1
|
Li X, Li T, Jeyakumar P, Li J, Bao Y, Jin X, Zhang J, Guo C, Jiang X, Lu G, Dang Z, Wang H. Effect of biochar-derived DOM on contrasting redistribution of chromate during Schwertmannite dissolution and recrystallization. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134988. [PMID: 38908178 DOI: 10.1016/j.jhazmat.2024.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Biochar-derived dissolved organic matter (BDOM), is extensively involved in the recrystallization of minerals and the speciation alteration of associated toxic metals. This study investigates how BDOM extracted from tobacco petiole (TP) or tobacco stalk (TS) biochar influences the speciation repartitioning of Cr(VI) in environments impacted by acid mine drainage (AMD), focusing on interactions with secondary minerals during Schwertmannite (Sch) dissolution and recrystallization. TP-BDOM, rich in lignin-like substances, slowed down the Cr-Sch dissolution and Cr release under acidic conditions compared to TS-BDOM. TP-BDOM's higher O/C component exerts a delayed impact on Cr-Sch stability and Cr(VI) reduction. In-situ ATR-FTIR and 2D-COS analysis showed that carboxylic and aromatic N-OH groups in BDOM could interact with Cr-Sch surfaces, affecting sulfate and Cr(VI) release. It was also observed that slight recrystallization occurred from Cr-Sch to goethite, along with increased Cr incorporation into secondary minerals within TS-BDOM. This enhances our understanding of BDOM's role in Cr(VI) speciation changes in AMD-contaminated sites.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Tianfu Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jiayi Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jun Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
2
|
Cao Q, Guo C, Ren M, Li X, Xu Z, Wang C, Lu G, Dang Z. Influence of tartaric acid on the electron transfer between oxyanions and lepidocrocite. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135082. [PMID: 39003810 DOI: 10.1016/j.jhazmat.2024.135082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Iron oxide minerals control the environmental behavior of trace elements. However, the potential effects of electron transfer directions by iron oxides between organic acids and trace elements remain unclear. This study investigates the redox capacity of tartaric acid (TA) with chromate (Cr(Ⅵ)) or arsenate (As(V)) on lepidocrocite (Lep) from the perspective of electron transfer. The results demonstrated the configurations of TA (bidentate binuclear (BB)), As(V) (BB), and Cr(Ⅵ) (BB and protonated monodentate binuclear (HMB)) on Lep. Frontier molecular orbital calculations and X-ray photoelectron spectroscopy (XPS) binding energy shifts further indicated different electron transfer directions between TA and the oxyanions on Lep. The iron of Lep might act as electron acceptors when TA is adsorbed, whereas the iron and oxygen of Lep act as electron donors when As(V) is adsorbed. The iron of Lep might accept electrons from its oxygen and subsequently transfer these electrons to Cr(Ⅵ). Macroscopic validation experiments showed the reduction of Cr(VI), whereas no reduction of As(V). The XPS analysis showed a peak shift, with the possible formation of As-Fe-TA ternary complexes and electron transfer on Lep. These findings indicate that mineral interfacial electron transfer considerably influences the transport and transformation of oxyanions.
