1
|
He Z, Fang Y, Zhang F, Liu Y, Wen X, Yu C, Cheng X, Li D, Huang L, Ai H, Wu F. Toxic Effect of Methyl-Thiophanate on Bombyx mori Based on Physiological and Transcriptomic Analysis. Genes (Basel) 2024; 15:1279. [PMID: 39457404 PMCID: PMC11507533 DOI: 10.3390/genes15101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The utilization of methyl-thiophanate (MT) in vegetables and fruits is widespread due to its broad efficiency, yet its potential impact on silkworm growth remains uncertain. This study aims to examine the effects of MT on the growth of silkworms. Specifically, we assessed the weights of fifth-instar larvae that were fed mulberry leaves saturated with three concentrations (2.5, 5, and 10 mg/mL) of MT, as well as the weights of a control group. METHODS TEM was used to show the status of the silkworm midgut after MT supplementation. Oxidative stress was evaluated in the presence of MT. Furthermore, a transcriptomic sequencing experiment was conducted to investigate the mechanism through which the development of silkworms is induced by MT. RESULTS Our findings indicate that the supplementation of MT hindered larval growth compared to the control group, suggesting a toxic effect of MT on silkworms. The transmission electron microscopy (TEM) results show that MT supplementation induced autophagy in the silkworm midgut. MT was also found to induce oxidative stress in silkworms through the activation of reactive oxygen (ROS), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities. Subsequent transcriptomic analysis revealed 1265 significantly differentially expressed genes (DEGs) in response to MT. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these DEGs were associated with antioxidant defense, detoxification processes, lysosome biogenesis, and metabolic pathways. CONCLUSIONS These findings suggest that MT toxicity in silkworm larvae is mediated through the induction of oxidative stress and alterations in metabolism. This study contributes to our understanding of the impacts of MT exposure on silkworms and provides insights into potential pesticides for use in mulberry gardens.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Z.H.); (C.Y.); (D.L.); (L.H.)
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China; (Y.F.); (F.Z.); (Y.L.); (X.C.)
| | - Fengchao Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China; (Y.F.); (F.Z.); (Y.L.); (X.C.)
| | - Yang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China; (Y.F.); (F.Z.); (Y.L.); (X.C.)
| | - Xiaoli Wen
- College of Life Sciences, Central China Normal University, Wuhan 430079, China;
| | - Cui Yu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Z.H.); (C.Y.); (D.L.); (L.H.)
| | - Xinkai Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China; (Y.F.); (F.Z.); (Y.L.); (X.C.)
| | - Dechen Li
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Z.H.); (C.Y.); (D.L.); (L.H.)
| | - Liang Huang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Z.H.); (C.Y.); (D.L.); (L.H.)
| | - Hui Ai
- College of Life Sciences, Central China Normal University, Wuhan 430079, China;
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Z.H.); (C.Y.); (D.L.); (L.H.)
| |
Collapse
|
2
|
Ali S, Zhang X, Gao T, Hamid Bashir M, Wang X. Comparative transcriptome analysis reveals disruption of Plutella xylostella immune system by fungal peptide cyclosporin C. J Invertebr Pathol 2024; 206:108156. [PMID: 38901686 DOI: 10.1016/j.jip.2024.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The diamondback moth (Plutella xylostella), a major threat to crucifers across the globe, has developed resistance against the majority of insecticides enhancing the need for alternate control measures against this pest. Recently cyclosporin C, a secondary metabolite produced by the insect pathogenic fungus Purpeocillium lilacinum, has been reported to induce lethal and sub-lethal effects against P. xylostella. To date, little is known about the molecular mechanisms of interaction between cyclosporin C and P. xylostella immune systems. This study reports the transcriptome-based immune response of P. xylostella to cyclosprin C treatment. Our results showed differential expression of 322, 97, and 504 differentially expressed genes (DEGS) in P. xylostella treated with cyclosporin C compared to control 24, 48, and 72 h post-treatment, respectively. Thirteen DEGs were commonly expressed at different time intervals in P. xylostella larvae treated with cyclosporin C compared to control. Cyclosporin C treatment induced the down-regulated expression of majority of immune-related genes related to pattern recognition responses, signal modulation, Toll and IMD pathways, antimicrobial peptides and antioxidant responses confirming the ability to suppress immune response of P. xylostella. These results will further improve our knowledge of the infection mechanism and complex biochemical processes involved in interaction between cyclosporin C and insect immune systems.
