1
|
Etchie TO, Sivanesan S, Etchie AT, Krishnamurthi K, Adewuyi GO, George KV. Can the Indian national ambient air quality standard protect against the hazardous constituents of PM 2.5? CHEMOSPHERE 2022; 303:135047. [PMID: 35609663 DOI: 10.1016/j.chemosphere.2022.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Globally, exposure to ambient fine particulate matter (PM2.5) pollution claims ∼9 million lives, yearly, and a quarter of this deaths occurs in India. Regulation of PM2.5 pollution in India is based on compliance with its National Ambient Air Quality Standard (NAAQS) of 40 μg/m3, which is eight times the revised global air quality guideline (AQG) of 5 μg/m3. But, whether the NAAQS provides adequate protection against the hazardous components in PM2.5 is still not clear. Here, we examined the risk to health associated with exposure to PM2.5-bound polychlorinated biphenyls (PCB), heavy metals and polycyclic aromatic hydrocarbons (PAHs) in an Indian district averaging below the NAAQS. The annual average concentrations of PM2.5 mass, Σ28PCB and Σ13PAHs were 34 ± 17 μg/m3, 21 ± 12 ng/m3 and 458 ± 246 ng/m3, respectively. Concentrations of As, Cr, Mn and Ni in PM2.5 surpassed the screening levels for residential air. Substantial level of risks to health were associated with exposure to dioxin-like PCBs (Σ12dlPCB), PAHs, As, Cr and Ni. The hazard index or lifetime cancer risk were 240, or 9 cases per 1000 population, respectively. The estimated risks to health through exposure to hazardous components, except Ni, were greatest in rural areas, having a lower average PM2.5 concentration, than urban or peri-urban areas, suggesting higher toxicity potential of rural combustion sources. The large disparity between the estimated risk values and the acceptable risk level suggests that it would take a more stringent standard, such as the global AQG, to protect vulnerable populations in India from hazardous components in PM2.5.
Collapse
Affiliation(s)
| | | | | | - Kannan Krishnamurthi
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.
| | | | - K V George
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.
| |
Collapse
|
2
|
Etchie TO, Etchie AT, Jauro A, Pinker RT, Swaminathan N. Season, not lockdown, improved air quality during COVID-19 State of Emergency in Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145187. [PMID: 33736334 PMCID: PMC7825968 DOI: 10.1016/j.scitotenv.2021.145187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 05/24/2023]
Abstract
Globally, ambient air pollution claims ~9 million lives yearly, prompting researchers to investigate changes in air quality. Of special interest is the impact of COVID-19 lockdown. Many studies reported substantial improvements in air quality during lockdowns compared with pre-lockdown or as compared with baseline values. Since the lockdown period coincided with the onset of the rainy season in some tropical countries such as Nigeria, it is unclear if such improvements can be fully attributed to the lockdown. We investigate whether significant changes in air quality in Nigeria occurred primarily due to statewide COVID-19 lockdown. We applied a neural network approach to derive monthly average ground-level fine aerosol optical depth (AODf) across Nigeria from year 2001-2020, using the Multi-angle Implementation of Atmospheric Correction (MAIAC) AODs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) satellites, AERONET aerosol optical properties, meteorological and spatial parameters. During the year 2020, we found a 21% or 26% decline in average AODf level across Nigeria during lockdown (April) as compared to pre-lockdown (March), or during the easing phase-1 (May) as compared to lockdown, respectively. Throughout the 20-year period, AODf levels were highest in January and lowest in May or June, but not April. Comparison of AODf levels between 2020 and 2019 shows a small decline (1%) in pollution level in April of 2020 compare to 2019. Using a linear time-lag model to compare changes in AODf levels for similar months from 2002 to 2020, we found no significant difference (Levene's test and ANCOVA; α = 0.05) in the pollution levels by year, which indicates that the lockdown did not significantly improve air quality in Nigeria. Impact analysis using multiple linear regression revealed that favorable meteorological conditions due to seasonal change in temperature, relative humidity, planetary boundary layer height, wind speed and rainfall improved air quality during the lockdown.
