1
|
Wang L, Li Z, Li M, Chen Y, Zhang Y, Bao W, Wang X, Qi Z, Zhang W, Tao Y. Mechanisms of synthetic bacterial flora YJ-1 to enhance cucumber resistance under combined phthalate-disease stresses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121564. [PMID: 38944953 DOI: 10.1016/j.jenvman.2024.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Biotic and abiotic stresses have emerged as major constraints to agricultural production, causing irreversible adverse impacts on agricultural production systems and thus posing a threat to food security. In this study, a new strain of Bacillus subtilis DNYB-S1 was isolated from soil contaminated with Fusarium wilt. It was found that artificially synthetic flora (YJ-1) [Enterobacter sp. DNB-S2 and Rhodococcus pyridinovorans DNHP-S2, DNYB-S1] could effectively mitigate both biotic (Fusarium wilt) and abiotic (phthalates) sources of stresses, with the inhibition rate of YJ-1 resistant to wilt being 71.25% and synergistic degradation of 500 mg/L PAEs was 91.23%. The adaptive difference of YJ-1 was 0.59 and the ecological niche overlap value was -0.05 as determined by Lotka-Volterra modeling. These results indicate that YJ-1 has good ecological stability. The major degradation intermediates included 2-ethylhexyl benzoate (EHBA), phthalic acid (PA), diisobutyl phthalate (DIBP), and butyl benzoate, suggesting that YJ-1 can provide a more efficient pathway for PAEs degradation. In addition, there was metabolic mutualism among the strains that will selectively utilize the provided carbon source (some metabolites of PAEs) for growth. The pot experiment showed that YJ-1 with cucumber reduced the incidence of cucumber wilt by 45.31%. YJ-1 could reduce the concentration of PAEs (DBP: DEHP = 1:1) in soil species from 30 mg/kg to 4.26 mg/kg within 35 d, with a degradation efficiency of 85.81%. Meanwhile, the concentration of PAEs in cucumber was reduced to 0.01 mg/kg, indicating that YJ-1 is directly involved in the degradation of soil PAEs and the enhancement of plant immunity. In conclusion, this study provides a new perspective for the development of customized microbiomes for phytoremediation under combined biotic-abiotic stresses in agricultural production processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhe Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - MingZe Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - YuXin Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - WenJing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - XiaoDong Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - ZeWei Qi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - WenQian Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
2
|
Li L, Guo Z, Deng R, Fan T, Dong D, Dai Y, Li C. The concentrations and behavior of classic phthalates and emerging phthalate alternatives in different environmental matrices and their biological health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46790-46805. [PMID: 38977546 DOI: 10.1007/s11356-024-34213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Because of their excellent plasticity, phthalates or phthalic acid esters (PAEs) are widely used in plastic products. However, due to the recognized toxicity of PAEs and legislative requirements, the production and use of emerging PAE alternatives have rapidly grown, such as di-isononyl cyclohexane-1,2-dicarboxylate (DINCH) and di(2-ethylhexyl) terephthalate (DEHTP) which are the primary replacements for classic PAEs. Nowadays, PAEs and emerging PAE alternatives are frequently found in a variety of environmental media, including the atmosphere, sludge, rivers, and seawater/sediment. PAEs and emerging PAE alternatives are involved in endocrine-disrupting effects, and they affect the reproductive physiology of different species of fish and mammals. Therefore, their presence in the environment is of considerable concern due to their potential effects on ecosystem function and public health. Nevertheless, current research on the prevalence, destiny, and conduct of PAEs in the environment has primarily focused on classic PAEs, with little attention given to emerging PAE alternatives. The present article furnishes a synopsis of the physicochemical characteristics, occurrence, transport, fate, and adverse effects of both classic PAEs and emerging PAE alternatives on organisms in the ecosystem. Our analysis reveals that both classic PAEs and emerging PAE alternatives are widely distributed in all environmental media, with emerging PAE alternatives increasingly replacing classic PAEs. Various pathways can transform and degrade both classic PAEs and emerging PAE alternatives, and their own and related metabolites can have toxic effects on organisms. This research offers a more extensive comprehension of the health hazards associated with classic PAEs and emerging PAE alternatives.