Collapse
Affiliation(s)
- Shaukat Ali
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaochen Zhang
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | - Tianxiang Gao
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| | | | - Xingmin Wang
- College of Plant Protection, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Milo S, Namawejje R, Krispin R, Covo S. Dynamic responses of Fusarium mangiferae to ultra-violet radiation. Fungal Biol 2024; 128:1714-1723. [PMID: 38575245 DOI: 10.1016/j.funbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
The repair capacity of ultra-violet (UV) light DNA damage is important for adaptation of fungi to different ecological niches. We previously showed that in the soil-borne pathogen Fusarium oxysporum photo-reactivation dependent UV repair is induced at the germling stage and reduced at the filament stage. Here, we tested the developmental control of the transcription of photolyase, UV survival, UV repair capacity, and UV induced mutagenesis in the foliar pathogen Fusarium mangiferae. Unlike F. oxysporum, neither did we observe developmental control over photo-reactivation dependent repair nor the changes in gene expression of photolyase throughout the experiment. Similarly, photo-reactivation assisted reduction in UV induced mutagenesis was similar throughout the development of F. mangiferae but fluctuated during the development of F. oxysporum. To generate hypotheses regarding the recovery of F. mangiferae after UV exposure, an RNAseq analysis was performed after irradiation at different timepoints. The most striking effect of UV on F. mangiferae was developmental-dependent induction of translation related genes. We further report a complex response that changes during recovery time and involves translation, cell cycle and lipid biology related genes.
Collapse
Affiliation(s)
- Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel; Department of Natural and Life Sciences, The Open University of Israel, Israel
| | - Ritah Namawejje
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel
| | - Roi Krispin
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel.
| |
Collapse
|
4
|
Liu Y, Tao YD, Zhang LB, Wang F, Xu J, Zhang JZ, Fu DY. Blue Light Exposure Caused Large-Scale Transcriptional Changes in the Abdomen and Reduced the Reproductive Fitness of the Fall Armyworm Spodoptera frugiperda. INSECTS 2023; 15:10. [PMID: 38249016 PMCID: PMC10816951 DOI: 10.3390/insects15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
In the present study, we found that blue light stress negatively affected the development periods, body weight, survival and reproduction of Spodoptera frugiperda, and it showed a dose-dependent reaction, as longer irradiation caused severer effects. Further transcriptome analysis found blue light stress induced fast and large-scale transcriptional changes in the head, thorax and, particularly, the abdomen of female S. frugiperda adults. A functional enrichment analysis indicated that shorter durations of blue light irradiation induced the upregulation of more stress response- and defense-related genes or pathways, such as abiotic stimuli detection and response, oxidative stress, ion channels and protein-kinase-based signal pathways. In the abdomen, however, different durations of blue-light-exposure treatments all induced the downregulation of a large number genes and pathways related to cellular processes, metabolism, catalysis and reproduction, which may be a trade-off between antistress defense and other processes or a strategy to escape stressful conditions. These results indicate irradiation duration- and tissue-specific blue light stress responses and consequences, as well as suggest that the stress that results in transcriptional alterations is associated with the stress that causes a fitness reduction in S. frugiperda females.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Yi-Dong Tao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Li-Bao Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Fen Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Tianbao Customs Comprehensive Technical Center, Wenshan 663603, China
| | - Jin Xu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Jun-Zhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Da-Ying Fu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| |
Collapse
|
5
|
Khan MM, Rothenberg DO, Shahfahad, Qiu BL, Zhu ZR. Identification and transcriptional profiling of UV-A-responsive genes in Bemisia tabaci. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115300. [PMID: 37494735 DOI: 10.1016/j.ecoenv.2023.115300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Ultraviolet-A (UV-A) radiation directly impacts the growth and spread of Bemisia tabaci. However, the mechanistic pathways of this phenomenon remain unknown. We analyzed B. tabaci transcriptome data after exposure to UV-A radiation for 6 h. The 453 genes were identified whose expression were significantly altered in response to the stress induced by UV-A irradiation. Forty genes were up-regulated, while 413 genes were down-regulated. Enrichment analysis using GO, KEGG, and Genomes databases revealed that the DEGs play key roles in antioxidation and detoxification, protein turnover, metabolic, developmental processes, and immunological response. Among the gene families involved in detoxification, shock, and development, down-regulated DEGs in transcriptional factor gene families were significantly greater than those up-regulated DEGs. Our findings demonstrated that exposure to UV-A stress can suppress immunity and affect the growth and biological parameters of B. tabaci by altering gene regulation. These results suggest a potential utility of UV-A stress in managing B. tabaci under greenhouse conditions.
