00 g L-1. Further results of gene expression of the core proteins of PSII (psbD), limiting enzyme in carbon assimilation (rbcL), and phycobilisome degradation protein (nblA) were downregulated after exposure. These findings emphasized that photosynthetic damage is one of the main toxic mechanisms of GBE on M. flos-aquae. When exposed to 12.00 g L-1 GBE, no significant influence on the death rate of zebrafish or photosynthetic activity of the three submerged plants was found. Therefore, appropriate use of GBE could control the expansion of M. flos-aquae colonies without potential risks to the ecological safety of aquatic environments, which means that GBE could actually be used to regulate cyanobacterial blooms in natural waters.
Collapse
Affiliation(s)
- Yuxin Shi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Anglu Shen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Liu Shao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Marine Scientific Research Institute, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai, 201306, People's Republic of China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Marine Scientific Research Institute, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Water Environment & Ecology Engineering Research Center of Shanghai Institution of Higher Education, Shanghai, 201306, People's Republic of China
| |
Collapse
|
5
|
Chen YD, Zhao C, Zhu XY, Zhu Y, Tian RN. Multiple inhibitory effects of succinic acid on Microcystis aeruginosa: morphology, metabolomics, and gene expression. ENVIRONMENTAL TECHNOLOGY 2022; 43:3121-3130. [PMID: 33843481 DOI: 10.1080/09593330.2021.1916090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The cell membrane permeability, morphology, metabolomics, and gene expression of Microcystis aeruginosa under various concentrations of succinic acid (SA) were evaluated to clarify the mechanism of SA inhibition of M. aeruginosa. The results showed that SA caused intracellular protein and nucleic acid extravasation by increasing the cell membrane permeability. Scanning electron microscopy suggested that a high dose of SA (60 mg L-1) could damage the cell membrane and even cause lysis in some cells. Metabolomics result demonstrated that change in intracellular lipids content was the main reason for the increase of cell membrane permeability. In addition, SA could negatively affect amino acids metabolism, inhibit the biosynthesis of nucleotides, and interfere with the tricarboxylic acid (TCA) cycle of algal cells. Furthermore, SA also affected N assimilation and caused oxidative damage to Microcystis. In conclusion, SA inhibits the growth of M. aeruginosa through multisite action.
Collapse
Affiliation(s)
- Yi-Dong Chen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Chu Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xiao-Yu Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuan Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ru-Nan Tian
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Yan H, Li Q, Chen B, Shi M, Zhang T. Identification and feeding characteristics of the mixotrophic flagellate Poterioochromonas malhamensis, a microalgal predator isolated from planting water of Pontederia cordata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40599-40611. [PMID: 35084678 DOI: 10.1007/s11356-022-18614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The microorganisms and allelochemicals in Pontederia cordata planting water may have a synergistic inhibitory effect on algae. To study this synergy, an algae-inhibiting organism was isolated and identified, and its growth and feeding characteristics were studied. The organism was identified as Poterioochromonas malhamensis yzs924 based on both its morphology and molecular barcoding employing 18S rDNA gene sequences.The growth and feeding of P. malhamensis were affected by environmental factors and the state of its prey. (1) P. malhamensis is a mixotrophic flagellate. Its heterotrophic growth was the fastest in a wheat grain medium, and its growth rate in this study reached 2.5 day-1. (2) Within a short period of time (2 days), P. malhamensis growth was slower under continuous dark conditions than under alternating light and dark conditions, but it fed on Microcystis aeruginosa more rapidly under dark conditions. (3) High pH was disadvantageous to the growth and grazing of P. malhamensis. When the pH was kept stable at 9, P. malhamensis could not grow continuously. (4) When the initial density of M. aeruginosa was 5 × 107 cells/mL or is in a period of decline, P. malhamensis could not remove all M. aeruginosa. The combined use of P. malhamensis and allelochemicals may represent a method of M. aeruginosa control, but this approach requires further research.