Collapse
Affiliation(s)
- Qianqian Cao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Meihui Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Ziran Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaoping Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Kou B, Yuan Y, Zhu X, Ke Y, Wang H, Yu T, Tan W. Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170451. [PMID: 38296063 DOI: 10.1016/j.scitotenv.2024.170451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Soil contamination by heavy metals poses major risks to human health and the environment. Given the current status of heavy metal pollution, many remediation techniques have been tested at laboratory and contaminated sites. The effects of soil organic matter-mediated electron transfer on heavy metal remediation have not been adequately studied, and the key mechanisms underlying this process have not yet been elucidated. In this review, microbial extracellular electron transfer pathways, organic matter electron transfer for heavy metal reduction, and the factors affecting these processes were discussed to enhance our understanding of heavy metal pollution. It was found that microbial extracellular electrons delivered by electron shuttles have the longest distance among the three electron transfer pathways, and the application of exogenous electron shuttles lays the foundation for efficient and persistent remediation of heavy metals. The organic matter-mediated electron transfer process, wherein organic matter acts as an electron shuttle, promotes the conversion of high valence state metal ions, such as Cr(VI), Hg(II), and U(VI), into less toxic and morphologically stable forms, which inhibits their mobility and bioavailability. Soil type, organic matter structural and content, heavy metal concentrations, and environmental factors (e.g., pH, redox potential, oxygen conditions, and temperature) all influence organic matter-mediated electron transfer processes and bioremediation of heavy metals. Organic matter can more effectively mediate electron transfer for heavy metal remediation under anaerobic conditions, as well as when the heavy metal content is low and the redox potential is suitable under fluvo-aquic/paddy soil conditions. Organic matter with high aromaticity, quinone groups, and phenol groups has a stronger electron transfer ability. This review provides new insights into the control and management of soil contamination and heavy metal remediation technologies.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hui Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Xiong L, Zhang F, Yang Y, Ding Y, Chen S. Preparation of a novel polypyrrole/dolomite composite adsorbent for efficient removal of Cr(VI) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21279-21290. [PMID: 38388974 DOI: 10.1007/s11356-024-32526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
A novel adsorbent, deposited PPy on the DMI (PPy/DMI) composite, was successfully synthesized for Cr(VI) removal from aqueous solution. PPy/DMI composite was characterized by BET, SEM, TEM, XRD, and XPS. The SEM and TEM analyses revealed that DMI can greatly reduce the aggregation of PPy and significantly enhance its adsorption performance. The Cr(VI) removal was highly pH dependent. The high selectivity of PPy/DMI composite for Cr(VI) removal was found even in the presence of co-existing ions. The adsorption kinetic process followed the pseudo-second-order equation, demonstrating that the Cr(VI) adsorption behavior onto PPy/DMI is chemisorption. Furthermore, the intra-particle diffusion model implied that the adsorption was controlled by both liquid membrane diffusion and internal diffusion. The adsorption isotherm data fitted well with the Langmuir model with the maximum adsorption capacity (406.50 mg/g at 323 K) which was considerably higher than that of other PPy-based adsorbents. The Cr(VI) adsorption onto PPy/DMI composite was endothermic. The main mechanisms of Cr(VI) removal are involved in adsorption through electrostatic attractions, ion exchange, and in situ reduction. The results suggested that PPy/DMI composite could be a promising candidate for efficient Cr(VI) removal from aqueous solution.
Collapse
Affiliation(s)
- Ling Xiong
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Fen Zhang
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Yanan Yang
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Yuqing Ding
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Shaohua Chen
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
5
|
Li Y, Bi E. Influencing mechanisms of tartaric acid on adsorption and degradation of tetracycline on goethite: insight from solid and liquid aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6411-6424. [PMID: 38148461 DOI: 10.1007/s11356-023-31465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
The interactions between organic pollutants and iron minerals play an important role in their environmental fate. In this study, the effects of low-molecular-weight organic acids (LMWOAs) on the adsorption and degradation of tetracycline (TC) on goethite were investigated. Tartaric acid (TA) was taken as the representative of LMWOAs to study the influencing mechanism through batch experiments and microscale characterization. In addition, the properties of TC-TA clusters under different pHs were determined by density functional theory (DFT) calculations. The results showed that all five LMWOAs inhibited TC adsorption and degradation. The preferential adsorption of TA on goethite changed TC adsorption from inner spherical to outer spherical complexation and mainly inhibited TC adsorption and degradation of the singly coordinated hydroxyl group. TC degradation rate decreased from 0.0287 to 0 h-1 in the first stage. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results showed that TA could influence the interactions of amide groups, C = O on the A-ring, and dimethylamino group of TC with goethite, and the formation of ≡Fe(II) was inhibited. In addition to competing for the effective sites, the effects of complexation between TA and TC in solution should be considered. According to DFT calculations, hydrogen bonds could be formed between the carboxyl group of TA and the H atom of TC at different pH. These findings can provide evidence for estimating the contribution of adsorption and degradation to TC removal by iron oxides with the coexistence of LMWOAs in a soil-water environment.