Collapse
Affiliation(s)
- Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Ting Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Chenxuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
3
|
Hu Z, Qian C, Wang H, Sun L, Wu C, Zhang G, Han X, Wang C, Ma T, Yang D. Comprehensive toxicological, metabolomic, and transcriptomic analysis of the biodegradation and adaptation mechanism by Achromobacter xylosoxidans SL-6 to diuron. Front Microbiol 2024; 15:1403279. [PMID: 38912345 PMCID: PMC11192067 DOI: 10.3389/fmicb.2024.1403279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Biodegradation was considered a promising and environmentally friendly method for treating environmental pollution caused by diuron. However, the mechanisms of biodegradation of diuron required further research. In this study, the degradation process of diuron by Achromobacter xylosoxidans SL-6 was systematically investigated. The results suggested that the antioxidant system of strain SL-6 was activated by adding diuron, thereby alleviating their oxidative stress response. In addition, degradation product analysis showed that diuron in strain SL-6 was mainly degraded by urea bridge cleavage, dehalogenation, deamination, and ring opening, and finally cis, cis-muconic acid was generated. The combined analysis of metabolomics and transcriptomics revealed the biodegradation and adaptation mechanism of strain SL-6 to diuron. Metabolomics analysis showed that after the strain SL-6 was exposed to diuron, metabolic pathways such as tricarboxylic acid cycle (cis, cis-muconic acid), glutathione metabolism (oxidized glutathione), and urea cycle (arginine) were reprogrammed in the cells. Furthermore, diuron could induce the production of membrane transport proteins in strain SL-6 cells and overexpress antioxidant enzyme genes, finally ultimately promoting the up-regulation of genes encoding amide hydrolases and dioxygenases, which was revealed by transcriptomics studies. This work enriched the biodegradation mechanism of phenylurea herbicides and provided guidance for the removal of diuron residues in the environment and promoting agriculture sustainable development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Du H, Cheng JL, Li ZY, Zhong HN, Wei S, Gu YJ, Yao CC, Zhang M, Cai QY, Zhao HM, Mo CH. Molecular insights into the catabolism of dibutyl phthalate in Pseudomonas aeruginosa PS1 based on biochemical and multi-omics approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171852. [PMID: 38518818 DOI: 10.1016/j.scitotenv.2024.171852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.
Collapse
Affiliation(s)
- Huan Du
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center for Statistical Science, Tsinghua University, Beijing 100084, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhi-Yong Li
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Huai-Ning Zhong
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Yu-Juan Gu
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Can-Can Yao
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Miaoyue Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Liu G, An H, Tang L, Chi Z, Bi Y, Ye Z, Zhao H, Xiang L, Feng N, Mo C, Xu D. Activated DBP degradation and relevant signal transduction path via quorum sensing autoinducers in Streptomyces sp. SH5. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133571. [PMID: 38266588 DOI: 10.1016/j.jhazmat.2024.133571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Microbe-mediated DBP (dibutyl phthalate) mineralization is acknowledged to be affected by diverse extracellular factors. However, little is known about the regulatory effects from quorum sensing (QS) signals. In this study, extracellularly applied QS signals A-like (hydroxymethyl dihydrofuran) was discovered to significantly enhance DBP degradation efficiency in Streptomyces sp. SH5. Monobutyl phthalate, protocatechuic acid and beta-ketoadipate were discovered as degradation intermediates by HPLC-TOF-MS/MS. Multi-omics analysis revealed the up-regulation of multiple hydrolases, transferases and decarboxylases that potentially contributed to A-like accelerated DBP degradation. Transcription of Orf2708, an orthologue of global transcriptional activator, was significantly induced by A-like. Orf2708 was demonstrated to interact specifically with the promoter of hydrolase orf2879 gene by EMSA, and the overexpression of orf2879 led to an enhanced DBP degradation in SH5. Taken together with the molecular docking studies showing the stability of ligand-receptor complex of A-like and its potential receptor Orf3712, a hierarchical regulatory cascade underlying the QS signal mediated DBP degradation was proposed as A-like/Orf3712 duplex formation, enhanced orf2708 expression and the downstream specific activation of hydrolase Orf2879. Our study presents the first evidence of GBLs-type promoted DBP degradation among bacteria, and the elucidated signal transduction path indicates a universal application potential of this activation strategy.