Collapse
Affiliation(s)
- Hao Yan
- College of Life Sciences, Anhui Normal University, 241000, Wuhu, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, China
| | - Qin Li
- College of Life Sciences, Anhui Normal University, 241000, Wuhu, China
| | - Bo Chen
- College of Life Sciences, Anhui Normal University, 241000, Wuhu, China
| | - Mei Shi
- College of Life Sciences, Anhui Normal University, 241000, Wuhu, China
| | - Tingting Zhang
- College of Life Sciences, Anhui Normal University, 241000, Wuhu, China.
| |
Collapse
|
7
|
Kaur A, Kaur S, Singh HP, Batish DR. Alterations in phytotoxicity and allelochemistry in response to intraspecific variation in Parthenium hysterophorus. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Liu J, Chang Y, Sun L, Du F, Cui J, Liu X, Li N, Wang W, Li J, Yao D. Abundant Allelochemicals and the Inhibitory Mechanism of the Phenolic Acids in Water Dropwort for the Control of Microcystis aeruginosa Blooms. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122653. [PMID: 34961124 PMCID: PMC8707890 DOI: 10.3390/plants10122653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In recent years, with the frequent global occurrence of harmful algal blooms, the use of plant allelopathy to control algal blooms has attracted special and wide attention. This study validates the possibility of turning water dropwort into a biological resource to inhibit the growth of harmful Microcystis aeruginosa blooms via allelopathy. The results revealed that there were 33 types of allelopathic compounds in the water dropwort culture water, of which 15 were phenolic acids. Regarding water dropwort itself, 18 phenolic acids were discovered in all the organs of water dropwort via a targeted metabolomics analysis; they were found to be mainly synthesized in the leaves and then transported to the roots and then ultimately released into culture water where they inhibited M. aeruginosa growth. Next, three types of phenolic acids synthesized in water dropwort, i.e., benzoic, salicylic, and ferulic acids, were selected to clarify their inhibitory effects on the growth of M. aeruginosa and their mechanism(s) of action. It was found that the inhibitory effect of phenolic acids on the growth of M. aeruginosa increased with the increase of the exposure concentration, although the algae cells were more sensitive to benzoic acid than to salicylic and ferulic acids. Further study indicated that the inhibitory effects of the three phenolic acids on the growth of M. aeruginosa were largely due to the simultaneous action of reducing the number of cells, damaging the integrity of the cell membrane, inhibiting chlorophyll a (Chl-a) synthesis, decreasing the values of F0 and Fv/Fm, and increasing the activity of the antioxidant enzymes (SOD, POD, and CAT) of M. aeruginosa. Thus, the results of this study indicate that both culture water including the rich allelochemicals in water dropwort and biological algae inhibitors made from water dropwort could be used to control the growth of noxious algae in the future.
Collapse
Affiliation(s)
- Jixiang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Yajun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Naiwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Wei Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| |
Collapse
|
9
|
Chen YD, Zhu Y, Xin JP, Zhao C, Tian RN. Succinic acid inhibits photosynthesis of Microcystis aeruginosa via damaging PSII oxygen-evolving complex and reaction center. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58470-58479. [PMID: 34114144 DOI: 10.1007/s11356-021-14811-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
To elucidate the mechanism of succinic acid (SA) inhibition of Microcystis aeruginosa, the chlorophyll fluorescence transients, photosynthesis, photosynthetic electron transport activity, and gene expression of M. aeruginosa were evaluated under various doses of SA. The results demonstrated that, after treatment with 60 mg L-1 SA for 1 h, the chlorophyll fluorescence transients and related parameters changed significantly, indicating that the function and structure of photosynthetic apparatuses of Microcystis were seriously damaged. The initial quantum efficiency α, maximum net photosynthetic rate Pnmax, dark respiration rate Rd, and gross photosynthetic rate decreased to 57%, 49%, 49%, and 46%, respectively, relative to the control. Furthermore, photosystem II (PSII) activity (H2O→p-BQ) and the electron transport activity of H2O→MV and DPC→MV significantly decreased. Real-time PCR analysis revealed that, following incubation with 60 mg L-1 SA for 24 h, the expression level of core protein genes (psbA, psaB, psbD, and psbO) of the photosynthesis centers photosystem I (PSI) and PSII decreased significantly. However, the transcription of gene nblA encoding phycobilisome degradation protein was elevated. The downregulation of the rbcL gene, which encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), resulted in the suppression of CO2 fixation and assimilation. High concentration (60 mg L-1) of SA resulted in damage to oxygen-evolving complex (OEC) and reaction center of PSII, blocking photosynthetic electron transport, thereby lowering the rate photosynthesis and inhibiting the growth of Microcystis. We concluded that inhibition of photosynthesis is an important mechanism of SA inhibition in M. aeruginosa.