Collapse
Affiliation(s)
- Muhammad Musa Khan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, PR China
| | - Dylan O'Neill Rothenberg
- College of Horticulture Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shahfahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Zeng-Rong Zhu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, PR China.
| |
Collapse
|
6
|
Wang FF, Wang MH, Zhang MK, Qin P, Cuthbertson AGS, Lei CL, Qiu BL, Yu L, Sang W. Blue light stimulates light stress and phototactic behavior when received in the brain of Diaphorina citri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114519. [PMID: 36634478 DOI: 10.1016/j.ecoenv.2023.114519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Blue light with a wavelength of 400-470 nm is the composition of the visible light. However, in recent years, blue light contributed the most significance to light pollution due to the artificial light at night. Previously, we have demonstrated that the Asian citrus psyllid (ACP), Diaphorina citri, an important pest in citrus production, has significant positive phototaxis with a light-emitting diode light of 400 nm. In this study, ACP with positive phototactic behavior to 400 nm light (PH) and non-phototactic behavior to 400 nm light (NP) were collected, individually. Transcriptome dynamics of head tissues of PH and NP groups were captured by using RNA-sequencing technology, respectively. Forty-three to 46 million clean reads with high-quality values were obtained, and 1773 differential expressed genes (DEGs) were detected. Compared with the NP group, there were 841 up-regulated DEGs and 932 down-regulated DEGs in the PH group. Eight pathways were significantly enriched in the PH group in the KEGG database, while 43 up-regulated pathways and 25 down-regulated pathways were significantly enriched in the PH group in the GO database. The DGE approach was reliable validated by real time quantitative PCR. Results indicated that the blue light acted as an abiotic stress causing physiological and biochemical responses such as oxidative stress, protein denaturation, inflammation and tumor development in ACPs. Additionally, the light was absorbed by photoreceptors of ACPs, and converted into electrical signal to regulate neuromodulation. This study provides basic information for understanding the molecular mechanisms of ACP in response to blue light and provides a reference for further studies to elucidate phototactic behavior.
Collapse
Affiliation(s)
- Fei-Feng Wang
- South China Agricultural University, Guangzhou 510640, China
| | - Ming-Hui Wang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Meng-Ke Zhang
- South China Agricultural University, Guangzhou 510640, China
| | - Peng Qin
- South China Agricultural University, Guangzhou 510640, China
| | | | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao-Li Qiu
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Lin Yu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| | - Wen Sang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
7
|
Yang CL, Meng JY, Zhou L, Zhang CY. Induced heat shock protein 70 confers biological tolerance in UV-B stress-adapted Myzus persicae (Hemiptera). Int J Biol Macromol 2022; 220:1146-1154. [PMID: 36041575 DOI: 10.1016/j.ijbiomac.2022.08.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects insect growth, development, and reproduction. Heat shock protein 70s kDa (Hsp70s) plays an important role in the environmental adaptation of insects. To determine the role of MpHsp70s in the UV-B tolerance of Myzus persicae (Sulzer), we identified the complete complementary DNA sequences of seven MpHsp70s. They were found to be ubiquitously expressed during different developmental stages and were highly expressed in second-instar nymphs and wingless adults. The expression levels of the MpHsp70s were significantly upregulated when exposed to different durations of UV-B stress. Nanocarrier-mediated dsMpHsp70 suppressed the expression of the MpHsp70s and reduced the body length, weight, survival rate, and fecundity of M. persicae under UV-B exposure. When the combinational RNAi approach was adopted, the effects on the survival rate and fecundity were greater under UV-B stress, except for MpHsc70-4. These results suggest that MpHsp70s are essential for the resistance of M. persicae to UV-B stress.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
8
|
Campbell JF, Athanassiou CG, Hagstrum DW, Zhu KY. Tribolium castaneum: A Model Insect for Fundamental and Applied Research. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:347-365. [PMID: 34614365 DOI: 10.1146/annurev-ento-080921-075157] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum has a long history as a model species in many distinct subject areas, but improved connections among the genetics, genomics, behavioral, ecological, and pest management fields are needed to fully realize this species' potential as a model. Tribolium castaneum was the first beetle whose genome was sequenced, and a new genome assembly and enhanced annotation, combined with readily available genomic research tools, have facilitated its increased use in a wide range of functional genomics research. Research into T. castaneum's sensory systems, response to pheromones and kairomones, and patterns of movement and landscape utilization has improved our understanding of behavioral and ecological processes. Tribolium castaneum has also been a model in the development of pest monitoring and management tactics, including evaluation of insecticide resistance mechanisms. Application of functional genomics approaches to behavioral, ecological, and pest management research is in its infancy but offers a powerful tool that can link mechanism with function and facilitate exploitation of these relationships to better manage this important food pest.