Collapse
Affiliation(s)
- Ganxing Liu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Hao An
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Lei Tang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhewei Chi
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yunwen Bi
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zeqi Ye
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Haiming Zhao
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Lei Xiang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Naixian Feng
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Cehui Mo
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Maiti TK. Dibutyl phthalate degradation by Paenarthrobacter ureafaciens PB10 through downstream product myristic acid and its bioremediation potential in contaminated soil. CHEMOSPHERE 2024; 352:141359. [PMID: 38309604 DOI: 10.1016/j.chemosphere.2024.141359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Dibutyl phthalate (DBP) is a widely used plasticizer to make plastic flexible and long-lasting. It is easily accessible in a broad spectrum of environments as a result of the rising level of plastic pollution. This compound is considered a top-priority toxicant and persistent organic pollutant by international environmental agencies for its endocrine disruptive and carcinogenic propensities. To mitigate the DBP in the soil, one DBP-degrading bacterial strain was isolated from a plastic-polluted landfill and identified as Paenarthrobacter ureafaciens PB10 by 16S rRNA gene sequence-based homology. The strain was found to develop a distinct transparent halo zone around grown colonies on an agar plate supplemented with DBP. The addition of yeast extract (100 mg/L) as a nutrient source accelerated cell biomass production and DBP degradation rate; however, the presence of glucose suppressed DBP degradation by the PB10 strain without affecting its ability to proliferate. The strain PB10 was efficient in eliminating DBP under various pH conditions (5.0-8.0). Maximum cell growth and degradation of 99.49% at 300 mg/L DBP were achieved in 72 h at the optimized mineral salt medium (MS) conditions of pH 7.0 and 32 °C. Despite that, when the concentration of DBP rose to 3000 mg/L, the DBP depletion rate was measured at 79.34% in 72 h. Some novel intermediate metabolites, like myristic acid, hexadecanoic acid, stearic acid, and the methyl derivative of 4-hydroxyphenyl acetate, along with monobutyl phthalate and phthalic acid, were detected in the downstream degradation process of DBP through GC-MS profiling. Furthermore, in synchronization with native soil microbes, this PB10 strain successfully removed a notable amount of DBP (up to 54.11%) from contaminated soil under microcosm study after 10 d. Thus, PB10 has effective DBP removal ability and is considered a potential candidate for bioremediation in DBP-contaminated sites.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| |
Collapse
|
7
|
Zhang C, Li S, Tang L, Li S, Hu C, Zhang D, Chao L, Liu X, Tan Y, Deng Y. Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers. BIOSENSORS 2024; 14:121. [PMID: 38534228 DOI: 10.3390/bios14030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT-PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT-PG nanocomposites was achieved through a simple liquid-liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT-PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT-PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT-PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.
Collapse
Affiliation(s)
- Chuanxiang Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Lingxiao Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Dan Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
8
|
Ou Y, Zhou JL, Jia Y, Liang M, Hu H, Ren L. Complete genome of Mycolicibacterium phocaicum RL-HY01, a PAEs-degrading marine bacterial strain isolated from Zhanjiang Bay, China. Mar Genomics 2023; 69:101019. [PMID: 37100526 DOI: 10.1016/j.margen.2023.101019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023]
Abstract
Mycolicibacterium phocaicum RL-HY01, a marine bacterial strain with the capability to degrade phthalic acid esters (PAEs), was isolated from Zhanjiang Bay, China. Here, the complete genome sequence of strain RL-HY01 was presented. The genome of strain RL-HY01 contains one circular chromosome of 6,064,759 bp with a G + C content of 66.93 mol%. The genome contains 5681 predicted protein-encoding genes, 57 tRNA genes, and 6 rRNA genes. Genes and gene clusters potentially involved in the metabolism of PAEs were further identified. The genome Mycolicibacterium phocaicum RL-HY01 will be helpful for advancing our understanding of the fate of PAEs in marine ecosystem.
