1
|
Akbari S, Radi M, Hosseinifarahi M, Amiri S. Microbial and physicochemical changes in green bell peppers treated with ultrasonic-assisted washing in combination with Thymus vulgaris essential oil nanocapsules. Sci Rep 2024; 14:16584. [PMID: 39020069 PMCID: PMC11255337 DOI: 10.1038/s41598-024-67358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
In this study, the effect of Thymus vulgaris essential oil (TVO) nanoemulsion (NE, 500 mg/L) in combination with ultrasound (ultrasound-NE) on the microbial and physiological quality of green bell pepper was investigated. The TVO-NE droplet size and zeta potential were 84.26 nm and - 0.77 mV, respectively. The minimum inhibitory concentrations of the TVO and TVO-NE against E. coli and S. aureus were about 0.07 and 7 g/L, respectively. The NE-ultrasound treatment exhibited the lowest peroxidase activity and respiration rate with no detrimental effect on texture, total phenolic content, antioxidant activity, pH, and TSS. Although the NE-ultrasound treatment showed the highest weight loss and electrolytic leakage, it exhibited the best visual color and appearance. The NE-ultrasound treatment descended the total viable/mold and yeast counts significantly compared to control. Results showed that treating the bell peppers with NE-ultrasound can result in bell peppers with good postharvest quality and extended shelf life.
Collapse
Affiliation(s)
- Saiede Akbari
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
- Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
| | - Mehdi Hosseinifarahi
- Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
- Department of Horticultural Science, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
- Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| |
Collapse
|
2
|
Wang Z, Tang W, Sun Z, Liu F, Wang D. An innovative Pickering W/O/W nanoemulsion co-encapsulating hydrophilic lysozyme and hydrophobic Perilla leaf oil for extending shelf life of fish products. Food Chem 2024; 439:138074. [PMID: 38091791 DOI: 10.1016/j.foodchem.2023.138074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
A Pickering water-in-oil-in-water nanoemulsion co-encapsulating lysozyme (LYS) and Perilla leaf oil (PO) was prepared using whey protein isolate-tannin acid conjugated nanoparticles (WPI-TA NPs) as emulsifiers, called LYS-PO-NE, and subsequently analyzed. The nano size and multiple phases was confirmed based on the results of confocal laser scanning microscope, scanning electron microscope, and droplet size analysis. LYS-PO-NE had high encapsulation efficiencies of 89.36 % (PO) and 43.91 % (LYS) and both could be released at a slow and continuous rate. The PO addition increased the droplet size, and the LYS addition delayed the release of PO. LYS-PO-NE also showed good storage, pH, thermal, and salt stability, and an effective combined bactericidal activity of LYS and PO against spoilage bacteria. Furthermore, the results of chilled salmon storage experiments indicated that LYS-PO-NE could extend the shelf life of chilled salmon to at least 6 days, demonstrating the potential in the shelf life for fish products.
Collapse
Affiliation(s)
- Zaitian Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Wenxiang Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
3
|
Nie H, Liao H, Wen J, Ling C, Zhang L, Xu F, Dong X. Foeniculum vulgare essential oil nanoemulsion inhibits Fusarium oxysporum causing Panax notoginseng root-rot disease. J Ginseng Res 2024; 48:236-244. [PMID: 38465211 PMCID: PMC10920008 DOI: 10.1016/j.jgr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024] Open
Abstract
Background Fusarium oxysporum (F. oxysporum) is the primary pathogenic fungus that causes Panax notoginseng (P. notoginseng) root rot disease. To control the disease, safe and efficient antifungal pesticides must currently be developed. Methods In this study, we prepared and characterized a nanoemulsion of Foeniculum vulgare essential oil (Ne-FvEO) using ultrasonic technology and evaluated its stability. Traditional Foeniculum vulgare essential oil (T-FvEO) was prepared simultaneously with 1/1000 Tween-80 and 20/1000 dimethyl sulfoxide (DMSO). The effects and inhibitory mechanism of Ne-FvEO and T-FvEO in F. oxysporum were investigated through combined transcriptome and metabolome analyses. Results Results showed that the minimum inhibitory concentration (MIC) of Ne-FvEO decreased from 3.65 mg/mL to 0.35 mg/mL, and its bioavailability increased by 10-fold. The results of gas chromatography/mass spectrometry (GC/MS) showed that T-FvEO did not contain a high content of estragole compared to Foeniculum vulgare essential oil (FvEO) and Ne-FvEO. Combined metabolome and transcriptome analysis showed that both emulsions inhibited the growth and development of F. oxysporum through the synthesis of the cell wall and cell membrane, energy metabolism, and genetic information of F. oxysporum mycelium. Ne-FvEO also inhibited the expression of 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase and reduced the content of 2-oxoglutarate, which inhibited the germination of spores. Conclusion Our findings suggest that Ne-FvEO effectively inhibited the growth of F. oxysporum in P. notoginseng in vivo. The findings contribute to our comprehension of the antifungal mechanism of essential oils (EOs) and lay the groundwork for the creation of plant-derived antifungal medicines.