Collapse
Affiliation(s)
- Yujia Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, and Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Erping Bi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, and Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
6
|
Maiti S, Goel S, Dutta BK. Soil-phase immobilization of hexavalent chromium using L-ascorbic acid - kinetics, process optimization, and phytotoxicity studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167680. [PMID: 37820807 DOI: 10.1016/j.scitotenv.2023.167680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
l-ascorbic acid is found to be an effective and environmentally friendly reagent for remediation of Cr(VI)-contaminated soil. Soil-phase batch kinetics experiments elucidated the effects of chromium(VI) and l-ascorbic acid dosing, pH, soil-to-water ratio, and temperature on Cr(VI) reduction. An extended reductive environment was observed at a lower pH range, possibly due to ligand oxidation of several reactive intermediates. The kinetic data were fitted into a second-order rate model, and the rate constant was evaluated. A reaction mechanism was proposed. Reduction was substantially complete within about 3 h at natural pH conditions at an appropriate dosing of the reagent, and any residual Cr(VI) is reduced by the remaining ascorbic acid during aging of the soil. The reagent worked much better than other organic reductants reported in the literature. The rate constant correlated linearly with the soil-to-water ratio, while its logarithm correlated linearly with pH within the specified range. The reduction was primarily attributed to the presence of carboxylic, hydroxyl, and carbonyl groups in the ascorbic acid molecule, as confirmed by FTIR and XRD analysis. Medium-term stability experiments suggest that treatment with l-ascorbic acid significantly decreased leaching concentrations of Cr(VI) and total Cr which remained stable for 75 d. Ecological studies have shown that remediated soil promotes plant growth and increases earthworm survival rates, thus negating the emergence of any secondary pollutants. Response surface methodology (RSM) was used to investigate the relationship between Cr(VI) reduction and experimental parameters and to determine the optimum values. About 98.8 % reduction was achieved, which was consistent with the calculated optimal value. The study provides new insights into the use of l-ascorbic acid for sustainable remediation of Cr(VI)-contaminated soil. The optimum process conditions and the rate data obtained in this study are expected to be useful for the process design of a remediation facility for Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Sutanu Maiti
- Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sudha Goel
- Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Binay K Dutta
- Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
7
|
Jiang X, Long W, Xu T, Liu J, Tang Y, Zhang W. Reductive transformation of Cr(VI) in contaminated soil by polyphenols: The role of gallic and tannic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114807. [PMID: 36948011 DOI: 10.1016/j.ecoenv.2023.114807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Polyphenols, as an important category of natural organics, are ubiquitous in plants and structurally diverse. Batch experiments were conducted to investigate the role of natural polyphenol, such as gallic acid (GA) and tannic acid (TA), in the biochemical behavior of Cr(VI) in soil media. GA and TA can effectively convert Cr(VI) to Cr(III) under neutral conditions (pH 7.0). However, there are significant differences in the transport, leaching toxicity, and bioavailability of reduced Cr(III) between the two systems. UV-vis spectra, chromium (Cr) mass balance, speciation distribution, and X-ray photoelectron spectroscopy were used to explore the intrinsic mechanisms of Cr(VI) reduction and (im)mobilization in the presence of GA or TA. Results showed that the reduction of Cr(VI) by GA was accompanied by poor immobilization of reduced Cr(III), especially at high GA concentrations (4-10 g/L), which was associated with the formation of soluble Cr(III) complexes. After treatment with 4 g/L GA, 51.49 ± 3.04% of the Cr in GA system was mobilized as complexes into aqueous phase. In contrast, the reduction of Cr(VI) and the subsequent precipitation of reduced Cr(III) was dominant in the TA system. After treatment with 4 g/L TA, 97.24 ± 0.31% of the total Cr in the TA system was immobilized into soil phase and transformed into more stable fractions. Our findings provide new insights into how natural organics shape the fate and transport of Cr in soils, which also have substantial implications for the development of Cr sequestration technology.