Collapse
Affiliation(s)
- Yuduan Ou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mei Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
9
|
Wang L, Jia X, Dou Z, Li X, Bao W, Ma C, Wang H, Wang L, Dong M, Zhang Y. Fluorescent labeling and tracing of immobilized efficient degrading bacterium DNB-S1 and its remediation efficiency of DBP contaminated soil. CHEMOSPHERE 2023; 320:138011. [PMID: 36731677 DOI: 10.1016/j.chemosphere.2023.138011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Dibutyl phthalate (DBP) is an organic pollutant frequently detected in soil, and is a reproductive poison that harms animals both before and after birth and has mutagenic, teratogenic, and carcinogenic effects. DBP removal from farmland has been the subject of extensive research in recent years. Efficient DBP degrading bacterial strains were screened in the laboratory. GFP (Green fluorescent protein) labeled degradation strain GFP-DNB-S1 was analyzed for its activity and dynamics. Using sodium alginate (SA) and nano-hydroxyapatite (n-HAP) as carrier materials and CaCl2 as a cross-linking agent, the immobilized microbial agent n-HAP/SA + DNB-S1 was prepared by embedding cross-linking immobilization technology to study the remediation effect of DBP contaminated soil. The best formation effect of immobilized materials (n-HAP/SA) was found when the SA to n-HAP ratio was 3:2. When compared to single SA immobilized bacteria, n-HAP/SA immobilized bacteria improved the surface roughness and porosity of the microspheres. After 70 days, LED light revealed that the immobilized bacteria's GFP green fluorescent protein expression was stable. At 70 days, the initial DBP concentration of 500 mg ∙ L-1 degraded at a rate of 69.9%. The degrading bacteria had no effect on DBP degradation before and after being labeled with GFP. The n-HAP/SA immobilized bacteria offered a better living environment for microorganisms due to their rougher surface and a greater number of pores. This protected the microorganisms and increased the efficiency of DBP degradation. When the concentration of DBP in contaminated soil was set to 20 mg ∙ kg-1 and the n-HAP/SA + DNB-S1 immobilized bacterial agent was applied to the soil, the rate of DBP degradation was determined to be 93.34%. The degradation process followed First-order degradation kinetics, which improved the physical and chemical properties of the soil as well as its fertility.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaochen Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zeyu Dou
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoqian Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenjing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chaoran Ma
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongye Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beizhai Road, Minhang District, Shanghai, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
10
|
Sahoo TP, Kumar MA. Remediation of phthalate acid esters from contaminated environment—Insights on the bioremedial approaches and future perspectives. Heliyon 2023; 9:e14945. [PMID: 37025882 PMCID: PMC10070671 DOI: 10.1016/j.heliyon.2023.e14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Phthalates are well-known emerging pollutants that are toxic to the environment and human health. Phthalates are lipophilic chemicals used as plasticizers in many of the items for improving their material properties. These compounds are not chemically bound and are released to the surroundings directly. Phthalate acid esters (PAEs) are endocrine disruptors and can interfere with hormones, which can cause issues with development and reproduction, thus there is a huge concern over their existence in various ecological surroundings. The purpose of this review is to explore the occurrence, fate, and concentration of phthalates in various environmental matrices. This article also covers the phthalate degradation process, mechanism, and outcomes. Besides the conventional treatment technology, the paper also aims at the recent advancements in various physical, chemical, and biological approaches developed for phthalate degradation. In this paper, a special focus has been given on the diverse microbial entities and their bioremedial mechanisms executes the PAEs removal. Critically, the analyses method for determining intermediate products generated during phthalate biotransformation have been discussed. Concluisvely, the challenges, limitations, knowledge gaps and future opportunities of bioremediation and their significant role in ecology have also been highlighted.