Collapse
Affiliation(s)
- Hongyan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Hongxin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinrui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Cuiqiong Ling
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Liyan Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Tan WN, Samling BA, Tong WY, Chear NJY, Yusof SR, Lim JW, Tchamgoue J, Leong CR, Ramanathan S. Chitosan-Based Nanoencapsulated Essential Oils: Potential Leads against Breast Cancer Cells in Preclinical Studies. Polymers (Basel) 2024; 16:478. [PMID: 38399856 PMCID: PMC10891598 DOI: 10.3390/polym16040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Since ancient times, essential oils (EOs) derived from aromatic plants have played a significant role in promoting human health. EOs are widely used in biomedical applications due to their medicinal properties. EOs and their constituents have been extensively studied for treating various health-related disorders, including cancer. Nonetheless, their biomedical applications are limited due to several drawbacks. Recent advances in nanotechnology offer the potential for utilising EO-loaded nanoparticles in the treatment of various diseases. In this aspect, chitosan (CS) appears as an exceptional encapsulating agent owing to its beneficial attributes. This review highlights the use of bioactive EOs and their constituents against breast cancer cells. Challenges associated with the use of EOs in biomedical applications are addressed. Essential information on the benefits of CS as an encapsulant, the advantages of nanoencapsulated EOs, and the cytotoxic actions of CS-based nanoencapsulated EOs against breast cancer cells is emphasised. Overall, the nanodelivery of bioactive EOs employing polymeric CS represents a promising avenue against breast cancer cells in preclinical studies.
Collapse
Affiliation(s)
- Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Benedict Anak Samling
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Nelson Jeng-Yeou Chear
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Joseph Tchamgoue
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Chean-Ring Leong
- Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia;
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (N.J.-Y.C.); (S.R.Y.); (S.R.)
| |
Collapse
|
5
|
Almeida NA, Freire L, Carnielli-Queiroz L, Bragotto APA, Silva NCC, Rocha LO. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains. Compr Rev Food Sci Food Saf 2024; 23:e13251. [PMID: 38284600 DOI: 10.1111/1541-4337.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 01/30/2024]
Abstract
Fungi are widely disseminated in the environment and are major food contaminants, colonizing plant tissues throughout the production chain, from preharvest to postharvest, causing diseases. As a result, grain development and seed germination are affected, reducing grain quality and nutritional value. Some fungal species can also produce mycotoxins, toxic secondary metabolites for vertebrate animals. Natural compounds, such as essential oils, have been used to control fungal diseases in cereal grains due to their antimicrobial activity that may inhibit fungal growth. These compounds have been associated with reduced mycotoxin contamination, primarily related to reducing toxin production by toxigenic fungi. However, little is known about the mechanisms of action of these compounds against mycotoxigenic fungi. In this review, we address important information on the mechanisms of action of essential oils and their antifungal and antimycotoxigenic properties, recent technological strategies for food industry applications, and the potential toxicity of essential oils.
Collapse
Affiliation(s)
- Naara A Almeida
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-Espírito Santo, Brazil
| | - Adriana P A Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Nathália C C Silva
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Das S, Chaudhari AK, Singh VK, Dwivedy AK, Dubey NK. Chitosan based encapsulation of Valeriana officinalis essential oil as edible coating for inhibition of fungi and aflatoxin B 1 contamination, nutritional quality improvement, and shelf life extension of Citrus sinensis fruits. Int J Biol Macromol 2023; 233:123565. [PMID: 36740131 DOI: 10.1016/j.ijbiomac.2023.123565] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