Collapse
Affiliation(s)
| | | | - Aliyu Jauro
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Garki-Abuja, Nigeria.
| | - Rachel T Pinker
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, USA.
| | | |
Collapse
|
3
|
Etchie AT, Etchie TO, Elemile OO, Boladale O, Oni T, Akanno I, Bankole DT, Ibitoye OO, Pillarisetti A, Sivanesan S, Afolabi TY, Krishnamurthi K, Swaminathan N. Burn to kill: Wood ash a silent killer in Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141316. [PMID: 32814289 DOI: 10.1016/j.scitotenv.2020.141316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Aside the emissions, burning of wood in traditional cookstoves (TCs) also generates substantial amount of ash containing hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) and toxic metals. But, their concentrations in the ash, particularly in Africa where over 70% of the population utilize TCs, remain unknown. Here, we determined concentrations of sixteen PAHs and eleven heavy metals in ashes from twelve different African TCs, comprising six three-stone fires (TSFs) and six built-in-place cookstoves (BIPCs), burning common African wood species under real world situation. For each TC, ash samples were collected for six consecutive days (Monday-Saturday), and a total of seventy-two daily samples were collected from January-June 2019. Ash yields were measured gravimetrically, and concentrations of the pollutants were determined following standard analytical protocols. The results were used alongside secondary data (annual fuelwood consumption, African fuelwood densities, population proportion using fuelwood and surface human population density) to estimate annual tonnage, exposure potential and risk to health in Africa, using Monte Carlo simulation technique. The ash yields from all TCs studied exceeded 1% on dry weight basis, indicating that ash is a major waste by-product of wood combustion in TCs. TSFs produced more ash (5.7 ± 0.7%) than BIPCs (3.4 ± 1.0%). Concentrations of As, Cd, Hg and Pb in ashes were significantly higher (α = 0.05) for TSFs than BIPCs. In contrast, concentrations of PAHs were higher in ashes from BIPCs than TSFs. Assuming ash consumption rates range from 250 to 500 mg/day for young children weighing 10 to 30 kg, the upper dose (μg/kg-day) of Pb (0.2-3.9) or Σ16PAHs (0.02-0.34), for instance, surpasses the 0.3 μg/kg-day of Pb or PAH recognized as causing adverse effects in children, indicating a concern. The top five countries with the highest annual tonnage or exposure potential to toxic pollutants are Nigeria>Ethiopia>DR-Congo>Tanzania>Uganda, or Rwanda>Burundi>Uganda>Nigeria>Guinea-Bissau, respectively.
Collapse
Affiliation(s)
| | | | | | - Oluwatobi Boladale
- Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.
| | - Timileyin Oni
- Department of Civil Engineering, Landmark University, Omu-Aran, Nigeria.
| | - Ifeanyi Akanno
- Department of Civil Engineering, Landmark University, Omu-Aran, Nigeria.