Collapse
|
11
|
Fan X, Gu C, Jin Z, Cai J, Bian Y, Wang F, Chen H, Jiang X. Major biotransformation of phthalic acid esters in Eisenia fetida: Mechanistic insights and association with catalytic enzymes and intestinal symbionts. ENVIRONMENT INTERNATIONAL 2023; 171:107712. [PMID: 36577298 DOI: 10.1016/j.envint.2022.107712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Phthalic acid esters (PAEs) are an important group of organic pollutants that are widely used as plasticizers in the environment. The PAEs in soil organisms are likely to be biotransformed into a variety of metabolites, and the combined toxicity of PAEs and their metabolites might be more serious than PAEs alone. However, there are only a few studies on PAE biotransformation by terrestrial animals, e.g. earthworms. Herein, the key biotransformation pathways of PAEs and their association with catalytic enzymes and intestinal symbionts in earthworms were studied using in vivo and in vitro incubation approaches. The widely distributed PAE in soil, dibutyl phthalate (DBP), was proven to be biotransformed rapidly together with apparent bioaccumulation in earthworms. The biotransformation of PAE congeners with medium or long side chains appeared to be faster compared with those with short side chains. DBP was biotransformed into butyl methyl phthalate (BMP), monobutyl phthalate (MBP), and phthalic acid (PA) through esterolysis and transesterification. Besides, the generation of small quantities of low-molecular weight metabolites via β-oxidation, decarboxylation or ring-cleavage, was also observed, especially when the appropriate proportion of NADPH coenzyme was applied to transfer electrons for oxidases. Interestingly, the esterolysis of PAEs was mainly regulated by the cytoplasmic carboxylesterase (CarE) in earthworms, with a Michaelis constant (Km) of 0.416 mM in the catalysis of DBP. The stronger esterolysis in non-intestinal tissues indicated that the CarE was primarily secreted by non-intestinal tissues of earthworms. Additionally, the intestinal symbiotic bacteria of earthworms could respond to PAE stress, leading to the changes in their diversity and composition. The enrichment of some genera e.g. Bacillus and Paracoccus, and the enhancement of metabolism function, e.g. amino acids, energy, lipids biosynthesis and oxidase secretion, indicated their important role in the degradation of PAEs.
Collapse
Affiliation(s)
- Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Cai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
12
|
Gong YZ, Niu QY, Liu YG, Dong J, Xia MM. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120232. [PMID: 36155222 DOI: 10.1016/j.envpol.2022.120232] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Microbial technology is the most sustainable and eco-friendly method of environmental remediation. Immobilised microorganisms were introduced to further advance microbial technology. In immobilisation technology, carrier materials distribute a large number of microorganisms evenly on their surface or inside and protect them from external interference to better treat the targets, thus effectively improving their bioavailability. Although many carrier materials have been developed, there have been relatively few comprehensive reviews. Therefore, this paper summarises the types of carrier materials explored in the last ten years from the perspective of structure, microbial activity, and cost. Among these, carbon materials and biofilms, as environmentally friendly functional materials, have been widely applied for immobilisation because of their abundant sources and favorable growth conditions for microorganisms. The novel covalent organic framework (COF) could also be a new immobilisation material, due to its easy preparation and high performance. Different immobilisation methods were used to determine the relationship between carriers and microorganisms. Co-immobilisation is particularly important because it can compensate for the deficiencies of a single immobilisation method. This paper emphasises that impact conditions also affect the immobilisation effect and function. In addition to temperature and pH, the media conditions during the preparation and reaction of materials also play a role. Additionally, this study mainly reviews the applications and mechanisms of immobilised microorganisms in environmental remediation. Future development of immobilisation technology should focus on the discovery of novel and environmentally friendly carrier materials, as well as the establishment of optimal immobilisation conditions for microorganisms. This review intends to provide references for the development of immobilisation technology in environmental applications and to further the improve understanding of immobilisation technology.
Collapse
Affiliation(s)
- You-Zi Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Meng-Meng Xia
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
13
|
de Morais Farias J, Krepsky N. Bacterial degradation of bisphenol analogues: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76543-76564. [PMID: 36166118 DOI: 10.1007/s11356-022-23035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is one of the most produced synthetic monomers in the world and is widespread in the environment. BPA was replaced by bisphenol analogues (BP) because of its adverse effects on life. Bacteria can degrade BPA and other bisphenol analogues (BP), diminishing their environmental concentrations. This study aimed to summarize the knowledge and contribute to future studies. In this review, we surveyed papers on bacterial degradation of twelve different bisphenol analogues published between 1987 and June 2022. A total of 102 original papers from PubMed and Google Scholar were selected for this review. Most of the studies (94.1%, n = 96) on bacterial degradation of bisphenol analogues focused on BPA, and then on bisphenol F (BPF), and bisphenol S (BPS). The number of studies on bacterial degradation of bisphenol analogues increased more than six times from 2000 (n = 2) to 2021 (n = 13). Indigenous microorganisms and the genera Sphingomonas, Sphingobium, and Cupriavidus could degrade several BP. However, few studies focussed on Cupriavidus. The acknowledgement of various aspects of BP bacterial biodegradation is vital for choosing the most suitable microorganisms for the bioremediation of a single BP or a mixture of BP.