In this study, a novel chitosan nanoemulsion coating embedded with Valeriana officinalis essential oil (Ne-VOEO) was synthesized in order to improve the postharvest quality of Citrus sinensis fruits against infesting fungi, and aflatoxin B1 (AFB1) mediated nutritional deterioration. The developed nanoemulsion was characterized through SEM, FTIR, XRD, and DLS analyses. The nanoemulsion showed controlled delivery of VOEO responsible for effective inhibition of Aspergillus flavus, A. niger, A. versicolor, Penicillium italicum, and Fusarium oxysporum growth at 6.5, 5.0, 4.0, 5.5, and 3.5 μL/mL, respectively and AFB1 production at 5.0 μL/mL. The biochemical and molecular mechanism of aflatoxigenic A. flavus inhibition, and AFB1 diminution was associated with impairment in ergosterol biosynthesis, methylglyoxal production, and stereo-spatial binding of valerianol in the cavity of Ver-1 protein. During in vivo investigation, Ne-VOEO coating potentially restrained the weight loss, and respiratory rate of C. sinensis fruits with delayed degradation of soluble solids, titrable acidity, pH, and phenolic contents along with maintenance of SOD, CAT, APX activities (p < 0.05) and sensory attributes under specific storage conditions. Based on overall findings, Ne-VOEO nanoemulsion could be recommended as green, and smart antifungal coating agent in prolonging the shelf-life of stored fruits with enhanced AFB1 mitigation.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
9
|
Valorisation of Micro/Nanoencapsulated Bioactive Compounds from Plant Sources for Food Applications Towards Sustainability. Foods 2022; 12:foods12010032. [PMID: 36613248 PMCID: PMC9818261 DOI: 10.3390/foods12010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The micro- and nanoencapsulation of bioactive compounds has resulted in a large improvement in the food, nutraceutical, pharmaceutical, and agriculture industries. These technologies serve, on one side, to protect, among others, vitamins, minerals, essential fatty acids, polyphenols, flavours, antimicrobials, colorants, and antioxidants, and, on the other hand, to control the release and assure the delivery of the bioactive compounds, targeting them to specific cells, tissues, or organs in the human body by improving their absorption/penetration through the gastrointestinal tract. The food industry has been applying nanotechnology in several ways to improve food texture, flavour, taste, nutrient bioavailability, and shelf life using nanostructures. The use of micro- and nanocapsules in food is an actual trend used mainly in the cereal, bakery, dairy, and beverage industries, as well as packaging and coating. The elaboration of bio capsules with high-value compounds from agro-industrial by-products is sustainable for the natural ecosystem and economically interesting from a circular economy perspective. This critical review presents the principal methodologies for performing micro- and nanoencapsulation, classifies them (top-down and/or bottom-up), and discusses the differences and advantages among them; the principal types of encapsulation systems; the natural plant sources, including agro-industrial by-products, of bioactive compounds with interest for the food industry to be encapsulated; the bioavailability of encapsulates; and the main techniques used to analyse micro- and nanocapsules. Research work on the use of encapsulated bioactive compounds, such as lycopene, hydroxytyrosol, and resveratrol, from agro-industrial by-products must be further reinforced, and it plays an important role, as it presents a high potential for the use of their antioxidant and/or antimicrobial activities in food applications and, therefore, in the food industry. The incorporation of these bioactive compounds in food is a challenge and must be evaluated, not only for their nutritional aspect, but also for the chemical safety of the ingredients. The potential use of these products is an available economical alternative towards a circular economy and, as a consequence, sustainability.
Collapse
|
10
|
Albuquerque PM, Azevedo SG, de Andrade CP, D’Ambros NCDS, Pérez MTM, Manzato L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers (Basel) 2022; 14:polym14245495. [PMID: 36559861 PMCID: PMC9782583 DOI: 10.3390/polym14245495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile and semi-volatile organic compounds that originate from different plant tissues, including flowers, buds, leaves and bark. According to their chemical composition, EOs have a characteristic aroma and present a wide spectrum of applications, namely in the food, agricultural, environmental, cosmetic and pharmaceutical sectors. These applications are mainly due to their biological properties. However, EOs are unstable and easily degradable if not protected from external factors such as oxidation, heat and light. Therefore, there is growing interest in the encapsulation of EOs, since polymeric nanocarriers serve as a barrier between the oil and the environment. In this context, nanoencapsulation seems to be an interesting approach as it not only prevents the exposure and degradation of EOs and their bioactive constituents by creating a physical barrier, but it also facilitates their controlled release, thus resulting in greater bioavailability and efficiency. In this review, we focused on selecting recent articles whose objective concerned the nanoencapsulation of essential oils from different plant species and highlighted their chemical constituents and their potential biotechnological applications. We also present the fundamentals of the most commonly used encapsulation methods, and the biopolymer carriers that are suitable for encapsulating EOs.