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Wenjun Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Teng Xu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jiayu Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Wenhua Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Campisi S, Leone M, Papacchini M, Evangelisti C, Polito L, Postole G, Gervasini A. Multifunctional interfaces for multiple uses: Tin(II)-hydroxyapatite for reductive adsorption of Cr(VI) and its upcycling into catalyst for air protection reactions. J Colloid Interface Sci 2023; 630:473-486. [PMID: 36334484 DOI: 10.1016/j.jcis.2022.10.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022]
Abstract
Evidence collected to date by our group has demonstrated that tin(II)-functionalized hydroxyapatites (Sn/HAP) are a newly discovered class of ecofriendly reductive adsorbents for Cr(VI) removal from wastewaters. In this work an upgraded series of Sn/HAP materials assured a maximum removal capacity of ≈ 20 mgCr/g, doubling the previously reported value for Sn/HAP materials, thanks to higher Sn-dispersion as proved by X-ray photoelectron spectroscopy and electron microscopy. Insights on kinetics and thermodynamics of the reductive adsorption process are provided and the influence of pH, dosage, and nature of Cr(VI) precursors on chromium removal performances have been investigated. Pseudo-second-order kinetics described the interfacial reductive adsorption process on Sn/HAP, characterized by low activation energy (21 kJ mol-1), when measured in the 278-318 K range. Tests performed in the 2-6 pH interval showed similar efficiency in terms of Cr(VI) removal. Conventional procedures of recycling and regeneration resulted ineffective in restoring the pristine performances of the samples due to surface presence of both Sn(IV) and Cr(III). To overcome these weaknesses, the used samples (Sn + Cr/HAP) were upcycled into catalysts in a circular economy perspective. Used samples were tested as catalysts in gas-phase catalytic processes for air pollution remediation: selective catalytic reduction of NOx (NH3-SCR), NH3 selective catalytic Oxidation (NH3-SCO), and selective catalytic oxidation of methane to CO2. Catalytic tests enlightened the interesting activity of the upcycled Sn + Cr/HAP samples in catalytic oxidation processes, being able to selectively oxidize methane to CO2 at relatively low temperature.
Collapse
Affiliation(s)
- Sebastiano Campisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| | - Mirko Leone
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Maddalena Papacchini
- Department of Technological Innovations and Safety of Plants, INAIL, Products and Anthropic Settlements, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Claudio Evangelisti
- CNR - ICCOM - Istituto di Chimica dei Composti OrganoMetallici, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Laura Polito
- CNR - Consiglio Nazionale delle Ricerche, SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Georgeta Postole
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Antonella Gervasini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
9
|
Riboflavin as a non-quinone redox mediator for enhanced Cr(VI) removal by Shewanella putrefaciens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Anthony ET, Oladoja NA. Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8026-8053. [PMID: 34837612 DOI: 10.1007/s11356-021-17614-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
11
|
Xu L, Fu F, Yu P, Sun G. Properties and mechanism of Cr(VI) adsorption and reduction by K 2FeO 4 in presence of Mn(II). ENVIRONMENTAL TECHNOLOGY 2022; 43:918-926. [PMID: 32795146 DOI: 10.1080/09593330.2020.1811392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