Collapse
Affiliation(s)
- Julia de Morais Farias
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil
| | - Natascha Krepsky
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil.
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
- Institute of Biosciences (IBIO), Graduate Program in Ecotourism and Conservation, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Whole genome sequencing exploitation analysis of dibutyl phthalate by strain Stenotrophomonas acidaminiphila BDBP 071. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Li C, Liu C, Li R, Liu Y, Xie J, Li B. Biodegradation of Dibutyl Phthalate by the New Strain Acinetobacter baumannii DP-2. TOXICS 2022; 10:toxics10090532. [PMID: 36136497 PMCID: PMC9505308 DOI: 10.3390/toxics10090532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
Optimizing the culture conditions of DBP degradation by bacteria and investigating its biodegradation pathways have a great importance to develop effective PAEs pollution control strategies. In this study, we investigated the cultivation condition optimization, degradation kinetics, and degradation pathways of a newly isolated dibutyl phthalate (DBP) degradation strain, which was isolated from activated sludge and identified as Acinetobacter baumannii DP-2 via morphological observation, biochemical identification, and 16S rDNA sequence analysis. The degradation conditions were optimized based on the results of single-factor experiments and response surface optimization experiments. The DBP degradation rate of Acinetobacter baumannii DP-2 reached up to 85.86% when the inoculation amount was 17.14%, the DBP concentration was 9.81 mg·L-1 and the NaCl concentration was 5 g·L-1. The GC-MS analysis results indicated that the intermediate metabolites of Acinetobacter baumannii DP-2 mainly consisted of DMP, MBP, PA, and benzoic acid derivatives, which confirmed the degradation pathway from DBP to PA under aerobic pathway and then to BA under anaerobic pathway. In summary, Acinetobacter baumannii DP-2 shows great potential for the degradation of DBP in contaminated soils.
Collapse
Affiliation(s)
- Cheng Li
- College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Chunjing Liu
- College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071001, China
| | - Rongzhen Li
- College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071001, China
| | - Yue Liu
- College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071001, China
| | - Jianzhi Xie
- College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071001, China
- Correspondence: (J.X.); (B.L.); Tel.: +86-0312-7528237 (J.X.); +86-0312-7526856 (B.L.)
| | - Bowen Li
- College of Resources and Environmental Science, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071001, China
- Correspondence: (J.X.); (B.L.); Tel.: +86-0312-7528237 (J.X.); +86-0312-7526856 (B.L.)
| |
Collapse
|
16
|
Louis M, Tahrioui A, Verdon J, David A, Rodrigues S, Barreau M, Manac’h M, Thiroux A, Luton B, Dupont C, Calvé ML, Bazire A, Crépin A, Clabaut M, Portier E, Taupin L, Defontaine F, Clamens T, Bouffartigues E, Cornelis P, Feuilloley M, Caillon J, Dufour A, Berjeaud JM, Lesouhaitier O, Chevalier S. Effect of Phthalates and Their Substitutes on the Physiology of Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10091788. [PMID: 36144390 PMCID: PMC9502294 DOI: 10.3390/microorganisms10091788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Phthalates are used in a variety of applications—for example, as plasticizers in polyvinylchloride products to improve their flexibility—and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.