Collapse
Affiliation(s)
- Patrícia Melchionna Albuquerque
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
- Correspondence:
| | - Sidney Gomes Azevedo
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| | - Cleudiane Pereira de Andrade
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - Natália Corrêa de Souza D’Ambros
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - Maria Tereza Martins Pérez
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| | - Lizandro Manzato
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| |
Collapse
|
11
|
Tian F, Woo SY, Lee SY, Park SB, Zheng Y, Chun HS. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics (Basel) 2022; 11:antibiotics11121727. [PMID: 36551384 PMCID: PMC9774910 DOI: 10.3390/antibiotics11121727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Aspergillus flavus is a facultative parasite that contaminates several important food crops at both the pre- and post-harvest stages. Moreover, it is an opportunistic animal and human pathogen that causes aspergillosis diseases. A. flavus also produces the polyketide-derived carcinogenic and mutagenic secondary metabolite aflatoxin, which negatively impacts global food security and threatens human and livestock health. Recently, plant-derived natural compounds and essential oils (EOs) have shown great potential in combatting A. flavus spoilage and aflatoxin contamination. In this review, the in situ antifungal and antiaflatoxigenic properties of EOs are discussed. The mechanisms through which EOs affect A. flavus growth and aflatoxin biosynthesis are then reviewed. Indeed, several involve physical, chemical, or biochemical changes to the cell wall, cell membrane, mitochondria, and related metabolic enzymes and genes. Finally, the future perspectives towards the application of plant-derived natural compounds and EOs in food protection and novel antifungal agent development are discussed. The present review highlights the great potential of plant-derived natural compounds and EOs to protect agricultural commodities and food items from A. flavus spoilage and aflatoxin contamination, along with reducing the threat of aspergillosis diseases.
Collapse
|
12
|
Kumar P, Gupta A, Mahato DK, Pandhi S, Pandey AK, Kargwal R, Mishra S, Suhag R, Sharma N, Saurabh V, Paul V, Kumar M, Selvakumar R, Gamlath S, Kamle M, Enshasy HAE, Mokhtar JA, Harakeh S. Aflatoxins in Cereals and Cereal-Based Products: Occurrence, Toxicity, Impact on Human Health, and Their Detoxification and Management Strategies. Toxins (Basel) 2022; 14:toxins14100687. [PMID: 36287956 PMCID: PMC9609140 DOI: 10.3390/toxins14100687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cereals and cereal-based products are primary sources of nutrition across the world. However, contamination of these foods with aflatoxins (AFs), secondary metabolites produced by several fungal species, has raised serious concerns. AF generation in innate substrates is influenced by several parameters, including the substrate type, fungus species, moisture content, minerals, humidity, temperature, and physical injury to the kernels. Consumption of AF-contaminated cereals and cereal-based products can lead to both acute and chronic health issues related to physical and mental maturity, reproduction, and the nervous system. Therefore, the precise detection methods, detoxification, and management strategies of AFs in cereal and cereal-based products are crucial for food safety as well as consumer health. Hence, this review provides a brief overview of the occurrence, chemical characteristics, biosynthetic processes, health hazards, and detection techniques of AFs, along with a focus on detoxification and management strategies that could be implemented for food safety and security.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow 226007, India
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India
- Correspondence: (P.K.); (D.K.M.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
- Correspondence: (P.K.); (D.K.M.)
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arun Kumar Pandey
- MMICT&BM(HM), Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Raveena Kargwal
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Nitya Sharma
- Food and Bioprocess Engineering Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21934, Egypt
| | - Jawahir A. Mokhtar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine (FM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Singh BK, Chaudhari AK, Das S, Tiwari S, Dubey NK. Preparation and characterization of a novel nanoemulsion consisting of chitosan and Cinnamomum tamala essential oil and its effect on shelf-life lengthening of stored millets. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105214. [PMID: 36127040 DOI: 10.1016/j.pestbp.2022.105214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to improve the stability of Cinnamomum tamala essential oil (CTEO) via encapsulating into chitosan nanoemulsion (CsNe) through an ionic-gelation technique and explore its food preservative efficacy against aflatoxigenic strain of Aspergillus flavus (AFLHPSi-1, isolated from stored millet), aflatoxin B1 (AFB1) contamination, and lipid peroxidation, causing qualitative deterioration of stored millets. The CTEO was characterized through gas chromatography-mass spectrometry (GC-MS) analysis that confirmed the presence of linalool as a major component occupying approximately 82.64% of the total oil. The synthesized nanoparticles were characterized through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The encapsulation efficiency (EE) and loading capacity (LC) of CTEO-CsNe were found to be 97.71% and 3.33%, respectively. In vitro release study showed