To efficiently treat hexavalent chromium (Cr(VI)) wastewater, K2FeO4 was used to remove and reduce Cr(VI) in presence of Mn(II) in this paper. Batch removal experiments were carried out to study the effect of Fe/Mn molar ratios, initial pH, in-situ and ex-situ and co-existing ions on Cr(VI) removal. The results showed the removal efficiency of Cr(VI) was 97.7% for the initial Cr(VI) concentration of 10.0 mg/L at Fe/Mn molar ratio of 2:3 and initial pH 8.0. Meanwhile, the high removal efficiency of Cr(VI) had been maintained throughout the pH range of 3.0-8.0 in the experimental study. Moreover, the removal process was relatively stable regardless of in-situ and ex-situ, and co-existing ions such as Ca2+ and low concentration of HCO3- had no intense effect on Cr(VI) removal, while SO42- inhibited Cr(VI) removal in the reaction system. To investigate the removal mechanism of Cr(VI) by K2FeO4 in presence of Mn(II), the reaction products were characterized by the Fourier transformed infrared spectrometer, X-ray powder diffraction, Transmission electron microscopy and the high-resolution X-ray photoelectron spectroscopy. The results indicated the ferrate decomposition products of γ-FeOOH/γ-Fe2O3 had the ability to adsorb Cr(VI) and react with Mn(II) to form γ-Fe2O3-Mn(II) complex to adsorb and reduce Cr(VI).
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Peijing Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Wen J, Xue Z, Yin X, Wang X. Insights into aqueous reduction of Cr(VI) by biochar and its iron-modified counterpart in the presence of organic acids. CHEMOSPHERE 2022; 286:131918. [PMID: 34426264 DOI: 10.1016/j.chemosphere.2021.131918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) pollution in water has become an environmental and social problem because of the highly toxic nature of Cr(VI). Biochar has been widely used in Cr-containing wastewater treatment due to its adsorption advantage and intrinsic electron-donating ability. In this paper, Cr(VI) was taken as the target pollutant, and corn-straw derived biochar (BC) and its iron-modified counterpart (BC-Fe) were taken as the main adsorbents. The effects of fulvic acid (FA) and lactic acid (LA) on the adsorption efficiency of BC and BC-Fe in aqueous solution were discussed, and the internal reaction mechanism was revealed by SEM, FTIR, XPS, and Zeta potential analysis. The results showed that the BC-Fe pyrolyzed at 600 °C (i.e., BC-Fe600) had good magnetic property and adsorption effect across a wide pH range (pH 3-9) (the maximum removal efficiency was 96%). At the same time, LA had a concentration-dependent promoting effect on Cr(VI) adsorption in the BC600. However, the addition of FA and LA both inhibited the adsorption of Cr(VI) by BC-Fe600 at pH = 5 and 7, with LA showing a more inhibiting effect on Cr(VI) removal (decreased by 16.09% at pH 5) than FA (decreased by 2.09% at pH 5). The addition of FA and LA caused the surface potential of BC-Fe600 to drop, resulting in an increasing electrostatic repulsion between Cr(VI) and the material. However, LA increased the reduction of Cr(VI) on BC-Fe600, possibly through the combined effects of the electron-donating ability of LA and the photolysis of Fe(III)-lactate complexes.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhuangzhuang Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiyan Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xue Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
13
|
Yang W, Yang Z, Shao L, Li S, Liu Y, Xia X. Photocatalytic reduction of Cr(VI) over cinder-based nanoneedle in presence of tartaric acid: Synergistic performance and mechanism. J Environ Sci (China) 2021; 107:194-204. [PMID: 34412782 DOI: 10.1016/j.jes.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/13/2023]
Abstract
Cr(VI) is a common heavy metal ion, which will seriously harm human body and environment. Therefore, the removal of Cr(VI) has become an attractive topic. In this work, cinder was used as a raw material to synthesize a nanoneedle material: γ-(AlOOH@FeOOH) (γ-Al@Fe). The physicochemical properties of γ-Al@Fe were thoroughly characterized, and its effectiveness as a catalyst for photocatalytic reduction of Cr(VI) was evaluated. The results showed that Cr(VI) could be efficiently reduced by γ-Al@Fe in the presence of tartaric acid (TA) under visible light. The variable factors on the reaction were investigated in detail, and the results showed that under optimal conditions (γ-Al@Fe 0.4 g/L, TA 0.6 g/L, pH 2), Cr(VI) was completely reduced within 7 min. Besides, scavenger experiments and EPR proved that O2• - and CO2• - played a significant role in the photocatalytic reduction of Cr(VI). TA acts as a sacrificial agent to trap the holes and generate strong reducing free radicals: CO2• -. Dissolving O2 could react with electrons to generate O2• -. This work discussed the performance and mechanism of photocatalytic reduction of Cr(VI) in detail, which provided a new idea for the resource utilization of solid waste and the treatment of heavy metal sewage.