Collapse
Affiliation(s)
- Yi-Dong Chen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yuan Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jian-Pan Xin
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ru-Nan Tian
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
10
|
Xiang H, Lan N, Wang F, Zhao B, Wei H, Zhang J. Reduced pests, improved grain quality and greater total income: benefits of intercropping rice with Pontederia cordata. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5907-5917. [PMID: 33813747 DOI: 10.1002/jsfa.11243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/07/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Intercropping, which is growing two or more different crops in the same field simultaneously, is an effective traditional agricultural practice for productivity, resource utilization, and pest control. However, study on intercropping in paddy fields is limited. So in this study, field experiments of 2 years/four seasons (early and late seasons in 2016 and 2017) were conducted to examine the effects of rice-Pontederia cordata intercropping on rice plant growth, pest control, yield, income, and grain quality. RESULTS We found rice-P. cordata intercropping significantly decreased the occurrence of rice diseases and pests, with a 22.0-45.9% reduction in sheath blight and a 33.8-34.4% reduction in leaf folders. The mean land equivalent ratio (LER) (1.09) result indicates that intercropping rice and P. cordata generated positive yield effects. In addition, due to the economic profit from the replacement stripe of P. cordata in the rice paddy field, intercropping rice with P. cordata could greatly enhance farmer income. The average total income of rice intercropped with P. cordata was 2.5-fold higher than that of rice monoculture. Furthermore, intercropping significantly improved grain quality compared with the rice monoculture. It significantly increased the milled rice rate and whole milled rice rate by 11.2% and 12.8%, respectively, but decreased the chalky rice rate by 30.9-39.8% and chalkiness degree by 32.2%. CONCLUSIONS We suggest that rice-P. cordata intercropping provides an environmentally effective way to control rice diseases and pests, results in higher overall productivity and total income, and improves grain quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Xiang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, P. R. China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, P. R. China
| | - Ni Lan
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, P. R. China
| | - Fugang Wang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, P. R. China
| | - Benliang Zhao
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, P. R. China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, P. R. China
| | - Hui Wei
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, P. R. China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, P. R. China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, P. R. China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
11
|
Li J, Cao L, Guo Z, An G, Li B, Li J. Time- and dose-dependent allelopathic effects and mechanisms of kaempferol on toxigenic Microcystis growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112508. [PMID: 34284326 DOI: 10.1016/j.ecoenv.2021.112508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
This study determined time-dependent IC50 and confirmed 3.5 mg/L as IC50 value for kaempferol inhibiting toxigenic Microcystis growth, based on which algicidal effects and mechanisms against toxigenic Microcystis exposed to various kaempferol doses (0.5-2 × IC50) were explored along 14 day-test. Results showed that growth inhibition ratio (GIR) almost elevated with increasing kaempferol dose, and at each dose GIR elevated firstly and fluctuated around 17.8%- > 40%, 53.6%-65.6% and 84.8%-89.3% at 1.75, 3.5 and 7 mg/L kaempferol during mid-late stage, respectively. With rising kaempferol dose, photosynthetic pigments contents (chlorophyll-a, phycobiliproteins), antioxidant response (superoxide dismutase and catalase (CAT) activities, glutathione (GSH) contents) and microcystins (MCs) production were almost increasingly stimulated as cellular protective responses during early-mid stage. However, these parameters (excluding CAT and GSH) were almost increasingly inhibited at late stage by prolonged stress and Microcystis cell was still more severely damaged as dose elevated along test, which could be reasons for increasing GIR with rising kamepferol dose. Persistent stimulation of CAT and GSH at each dose could alleviate cell damage until late stage, thus GIR no longer increased at late stage at each kaempferol dose. Moreover, fewer MCs release under kaempferol stress than control suggested kaempferol as eco-safe algaecide for migrating toxigenic Microcystis-dominated blooms (MCBs) and decreasing MCs risks. Compared with our previous data for luteolin inhibiting toxigenic Microcystis, this study supported formerly-proposed 'flavonoids structure - algicidal activity' relationship that the only OH-location difference between kaempferol and luteolin could affect algicidal activity and mechanisms against toxigenic Microcystis. Also, kaempferol and luteolin was revealed to exert additive effect on toxigenic Microcystis growth at equitoxic ratio. Our findings gave novel algicidal scenario of flavonoids and were greatly implicated in eco-friendly migrating toxigenic MCBs.