a biphasic release pattern: with an initial burst release followed by a controlled release of CTEO. During investigation of efficacy, the CTEO-CsNe caused complete inhibition of A. flavus growth, and AFB1 biosynthesis at 1.0 and 0.8 μL/mL, respectively. The CTEO-CsNe exhibited its antifungal mode of action by altering fungal plasma membrane integrity (ergosterol inhibition) and permeability (leakage of important cellular constituents), and antiaflatoxigenic mode of action by inhibiting cellular methylglyoxal biosynthesis. CTEO-CsNe showed high free radical scavenging capacity (IC50 = 5.08 and 2.56 μL/mL) against DPPH•+ and ABTS•+ radicals, respectively. In addition, CTEO-CsNe presented remarkable preservative efficacy, inhibiting AFB1 and lipid peroxidation in model food system (Setaria italica) without altering their organoleptic properties. Based on overall results, CTEO-CsNe can be recommended as a novel shelf-life enhancer of stored millet samples.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur 233001, Uttar Pradesh, India
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Das S, Chaudhari AK, Singh VK, Singh BK, Dubey NK. High speed homogenization assisted encapsulation of synergistic essential oils formulation: Characterization, in vitro release study, safety profile, and efficacy towards mitigation of aflatoxin B 1 induced deterioration in rice samples. Food Chem Toxicol 2022; 169:113443. [PMID: 36167259 DOI: 10.1016/j.fct.2022.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Application of essential oils to mitigate aflatoxin B1 (AFB1) contamination in food is a current research hotspot; however, their direct incorporation may cause toxic effects, and changes in food organoleptic properties. This work aimed to synthesize novel synergistic formulation of Pinus roxburghii, Juniperus communis, and Cupressus sempervirens essential oils by mixture design assay (PJC) and encapsulation of PJC formulation into chitosan nanocomposite (Nm-PJC) with an aim to protect stored rice (Oryza sativa L., prime staple food) against fungi and AFB1 mediated loss of valuable minerals, macronutrients, and fatty acids. Nm-PJC was characterized through DLS, SEM, FTIR, and XRD analyses, along with controlled delivery from chitosan nanobiopolymer. Encapsulation of synergistic formulation into chitosan-nanomatrix improved antifungal (4.0 μL/mL), antiaflatoxigenic (3.5 μL/mL), and antioxidant activities (P < 0.05). Impairment in ergosterol and methylglyoxal biosynthesis along with in-silico-homology-modeling of major components with Ver-1 and Omt-A proteins advocated chemico-molecular interaction responsible for fungal growth inhibition and AFB1 secretion. In addition, in-situ efficacy against lipid-peroxidation, fatty acid biodeterioration, and preservation of minerals, macronutrients without affecting organoleptic attributes in rice and high mammalian safety profile (9874.23 μL/kg) suggested practical application of synergistic nanoformulation as innovative smart, and green candidate to mitigate AFB1 contamination, and shelf-life extension of stored food products.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur, 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya, 224123, Uttar Pradesh, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
Singh BK, Chaudhari AK, Das S, Tiwari S, Maurya A, Singh VK, Dubey NK. Chitosan encompassed Aniba rosaeodora essential oil as innovative green candidate for antifungal and antiaflatoxigenic activity in millets with emphasis on cellular and its mode of action. Front Microbiol 2022; 13:970670. [PMID: 36016775 PMCID: PMC9395724 DOI: 10.3389/fmicb.2022.970670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The present study demonstrates first time investigation on encapsulation of Aniba rosaeodora essential oil into chitosan nanoemulsion (AREO-CsNe) with the aim of improvement of its antifungal, and aflatoxin B1 (AFB1) inhibitory performance in real food system. The GC–MS analysis of AREO revealed the presence of linalool (81.46%) as a major component. The successful encapsulation of EO into CsNe was confirmed through SEM, FTIR, and XRD analysis. The in-vitro release study showed the controlled release of AREO. AREO-CsNe caused complete inhibition of Aspergillus flavus (AFLHPSi-1) growth and AFB1 production at 0.8 and 0.6 μl/ml, respectively, which was far better than AREO (1.4 and 1.2 μl/ml, respectively). Impairment of ergosterol biosynthesis coupled with enhancement of cellular materials leakage confirmed plasma membrane as the possible antifungal target of both AREO and AREO-CsNe. Significant inhibition of methylglyoxal (AFB1 inducer) synthesis in AFLHPSi-1 cells by AREO and AREO-CsNe confirmed their novel antiaflatoxigenic mode of action. In-silico molecular docking studies revealed effective interaction of linalool with Ver-1 and Omt-A proteins, leading to inhibition of AFB1 biosynthesis. Further, AREO-CsNe showed enhanced antioxidant activity with IC50 values 3.792 and 1.706 μl/ml against DPPH• and ABTS•+ radicals, respectively. In addition, AREO-CsNe caused 100% protection of stored millets (Setaria italica seeds) from AFB1 contamination and lipid peroxidation over a period of 1 year without compromising its sensory properties and exhibited high safety profile with LD50 value 9538.742 μl/kg body weight. Based on enhanced performance of AREO-CsNe over AREO, it can be recommended as a novel substitute of synthetic preservative for preservation of stored millets.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Somenath Das
- Department of Botany, Burdwan Raj College, Bardhaman, West Bengal, India
| | - Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Nawal Kishore Dubey,
| |
Collapse