| | | | | | - Ajay Pillarisetti
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| | - Saravanadevi Sivanesan
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | | - Kannan Krishnamurthi
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | |
Collapse
|
4
|
Li W, Dryfhout-Clark H, Hung H. PM 10-bound trace elements in the Great Lakes Basin (1988-2017) indicates effectiveness of regulatory actions, variations in sources and reduction in human health risks. ENVIRONMENT INTERNATIONAL 2020; 143:106008. [PMID: 32768183 DOI: 10.1016/j.envint.2020.106008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Limited studies focus on the effectiveness of regulatory actions on changes in sources and temporal trends of human health risks for trace elements in atmospheric particles < 10 μm (PM10). To address this knowledge gap, PM10 samples were collected at three stations in the Great Lakes Basin over a thirty-year time span and analyzed for 19 representative elements. Temporal trends of trace elements in PM10 were derived using the Digital Filtration Technique and sources of these elements were determined using multiple statistical techniques, namely enrichment factor analysis, positive matrix factorization (PMF) and potential source contribution function (PSCF). Non-carcinogenic and carcinogenic risks by chronic exposure were assessed using US EPA reference concentrations and inhalation unit risk. Our results showed a strong relationship between element concentrations and local populations, which suggested that the emissions of trace elements were anthropogenically-related and was confirmed by the enrichment factor analysis. The concentrations of most elements were significantly decreasing with halving times ranging from 10 to 48 years in response to national and international regulatory actions. Specific origins of atmospheric trace elements were from the copper refining industry, refuse incineration, coal combustion, vehicle emissions, oil/coal-fired power plants, and crustal/soil dust. Potential source region analysis indicates dominant sources south of the sampling sites in the US, associated with a higher population and more industrial and transportation activities. The possibility of non-cancer health effects due to inhalation were mostly within acceptable levels. However, potential cancer risk posed by inhalation of some elements cannot be ignored, with values approaching or higher than the acceptable level. Considering that the sampling locations are remote and regionally-representative, our finding emphasizes the importance of continued monitoring of metals in air to assess the effectiveness of control strategies.
Collapse
Affiliation(s)
- Wenlong Li
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Helena Dryfhout-Clark
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
5
|
Morgan V, Casso-Hartmann L, Bahamon-Pinzon D, McCourt K, Hjort RG, Bahramzadeh S, Velez-Torres I, McLamore E, Gomes C, Alocilja EC, Bhusal N, Shrestha S, Pote N, Briceno RK, Datta SPA, Vanegas DC. Sensor-as-a-Service: Convergence of Sensor Analytic Point Solutions (SNAPS) and Pay-A-Penny-Per-Use (PAPPU) Paradigm as a Catalyst for Democratization of Healthcare in Underserved Communities. Diagnostics (Basel) 2020; 10:E22. [PMID: 31906350 PMCID: PMC7169468 DOI: 10.3390/diagnostics10010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
Abstract
In this manuscript, we discuss relevant socioeconomic factors for developing and implementing sensor analytic point solutions (SNAPS) as point-of-care tools to serve impoverished communities. The distinct economic, environmental, cultural, and ethical paradigms that affect economically disadvantaged users add complexity to the process of technology development and deployment beyond the science and engineering issues. We begin by contextualizing the environmental burden of disease in select low-income regions around the world, including environmental hazards at work, home, and the broader community environment, where SNAPS may be helpful in the prevention and mitigation of human exposure to harmful biological vectors and chemical agents. We offer examples of SNAPS designed for economically disadvantaged users, specifically for supporting decision-making in cases of tuberculosis (TB) infection and mercury exposure. We follow-up by discussing the economic challenges that are involved in the phased implementation of diagnostic tools in low-income markets and describe a micropayment-based systems-as-a-service approach (pay-a-penny-per-use-PAPPU), which may be catalytic for the adoption of low-end, low-margin, low-research, and the development SNAPS. Finally, we provide some insights into the social and ethical considerations for the assimilation of SNAPS to improve health outcomes in marginalized communities.
Collapse
Affiliation(s)
- Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (V.M.); (E.M.); (S.P.A.D.)
| | - Lisseth Casso-Hartmann
- Natural Resources and Environmental Engineering, Universidad del Valle, Cali 760026, Colombia; (L.C.-H.); (I.V.-T.)
- Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change BioNovo, Universidad del Valle, Cali 760026, Colombia
| | - David Bahamon-Pinzon
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA; (D.B.-P.); (K.M.)
| | - Kelli McCourt
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA; (D.B.-P.); (K.M.)
| | - Robert G. Hjort
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (R.G.H.); (C.G.)
| | - Sahar Bahramzadeh
- School of Computer Engineering, Azad University, Science and Research Branch, Saveh 11369, Iran;
| | - Irene Velez-Torres
- Natural Resources and Environmental Engineering, Universidad del Valle, Cali 760026, Colombia; (L.C.-H.); (I.V.-T.)
- Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change BioNovo, Universidad del Valle, Cali 760026, Colombia
| | - Eric McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (V.M.); (E.M.); (S.P.A.D.)
| | - Carmen Gomes
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (R.G.H.); (C.G.)
| | - Evangelyn C. Alocilja
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA; (E.C.A.); (N.B.)
- Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Nirajan Bhusal
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA; (E.C.A.); (N.B.)
- School of Medical Sciences, Kathmandu University, Kathmandu 44600, Nepal
- Dhulikhel Hospital, Kathmandu University, Kavrepalanchok 45200, Nepal; (S.S.); (N.P.)
| | - Sunaina Shrestha
- Dhulikhel Hospital, Kathmandu University, Kavrepalanchok 45200, Nepal; (S.S.); (N.P.)
| | - Nisha Pote
- Dhulikhel Hospital, Kathmandu University, Kavrepalanchok 45200, Nepal; (S.S.); (N.P.)
| | - Ruben Kenny Briceno
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA; (E.C.A.); (N.B.)
- Instituto de Investigacion en Ciencia y Tecnologia, Universidad Cesar Vallejo, Trujillo 13100, Peru;
- Hospital Victor Lazarte Echegaray, Trujillo 13100, Peru
- Institute for Global Health, Michigan State University, East Lansing, MI 48824, USA
| | - Shoumen Palit Austin Datta
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (V.M.); (E.M.); (S.P.A.D.)
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- NSF Center for Robots and Sensors for Human Well-Being, Purdue University, 156 Knoy Hall, Purdue Polytechnic, West Lafayette, IN 47907, USA
| | - Diana C. Vanegas
- Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change BioNovo, Universidad del Valle, Cali 760026, Colombia
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA; (D.B.-P.); (K.M.)
| |
Collapse
|
6
|
Liu J, Chen Y, Cao H, Zhang A. Burden of typical diseases attributed to the sources of PM 2.5-bound toxic metals in Beijing: An integrated approach to source apportionment and QALYs. ENVIRONMENT INTERNATIONAL 2019; 131:105041. [PMID: 31377599 DOI: 10.1016/j.envint.2019.105041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
PM2.5-bound toxic metals (TMs) are derived from various sources, and they can cause many adverse health effects on the human body. To effectively reduce the disease burden of TMs by controlling the relative sources, an integrated approach of quality-adjusted life years (QALYs) and source-apportionment (positive matrix factorization, PMF) was proposed and applied to some typical diseases induced by TMs in 2017 in Beijing. The estimation included two parts; first, the number of potentially affected people was calculated based on the source mass contribution from PMF and the inhalation unit risk of TMs; second, the QALYs lost per affected person was calculated based on the disease duration, expected years of life lost (EYLL) and quality of life (QoL) for both affected people and the general population. The results showed that QALYs lost per person for renal cancer (17.3 QALYs), pneumonia (14.4 QALYs), lung cancer (14.2 QALYs), skin cancer (12.7 QALYs) and diabetes mellitus (12.6 QALYs) were higher than those for other diseases. Combined with PMF, the source contributions to the overall burden of typical diseases from the TMs followed the order of coal combustion (50.2%) > vehicle emissions (24.4%) > fuel oil combustion (11.4%) > Cr-related industry (10.9%) > resuspended dust (3.0%). The rank was further compared with that assessed for noncancer and cancer risks, and we verified the reasonability of the QALYs method. For seasonal contributions to coal combustion, winter and spring had the highest contributions, which coincided with the fact that coal was the main fuel for heating in Beijing. The QALYs lost attributed to TMs for coal combustion decreased by 49.1% from 2016 to 2017, which may indicate an effective policy associated with coal control. Overall, the integrated approach was successfully employed for estimating the disease burden induced by TMs from each source and was an effective solution to identify the control rank of sources for TM reduction.
Collapse
Affiliation(s)
- Jianwei Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanjiao Chen
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hongbin Cao
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Aichen Zhang
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|