Collapse
Affiliation(s)
- Mélissande Louis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Ali Tahrioui
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Julien Verdon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Audrey David
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sophie Rodrigues
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Magalie Barreau
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Maëliss Manac’h
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Audrey Thiroux
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Baptiste Luton
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Charly Dupont
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marie Le Calvé
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexis Bazire
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexandre Crépin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Maximilien Clabaut
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Emilie Portier
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Laure Taupin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Florian Defontaine
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Thomas Clamens
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Emeline Bouffartigues
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Pierre Cornelis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marc Feuilloley
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Jocelyne Caillon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Faculté de Médecine, Université de Nantes, F-44000 Nantes, France
| | - Alain Dufour
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Jean-Marc Berjeaud
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sylvie Chevalier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Correspondence: ; Tel.: +33-2-32-29-15-60
| |
Collapse
|
17
|
Wu M, Tang J, Zhou X, Lei D, Zeng C, Ye H, Cai T, Zhang Q. Isolation of Dibutyl Phthalate-Degrading Bacteria and Its Coculture with Citrobacter freundii CD-9 to Degrade Fenvalerate. J Microbiol Biotechnol 2022; 32:176-186. [PMID: 35058397 PMCID: PMC9628840 DOI: 10.4014/jmb.2110.10048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Continued fenvalerate use has caused serious environmental pollution and requires large-scale remediation. Dibutyl phthalate (DBP) was discovered in fenvalerate metabolites degraded by Citrobacter freundii CD-9. Coculturing is an effective method for bioremediation, but few studies have analyzed the degradation pathways and potential mechanisms of cocultures. Here, a DBP-degrading strain (BDBP 071) was isolated from soil contaminated with pyrethroid pesticides (PPs) and identified as Stenotrophomonas acidaminiphila. The optimum conditions for DBP degradation were determined by response surface methodology (RSM) analysis to be 30.9 mg/l DBP concentration, pH 7.5, at a culture temperature of 37.2°C. Under the optimized conditions, approximately 88% of DBP was degraded within 48 h and five metabolites were detected. Coculturing C. freundii CD-9 and S. acidaminiphila BDBP 071 promoted fenvalerate degradation. When CD-9 was cultured for 16 h before adding BDBP 071, the strain inoculation ratio was 5:5 (v/v), fenvalerate concentration was 75.0 mg/l, fenvalerate was degraded to 84.37 ± 1.25%, and DBP level was reduced by 5.21 mg/l. In addition, 12 fenvalerate metabolites were identified and a pathway for fenvalerate degradation by the cocultured strains was proposed. These results provide theoretical data for further exploration of the mechanisms used by this coculture system to degrade fenvalerate and DBP, and also offer a promising method for effective bioremediation of PPs and their related metabolites in polluted environments.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Jie Tang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,Corresponding authors J. Tang Phone: +86-28-87720552 Fax: +86-28-87720552 E-mail:
| | - Xuerui Zhou
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Dan Lei
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Chaoyi Zeng
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Hong Ye
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Ting Cai
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Qing Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,
Q. Zhang E-mail:
| |
Collapse
|
18
|
Fan X, Gu C, Cai J, Zhong M, Bian Y, Jiang X. Mechanistic insights into primary biotransformation of diethyl phthalate in earthworm and significant SOD inhibitory effect of esterolytic products. CHEMOSPHERE 2022; 288:132491. [PMID: 34624352 DOI: 10.1016/j.chemosphere.2021.132491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Phthalic acid esters (PAEs) are used as plasticizer or modifier in artificially-manufactured products. Though the rapid biotransformation of phthalates in microbes and plants have been well documented, it is less studied yet in terrestrial animals, e.g. earthworm. In this study, the major biotransformation of diethyl phthalate (DEP) in Eisenia fetida was illustrated using in vitro incubation of earthworm crude enzymes. DEP could be substantially biotransformed into phthalate monoester (MEP) and a small amount of phthalic acid (PA) through esterolysis, which was verified to be driven by endogenous carboxylesterase. Despite the inferior contribution, the oxidation of DEP might also occur under the initiated electron transfer by NADPH coenzyme. The dominant metabolite MEP showed a higher inhibition of superoxide dismutase (SOD) activity than DEP with EC50 of 0.0082 ± 0.0016 mmol/L, so the higher ecological risks of MEP would be marked. The inhibition effect of PA was validated to be even stronger than MEP though it was slightly generated. The direct binding interaction with SOD was proved to be an important molecular event for regulation of SOD activity. Besides the static quenching mechanism, the caused conformational changes including despiralization of α-helix and spatial reorientation of tryptophan were spectrally believed to affect binding and underlie inhibition efficiency of SOD activity.