|
16
|
Singh S, Chaurasia PK, Bharati SL. Functional roles of Essential oils as an effective alternative of synthetic food preservatives: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya University of Lucknow Lucknow, Uttar Pradesh India
| | - Pankaj Kumar Chaurasia
- P.G. Department of Chemistry, L.S. College B.R.A. Bihar University Muzaffarpur, Bihar India
| | - Shashi Lata Bharati
- Department of Chemistry North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh India
| |
Collapse
|
17
|
Prasad J, Das S, Maurya A, Jain SK, Dwivedy AK. Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B 1 contamination in food system. Int J Biol Macromol 2022; 205:240-252. [PMID: 35182563 DOI: 10.1016/j.ijbiomac.2022.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022]
Abstract
The present investigation aimed to synthesize Cymbopogon nardus essential oil impregnated chitosan nanoemulsion (Ne-CNEO) and its practical efficacy as novel green delivery system for protection of Syzygium cumini seeds against broad range storage fungi, aflatoxin B1 (AFB1) secretion and lipid peroxidation. Chemical characterization of CNEO revealed citral (62.73%) as major component. Successful impregnation of CNEO inside chitosan nanoemulsion was confirmed through SEM, AFM and FTIR analyses. In vitro release study showed biphasic release profile with initial burst followed by sustained release of CNEO from chitosan nanomatrix. Ne-CNEO exhibited enhancement in in vitro antifungal, antiaflatoxigenic (0.16 μL/mL) and antioxidant activity over CNEO. The antifungal and antiaflatoxigenic mechanism of action of Ne-CNEO was associated with inhibition of ergosterol biosynthesis, increased leakage of cellular contents, and impairment in cellular methylglyoxal biosynthesis. In silico modeling validated interaction of citral with Ver-1 and Omt-A proteins, confirming the molecular action for inhibition of AFB1 production. In situ investigation suggested remarkable protection of S. cumini seeds against fungal inhabitation, AFB1 production and lipid peroxidation without affecting organoleptic attributes. Furthermore, higher mammalian non-toxicity strengthens the application of Ne-CNEO as safe nano-green and smart preservative in place of adversely affecting synthetic preservatives in emerging food, agriculture and pharmaceutical industries.
Collapse
Affiliation(s)
- Jitendra Prasad
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shreyans Kumar Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre School of Exercise and Nutrition Sciences Deakin University Burwood VIC 3125 Australia
| | - Akansha Gupta
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
- Faculty of Agricultural Sciences GLA University Mathura 281406 India
| | - Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur‐721302 India
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Vidhi Tyagi
- University School of Biotechnology Guru Gobind Singh Indraprastha University Sector 16C Dwarka New Delhi 110078 India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai 400019 India
| | - Madhu Kamle
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| |
Collapse
|
19
|
Tiwari S, Upadhyay N, Singh BK, Singh VK, Dubey NK. Facile Fabrication of Nanoformulated Cinnamomum glaucescens Essential Oil as a Novel Green Strategy to Boost Potency Against Food Borne Fungi, Aflatoxin Synthesis, and Lipid Oxidation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02739-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Singh BK, Tiwari S, Maurya A, Kumar S, Dubey NK. Fungal and mycotoxin contamination of herbal raw materials and their protection by nanoencapsulated essential oils: An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Maurya A, Singh VK, Das S, Prasad J, Kedia A, Upadhyay N, Dubey NK, Dwivedy AK. Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Front Microbiol 2021; 12:751062. [PMID: 34912311 PMCID: PMC8667777 DOI: 10.3389/fmicb.2021.751062] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Microbes are the biggest shareholder for the quantitative and qualitative deterioration of food commodities at different stages of production, transportation, and storage, along with the secretion of toxic secondary metabolites. Indiscriminate application of synthetic preservatives may develop resistance in microbial strains and associated complications in human health with broad-spectrum environmental non-sustainability. The application of essential oils (EOs) as a natural antimicrobial and their efficacy for the preservation of foods has been of present interest and growing consumer demand in the current generation. However, the loss in bioactivity of EOs from fluctuating environmental conditions is a major limitation during their practical application, which could be overcome by encapsulating them in a suitable biodegradable and biocompatible polymer matrix with enhancement to their efficacy and stability. Among different nanoencapsulated systems, nanoemulsions effectively contribute to the practical applications of EOs by expanding their dispersibility and foster their controlled delivery in food systems. In line with the above background, this review aims to present the practical application of nanoemulsions (a) by addressing their direct and indirect (EO nanoemulsion coating leading to active packaging) consistent support in a real food system, (b) biochemical actions related to antimicrobial mechanisms, (c) effectiveness of nanoemulsion as bio-nanosensor with large scale practical applicability, (d) critical evaluation of toxicity, safety, and regulatory issues, and (e) market demand of nanoemulsion in pharmaceuticals and nutraceuticals along with the current challenges and future opportunities.