Collapse
Affiliation(s)
- Wenwu Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhenfei Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luhua Shao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sijian Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yutang Liu
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
14
|
Wang H, Zhang J, Zhu J, Chang J, Wang N, Chen H. Synergistic/antagonistic effects and mechanisms of Cr(VI) adsorption and reduction by Fe(III)-HA coprecipitates. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124529. [PMID: 33218908 DOI: 10.1016/j.jhazmat.2020.124529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Widespread Fe(III)-humic acid (HA) coprecipitates (FHCs) have substantial impacts on the adsorption and reduction of Cr(VI) in soils and sediments, but whether this process is equal to the sum of their individual components remains unknown. In this study, ferrihydrite (Fh)- and HA-like FHCs (C/Fe<3 and C/Fe>3, respectively) were synthesized by controlling the initial C/Fe ratios (0.5-18) to explore the potential synergistic/antagonistic effects during the adsorption and reduction of Cr(VI). According to the results, antagonistic effects on Cr(VI) adsorption (5%-80%) were observed on Fh- and HA-like FHCs, where the antagonistic intensity increased with increasing HA proportions, respectively caused by the more serious occupation of adsorption sites and the stronger electrostatic repulsion to Cr(VI). Notably, significant synergistic reduction effects (5%-650%) occurred on Fh-like FHCs were found to be achieved by the activation of low-molecular HA (0.1-0.3 kDa) with primary/secondary hydroxylic groups, which might be induced by the inductive effect of Fh on complexed HA molecules according to density-functional theory (DFT) calculation. While slight antagonistic reduction effects (2%-45%) by HA-like FHCs were attributed to the decreasing accessibility of Cr(VI) to reductive phenolic groups, which might be blocked within FHC particles or complexed with Fe(III) ions through cation bridges.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Jia Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China.
| | - Jinqi Zhu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Jingjie Chang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Ning Wang
- Chinese Academy for Environmental Planning, Beijing 100020, PR China
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
15
|
Li Y, Wang H, Wu P, Yu L, Rehman S, Wang J, Yang S, Zhu N. Bioreduction of hexavalent chromium on goethite in the presence of Pseudomonas aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114765. [PMID: 32454358 DOI: 10.1016/j.envpol.2020.114765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The effective mineral absorption and bioreduction were considered as two preferred processes to alleviate the bioavailability and toxicity of toxic trace metals. In this study, the bioreduction of hexavalent chromium (Cr(VI)) on goethite (FeOOH) in the presence of Pseudomonas aeruginosa (P. aeruginosa) was investigated with different environmental factors, including carbon source concentrations, pH, temperature and initial Cr(VI) concentrations. The characterization of FeOOH-P. aeruginosa indicated that P. aeruginosa was surrounded by FeOOH, which could provide the essential iron for bacterial growth and reduce Cr(VI) to Cr(III). The optimal experimental conditions for Cr(VI) (initial concentration: 35 mg L-1) absorption (∼46%) and bioreduction (∼54%) involved a temperature of 45 °C and pH of 5.5. Meanwhile, extracellular polymeric substances (EPS) secreted by P. aeruginosa and its functional groups played important roles in the reduction of Cr(VI). They could reduce Cr(VI) to Cr(III) and transform to Cr(OH)3 or Fex-Cr(1-x)(OH)3 precipitation. These results of this study are of significant importance to better understand the environmental geochemical behavior of Cr(VI) with the interactions between soil minerals and microorganisms.