Collapse
Affiliation(s)
- James F Campbell
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, USA;
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos 382 21, Greece;
| | - David W Hagstrum
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| |
Collapse
|
9
|
Chen Y, Yang B, Li Z, Yue Y, Tian Q, Chen W, Ali S, Wu J. Immune-Related Genes of Megalurothrips usitatus (Bagrall) Against Beauveria brongniartii and Akanthomyces attenuatus Identified Using RNA Sequencing. Front Physiol 2021; 12:671599. [PMID: 34456741 PMCID: PMC8385781 DOI: 10.3389/fphys.2021.671599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Megalurothrips usitatus (Bagrall) is an important pest of legumes worldwide, causing great economic loss every year. Beauveria brongniartii and Akanthomyces attenuatus have shown considerable pathogenicity against M. usitatus in our previous studies. The medial lethal concentration (LC50) and the sublethal lethal concentration (LC25) of B. brongniartii isolate SB010 against M. usitatus were 8.38 × 105 and 1.73 × 105 conidia mL−1, respectively, whereas those of A. attenuatus isolate SCAUDCL-53 against M. usitatus were 4.37 × 105 and 2.97 × 104 conidia mL−1, respectively. This study reports the transcriptome-based explanation of the stress responses of M. usitatus following the application of B. brongniartii and A. attenuatus. The analysis of the transcriptomic data revealed the expression of 254, 207, 195, and 234 immunity-related unigenes by M. usitatus in response to B. brongniartii LC50 (SB1), B. brongniartii LC25 (SB2), A. attenuatus LC50 (V1), and A. attenuatus LC25 (V2), respectively. The biological function and metabolic pathway analyses showed that these unigenes were mainly related to pattern recognition receptors, information transduction factors, and reaction factors, such as scavenger receptor, cytochrome b5, cuticle protein, lysozyme, and serine protease.
Collapse
Affiliation(s)
- Yueyin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Bo Yang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhaoyang Li
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yang Yue
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qingheng Tian
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiyi Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Center of Biological Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Yang CL, Meng JY, Yao MS, Zhang CY. Transcriptome Analysis of Myzus persicae to UV-B Stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6281128. [PMID: 34021758 PMCID: PMC8140603 DOI: 10.1093/jisesa/ieab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects the growth and development of Myzus persicae (Sulzer) (Homoptera: Aphididae). How M. persicae responds to UV-B stress and the molecular mechanisms underlying this adaptation remain unknown. Here, we analyzed transcriptome data for M. persicae following exposure to UV-B radiation for 30 min. We identified 758 significant differentially expressed genes (DEGs) following exposure to UV-B stress, including 423 upregulated and 335 downregulated genes. In addition, enrichment analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases illustrated that these DEGs are associated with antioxidation and detoxification, metabolic and protein turnover, immune response, and stress signal transduction. Simultaneously, these DEGs are closely related to the adaptability to UV-B stress. Our research can raise awareness of the mechanisms of insect responses to UV-B stress.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, People’s Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| |
Collapse
|
11
|
Peng Y, Tang J, Xie J. Transcriptomic Analysis of the Brown Planthopper, Nilaparvata lugens, at Different Stages after Metarhizium anisopliae Challenge. INSECTS 2020; 11:insects11020139. [PMID: 32102435 PMCID: PMC7073985 DOI: 10.3390/insects11020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Nilaparvata lugens is one of the major pests of rice and results in substantial yield loss every year. Our previous study found that the entomopathogenic fungus Metarhizium anisopliae showed effective potential for controlling this pest. However, the mechanisms underlying M. anisopliae infection of N. lugens are not well known. In the present study, we further examined the transcriptome of N. lugens at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection by Illumina deep sequencing. In total, 174.17 Gb of data was collected after sequencing, from which 23,398 unigenes were annotated by various databases, including 3694 newly annotated genes. The results showed that there were 246 vs 75, 275 vs 586, 378 vs 1055, and 638 vs 182 up- and downregulated differentially expressed genes (DEGs) at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection, respectively. The biological functions and associated metabolic processes of these genes were determined with the Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The DEGs data were verified using RT-qPCR. These results indicated that the DEGs during the initial fungal infection appropriately reflected the time course of the response to the fungal infection. Taken together, the results of this study provide new insights into the molecular mechanisms underlying the insect host response to fungal infection, especially during the initial stage of infection, and may improve the potential control strategies for N. lugens.
Collapse
Affiliation(s)
- Yifan Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Jifeng Tang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaqin Xie
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence:
| |
Collapse
|
12
|
Tungjitwitayakul J, Yasanga T, Tatun N. Impact of UV-C radiation on morphology of the antenna and antennal sensilla in Tribolium castaneum (Coleoptera: Tenebrionidae). JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1812797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|