Collapse
Affiliation(s)
- Akash Maurya
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jitendra Prasad
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akash Kedia
- Government General Degree College, Mangalkote, Burdwan, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Das S, Ghosh A, Mukherjee A. Nanoencapsulation-Based Edible Coating of Essential Oils as a Novel Green Strategy Against Fungal Spoilage, Mycotoxin Contamination, and Quality Deterioration of Stored Fruits: An Overview. Front Microbiol 2021; 12:768414. [PMID: 34899650 PMCID: PMC8663763 DOI: 10.3389/fmicb.2021.768414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, applications of essential oils for protection of postharvest fruits against fungal infestation and mycotoxin contamination are of immense interest and research hot spot in view of their natural origin and possibly being an alternative to hazardous synthetic preservatives. However, the practical applications of essential oils in broad-scale industrial sectors have some limitations due to their volatility, less solubility, hydrophobic nature, and easy oxidation in environmental conditions. Implementation of nanotechnology for efficient incorporation of essential oils into polymeric matrices is an emerging and novel strategy to extend its applicability by controlled release and to overcome its major limitations. Moreover, different nano-engineered structures (nanoemulsion, suspension, colloidal dispersion, and nanoparticles) developed by applying a variety of nanoencapsulation processes improved essential oil efficacy along with targeted delivery, maintaining the characteristics of food ingredients. Nanoemulsion-based edible coating of essential oils in fruits poses an innovative green alternative against fungal infestation and mycotoxin contamination. Encapsulation-based coating of essential oils also improves antifungal, antimycotoxigenic, and antioxidant properties, a prerequisite for long-term enhancement of fruit shelf life. Furthermore, emulsion-based coating of essential oil is also efficient in the protection of physicochemical characteristics, viz., firmness, titrable acidity, pH, weight loss, respiration rate, and total phenolic contents, along with maintenance of organoleptic attributes and nutritional qualities of stored fruits. Based on this scenario, the present article deals with the advancement in nanoencapsulation-based edible coating of essential oil with efficient utilization as a novel safe green preservative and develops a green insight into sustainable protection of fruits against fungal- and mycotoxin-mediated quality deterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Abhinanda Ghosh
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4879-4890. [PMID: 33852733 DOI: 10.1002/jsfa.11255] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shikha Tiwari
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
24
|
Nanoencapsulated Petroselinum crispum essential oil: Characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes. Food Res Int 2021; 145:110402. [PMID: 34112405 DOI: 10.1016/j.foodres.2021.110402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The use of bioactive compounds within the biopolymer-based Edible Coatings (EC) matrices has certain limitations for their application at the food industry level. Encapsulation has been considered as a strategy that enables protecting and improving the physical and chemical characteristics of the compounds; as a result, it extends the shelf life of coated foods. This review discusses recent progress in combining edible coatings with nanoencapsulation technology. We also described and discussed various works, in which nanoliposomes are used as encapsulation systems to prepare, and subsequently apply the edible coatings in plant products and meat products. The use of nanoliposomes for the encapsulation of phenolic compounds and essential oils provides an improvement in the antioxidant and antimicrobial properties of coatings by extending the shelf life of food matrices. However, when liposomes are stored for a long period of time, they may present some degree of instability manifested by an increase in size, polydispersity index, and zeta potential. This is reflected in an aggregation, fusion, and rupture of the vesicles. This investigation can help researchers and industries to select an appropriate and efficient biopolymer to form EC containing nanoencapsulated active compounds. This work also addresses the use of nanoliposomes to create EC extending markedly the shelf life of fruit, reducing the weight loss, and deterioration due to the action of microorganisms.
Collapse
|
26
|
McClements DJ, Das AK, Dhar P, Nanda PK, Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643208] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing interest in the use of natural preservatives (rather than synthetic ones) for maintaining the quality and safety of foods due to their perceived environmental and health benefits. In particular, plant-based antimicrobials are being employed to protect against microbial spoilage, thereby improving food safety, quality, and shelf-life. However, many natural antimicrobials cannot be utilized in their free form due to their chemical instability, poor dispersibility in food matrices, or unacceptable flavor profiles. For these reasons, encapsulation technologies, such as nanoemulsions, are being developed to overcome these hurdles. Indeed, encapsulation of plant-based preservatives can improve their handling and ease of use, as well as enhance their potency. This review highlights the various kinds of plant-based preservatives that are available for use in food applications. It then describes the methods available for forming nanoemulsions and shows how they can be used to encapsulate and deliver plant-based preservatives. Finally, potential applications of nano-emulsified plant-based preservatives for improving food quality and safety are demonstrated in the meat, fish, dairy, and fresh produce areas.