Collapse
Affiliation(s)
- Yihao Li
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huimin Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Langfeng Yu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Saeed Rehman
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Junfeng Wang
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Shanshan Yang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
16
|
Zuo C, Wu M, Zhang X, Guo Q. CeO
2
‐CrO
y
/
γ‐Al
2
O
3
redox catalyst for the oxidative dehydrogenation of propane to propylene. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng Zuo
- Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Man Wu
- Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Xiuli Zhang
- Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Qingjie Guo
- Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
- State Key Laboratory of High‐efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering Ningxia University Yinchuan China
| |
Collapse
|
17
|
Zhang X, Zhang L, Liu Y, Li M, Wu X, Jiang T, Chen C, Peng Y. Mn-substituted goethite for uranium immobilization: A study of adsorption behavior and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114184. [PMID: 32193078 DOI: 10.1016/j.envpol.2020.114184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Goethite is a common iron hydroxide, which can be substituted by manganese (Mn) in the goethite structure. It is important to investigate the immobilization of uranium(VI) on Mn-substituted goethite (Mn-Goe) to understand the fate and migration of uranium in soils and sediments. In this study, the sorption of uranium(VI) by Mn-Goe was investigated as a function of pH, adsorbent dosage, contact time, and initial uranium concentration in batch experiments. Several material analysis techniques were used to characterize manganese substituted materials. Results indicated that Mn was successfully introduced into the goethite structure, the length of particles increased gradually, the surface clearly exhibited higher roughness with increasing Mn content, and that uranium(VI) sorption of synthetic Mn-Goe appeared to be higher than that of goethite. The sorption kinetics supported the results presented by the pseudo-second-order model. The sorption capacity of uranium on Mn-Goe was circa 77 mg g-1 at pH = 4.0 and 25 °C. Fourier transform-infrared spectroscopy (FT-IR) analyses revealed that uranium ions were adsorbed through functional groups containing oxygen on the Mn-Goe structure. The enhancement of Mn-substitution for the uranium(VI) sorption capacity of goethite was revealed. This study suggests that goethite and Mn-Goe can both play a significant role in controlling the mobility and transport of uranium(VI) in the subsurface environment, which is helpful for material development in environmental remediation.
Collapse
Affiliation(s)
- Xiaowen Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Engineering Research Centre of Radioactive Control Technology in Uranium Mining and Metallurgy, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Lijiang Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yong Liu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Engineering Research Centre of Radioactive Control Technology in Uranium Mining and Metallurgy, Hengyang, Hunan, 421001, China.
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Xiaoyan Wu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Tianjiao Jiang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Chen Chen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
18
|
Liang C, Tang B, Zhang X, Fu F. Mobility and transformation of Cr(VI) on the surface of goethite in the presence of oxalic acid and Mn(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26115-26124. [PMID: 32358750 DOI: 10.1007/s11356-020-09016-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Goethite is an effective adsorbent for hexavalent chromium (Cr(VI)). Oxalic acid and other organic acids will affect the release, immobilization, and bioavailability of Cr(VI) in nature on the mineral surface. Mn(II) can accelerate the reduction of Cr(VI) with oxalic acid. Herein, the effects of oxalic acid and Mn(II) on the mobilization and transformation of adsorbed Cr(VI) on the surface of goethite were investigated in this study. The results revealed that Mn(II) could increase the adsorption of Cr(VI) by increasing the positive charge on the surface of goethite. The complexation of oxalic acid with the surface of goethite caused the adsorbed Cr(VI) to be released into the solution. Moreover, oxalic acid could undergo redox with adsorbed Cr(VI) through electron conduction on the surface of goethite, thereby resulting in the transformation of adsorbed Cr(VI) to Cr(III). During the reaction in the presence of oxalic acid, the concentration of Cr(III) increased from 0 to 13.9 mg/L. In addition, Mn(II), oxalic acid, and Cr(VI) could form unstable ester-like species in the solution, which accelerated the reduction of Cr(VI) to Cr(III). These findings of this study may enrich our understanding of the behaviors of Cr(VI) in the coexistence of goethite, oxalic acid, and Mn(II).