Collapse
Affiliation(s)
- Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Linrong Cao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Biying Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
13
|
Xu C, Huang S, Huang Y, Effiong K, Yu S, Hu J, Xiao X. New insights into the harmful algae inhibition by Spartina alterniflora: Cellular physiology and metabolism of extracellular secretion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136737. [PMID: 31982752 DOI: 10.1016/j.scitotenv.2020.136737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 05/11/2023]
Abstract
This study investigated the response of three toxic harmful algal blooms (HABs) species, Heterosigma akashiwo, Chattonella marina, and Alexandrium tamarense to coastal invasive plant, Spartina alterniflora. In this study, the growth of three HABs species were suppressed significantly by S. alterniflora extracts, showing a dose-response relationship. The raphidophyte H. akashiwo and C. marina exhibited higher inhibitory response with EC50,7d decreased by 14% and 75% as compared to the dinoflagellate A. tamarense. C. marina was the most sensitive among the three species. S. alterniflora extracts disrupted algal cellular integrity and photosynthesis. Furthermore, the extracellular organic matters were detected by fluorescence excitation-emission matrix. Algal metabolites, protein-like substances (tyrosine-like peak and tryptophan-like peak) decreased as time prolonged and the humic-like substances (UVA marine humic-like peak) increased when algal cells were exposed to S. alterniflora extracts. These results provide new insights to the inhibition mechanism of S. alterniflora extracts on HABs species.
Collapse
Affiliation(s)
- Caicai Xu
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Shitao Huang
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Yuzhou Huang
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Kokoette Effiong
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Shumiao Yu
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Jing Hu
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Xi Xiao
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China; Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms, S.O.A., MATHAB, Shanghai 200137, People's Republic of China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, MNR, Hangzhou 310012, People's Republic of China.
| |
Collapse
|
14
|
Yuan R, Li Y, Li J, Ji S, Wang S, Kong F. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136332. [PMID: 31935546 DOI: 10.1016/j.scitotenv.2019.136332] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The Microcystis aeruginosa (M. aeruginosa) blooms and Spartina alterniflora (S. alterniflora) invasion have caused serious damage to local ecological environment. This study validated the possibility of transforming the abandoned S. alterniflora into a biological resource to inhibit M. aeruginosa blooms through allelopathy. The results showed that the inhibitory effect became stronger with the increasing S. alterniflora concentration by decreasing chlorophyll a and weakening photosynthesis when S. alterniflora aqueous extract concentration was over 0.05 g/mL. The results of GC-MS showed that Cyclohexane, Heptane, 2-Cyclohexen-1-one, Hexadecanoic acid, 2,4-Di-tert-butylphenol and Hydrocinnamic acid may be the main allelochemicals. In addition, the S. alterniflora aqueous extract had little effect on the relative abundance and diversity of microbial communities in the culture system. This study provided a novel idea of controlling the M. aeruginosa blooms using the rapidly expanding S. alterniflora.
Collapse
Affiliation(s)
- Ruoyu Yuan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shuhua Ji
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
15
|
Yuan R, Li J, Li Y, Ren L, Wang S, Kong F. Formation mechanism of the Microcystis aeruginosa bloom in the water with low dissolved phosphorus. MARINE POLLUTION BULLETIN 2019; 148:194-201. [PMID: 31430706 DOI: 10.1016/j.marpolbul.2019.07.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The utilization of phosphorus by algae in the low-phosphorus state has drawn wide concerns due to the high risk of forming algal blooms. The cyanobacteria Microcystis aeruginosa (M. aeruginosa) grew well under low-phosphorus condition by hydrolyzing dissolved organic phosphorus (DOP) to dissolved inorganic phosphorus (DIP) through alkaline phosphatase (AP). There was a negative correlation between DIP concentration and AP activity of algae. AP activity significantly increased at 0-3 d (p < 0.05), and reached the peak values of 43.06 and 49.11 King unit/gprot on day 5 for DIP (0.1 mg/L) and DOP (4.0 mg/L), respectively. The relative expression of phosphate transporter gene increased with decreasing phosphorus concentrations. The catalase activity under low-phosphorus condition increased significantly (p < 0.05) after one week, and was generally higher than 0.15 U/mgprot on day 14. Understanding the utilization efficiency and mechanism of DIP and DOP in the low-phosphorus state would help to inhibit the formation of algal blooms.
Collapse
Affiliation(s)
- Ruoyu Yuan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ling Ren
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|