Collapse
|
27
|
Kujur A, Kumar A, Prakash B. Elucidation of antifungal and aflatoxin B 1 inhibitory mode of action of Eugenia caryophyllata L. essential oil loaded chitosan nanomatrix against Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104755. [PMID: 33518049 DOI: 10.1016/j.pestbp.2020.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The present study investigated the novel antifungal, and anti-aflatoxin B1 mechanism of Eugenia caryophyllata L. essential oil (ECEO) loaded chitosan nanomatrix against the toxigenic strain of A. flavus (AFLV-DK-02). Phytochemical profiling of ECEO was done by GC-MS which revealed eugenol (73.6%) as the primary bioactive compound. ECEO was encapsulated inside the chitosan nanomatrix (ECEO-Np) and characterized using SEM, AFM, FTIR and XRD analysis. The ECEO-Np exhibited enhance antifungal (0.25 μL/mL) and anti-aflatoxin B1 inhibitory activity (0.15 μL/mL) than ECEO. Antifungal and antiaflatoxin B1 inhibitory activity was found to be related with impairment in the biological functioning of the plasma membrane (ergosterol synthesis, leakage of membrane ions, UV light (260, 280 nm) absorbing material, dead cell by propidium iodide assay, mitochondrial membrane potential (MMP), methylglyoxal and inhibition in essential carbon substrate utilization). ECEO-Np exhibited remarkable free radical scavenging activity with IC50 value of 0.002 μL/mL. ECEO-Np effectively preserves the sensory characteristics of exposed maize crop seed up to six months of storage and shows considerable safety profile (non-toxic, non-mutagenic, non-hepatotoxic, non-carcinogenic, non-tumorigenic and biodegradable) using computational ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis.
Collapse
Affiliation(s)
- Anupam Kujur
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akshay Kumar
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
28
|
Chaudhari AK, Singh VK, Das S, Dubey NK. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 2021; 149:112019. [PMID: 33508419 DOI: 10.1016/j.fct.2021.112019] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
29
|
Upadhyay N, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. Assessment of nanoencapsulated Cananga odorata essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy. Int J Biol Macromol 2021; 171:480-490. [PMID: 33428956 DOI: 10.1016/j.ijbiomac.2021.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 01/18/2023]
Abstract
In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 μL/mL and 0.75 μL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 μL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.
Collapse
Affiliation(s)
- Neha Upadhyay
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
30
|
Das S, Kumar Singh V, Kumar Dwivedy A, Kumar Chaudhari A, Deepika, Kishore Dubey N. Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B 1 contamination and deterioration of nutritional qualities. Food Chem 2020; 344:128574. [PMID: 33218855 DOI: 10.1016/j.foodchem.2020.128574] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Application of synthetic preservatives to control the contamination of stored food commodities with aflatoxin B1 causing considerable loss in nutritional value is a major challenge. However, employment of essential oils for protecting food commodities is much limited due to high volatility, and increased susceptibility to oxidation. Therefore, objective of the present investigation was encapsulation of Pimpinella anisum essential oil in chitosan nanobiopolymer (CS-PAEO-Nm) to improve its bioefficacy, and sensorial suitability for application in food system. The synthesized CS-PAEO-Nm was characterized through SEM, FTIR, and XRD and evaluated for improved biological activity. The CS-PAEO-Nm exhibited improved antifungal (minimum inhibitory concentration = 0.08 μL/mL) and antiaflatoxigenic (minimum aflatoxin inhibitory concentration = 0.07 μL/mL) activities. CS-PAEO-Nm treatment significantly inhibited ergosterol, enhanced leakage of ions and induced impairment in defense enzymes (p < 0.05). In situ minerals and macronutrient preservation, and acceptable sensorial characteristics suggested possible recommendation of nanoencapsulated PAEO as potential safe green food preservative.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Deepika
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
31
|
Mustafa IF, Hussein MZ. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1608. [PMID: 32824489 PMCID: PMC7466655 DOI: 10.3390/nano10081608] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Declines in crop yield due to pests and diseases require the development of safe, green and eco-friendly pesticide formulations. A major problem faced by the agricultural industry is the use of conventional agrochemicals that contribute broad-spectrum effects towards the environment and organisms. As a result of this issue, researchers are currently developing various pesticide formulations using different nanotechnology approaches. The progress and opportunities in developing nanoemulsions as carriers for plant protection or nanodelivery systems for agrochemicals in agricultural practice have been the subject of intense research. New unique chemical and biologic properties have resulted in a promising pesticide nanoformulations for crop protection. These innovations-particularly the nanoemulsion-based agrochemicals-are capable of enhancing the solubility of active ingredients, improving agrochemical bioavailability, and improving stability and wettability properties during the application, thus resulting in better efficacy for pest control and treatment. All of these-together with various preparation methods towards a greener and environmentally friendly agrochemicals-are also discussed and summarized in this review.
Collapse
Affiliation(s)
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| |
Collapse
|