Collapse
Affiliation(s)
- Chenwei Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiangdan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Xu Z, Xu X, Zhang Y, Yu Y, Cao X. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121794. [PMID: 31813692 DOI: 10.1016/j.jhazmat.2019.121794] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/09/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Biochar could be involved in environmentally relevant redox reactions, and their redox-active moieties may change with pyrolysis temperature. In this study, pyrolysis-temperature depended electron donating and mediating ability of biochar for Cr(VI) reduction were evaluated. All biochar derived from peanut shell at 400-800 °C effectively reduced Cr(VI) into Cr(III), and the reduction capability decreased as the pyrolysis temperature increased (400-600 °C), and then increased (600-800 °C). The electron donating moieties transformed from the -OH functional groups at lower pyrolysis temperature (<600 °C) to the functional groups associated with conjugated structure at higher temperature (>600 °C). Biochar could mediate the reduction of Cr(VI) by lactate, with the reduction rates of Cr(VI) increased up to 16.3 and 345 times that by either biochar or lactate alone, respectively. The redox ability of biochar was the premise, but its conductivity was the dominant factor, for the mediating reduction of Cr(VI). The mediation capability of biochar increased with elevated pyrolysis-temperature due to its increased conductivity related to the growth of conjugated clusters and carbon defects. Our results indicated that pyrolysis-temperature affects the formation of functional groups and conjugated carbon structure of biochars which have a distinguishable influence on the electron donating and mediating ability for Cr(VI) reduction.
Collapse
Affiliation(s)
- Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yue Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yulu Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Xu Z, Xu X, Tsang DCW, Yang F, Zhao L, Qiu H, Cao X. Participation of soil active components in the reduction of Cr(VI) by biochar: Differing effects of iron mineral alone and its combination with organic acid. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121455. [PMID: 31668763 DOI: 10.1016/j.jhazmat.2019.121455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Biochar as a soil amendment could be involved in redox process of elements which would be affected by soil-redox-active components including minerals and organic acids. This study evaluated the effects of Fe mineral and lactate on reducing capacity of biochar for Cr(VI) reduction and the underlying mechanisms. Fe minerals inhibited the reduction of Cr(VI) by biochar, with the decrease of Cr(VI) reduction rate constant obtained by pseudo first-order reaction model from 2.18 to 2.47 × 10-2 h-1 to 0.71-1.51 × 10-2 h-1. The decrease of reduction rate constant was because (1) the loss of electron donating moieties in biochar; and (2) inhibition of electron transfer between biochar and Cr(VI) due to surface coverage by biochar-Fe complex. However, the coexistence of Fe minerals with lactate enhanced the reduction of Cr(VI) by biochar, with the rate constant increasing from 2.58 to 3.05 × 10-2 h-1 to 2.91-27.2 × 10-2 h-1. The positive effect was also attributed to two reasons: (1) lactate can decrease the surface Fe-coverage of biochar through chelating process; (2) electron from lactate can be shuttled by Fe(II) and thus enhancing the Cr(VI) reduction. Our results revealed that different soil redox-active components could have varying effects on biochar amendment for Cr(VI) reduction, which should be further considered during the application of biochar.
Collapse
Affiliation(s)
- Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|