Collapse
Affiliation(s)
- Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jun Cai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ming Zhong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
19
|
Zhou M, Li Y. Modification of PAE-degrading Esterase(CarEW) for Higher Degradation Efficiency Through Integrated Homology Modeling, Molecular Docking, and Molecular Dynamics Simulation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zheng D, Cao J, Wang P, Zhao J, Zhao Y, Zhang T, Li C. Catalytic ozonation of dibutyl phthalate in the presence of Ag-doped NiFe 2O 4 and its mechanism. ENVIRONMENTAL TECHNOLOGY 2021; 42:4528-4538. [PMID: 32423314 DOI: 10.1080/09593330.2020.1770338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, NiFe2O4 and Ag0.1Ni0.95Fe2O4 were successfully prepared by the sol-gel method and applied to catalyze ozone for dibutyl phthalate (DBP) degrading. The synthesized catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and vibrating sample magnetometer. The removal efficiency was compared with different catalyst dosage, pH condition, and initial DBP concentration for the two catalysts. The results showed that the introduction of Ag0.1Ni0.95Fe2O4 enhanced the ozone decomposition and the utilization efficiency of ozone from 32.2% (ozone alone) to 56.5% and improved the degradation efficiency of DBP significantly. The two catalysts both presented good recycling performance. Furthermore, the scavenger test displayed DBP degradation by catalytic ozonation dominated by OH in this study. These insights into the catalytic ozonation mechanism on Ag0.1Ni0.95Fe2O4 will advance their practical application to the catalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Di Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Junyu Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Yujie Zhao
- China United Engineering Corporation Limited, Zhejiang, People's Republic of China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Ren L, Wang G, Huang Y, Guo J, Li C, Jia Y, Chen S, Zhou JL, Hu H. Phthalic acid esters degradation by a novel marine bacterial strain Mycolicibacterium phocaicum RL-HY01: Characterization, metabolic pathway and bioaugmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148303. [PMID: 34118676 DOI: 10.1016/j.scitotenv.2021.148303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 05/12/2023]
Abstract
Phthalic acid esters (PAEs) are one of the most widely used plasticizers and the well-studied environmental pollutants with endocrine disrupting properties. Investigation about PAEs in terrestrial ecosystem has been extensively conducted while the fate of PAEs in marine environment remains underexplored. In this study, a novel di-(2-ethylhexyl) phthalate (DEHP) degrading marine bacterial strain, Mycolicibacterium phocaicum RL-HY01, was isolated and characterized from intertidal sediments. Strain RL-HY01 could utilize a range of PAE plasticizers as sole carbon source for growth. The effects of different environmental factors on the degradation of PAEs were evaluated and the results indicated that strain RL-HY01 could efficiently degrade PAEs under a wide range of pH (5.0 to 9.0), temperature (20 °C to 40 °C) and salinity (below 10%). Specifically, when Tween-80 was added as solubilizing agent, strain RL-HY01 could rapidly degrade DEHP and achieve complete degradation of DEHP (50 mg/L) in 48 h. The kinetics of DEHP degradation by RL-HY01 were well fitted with the modified Gompertz model. The metabolic intermediates of DEHP by strain RL-HY01 were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis and then the metabolic pathway of DEHP was deduced. DEHP was transformed into di-ethyl phthalate (DEP) via β-oxidation and then DEP was hydrolyzed into phthalic acid (PA) by de-esterification. PA was further transformed into gentisate via salicylic acid and further utilized for cell growth. Bioaugmentation of strain RL-HY01 with marine samples was performed to evaluate its application potential and the results suggested that strain RL-HY01 could accelerate the elimination of DEHP in marine samples. The results have advanced our understanding of the fate of PAEs in marine ecosystem and identified an efficient bioremediation strategy for PAEs-polluted marine sites.
Collapse
Affiliation(s)
- Lei Ren
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guan Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianfu Guo
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sha Chen
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Hanqiao Hu
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
22
|
Wang B, Ndayisenga F, Zhang G, Yu Z. Deciphering the initial products of coal during methanogenic bioconversion: Based on an untargeted metabolomics approach. GCB BIOENERGY 2021; 13:967-978. [DOI: 10.1111/gcbb.12824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/28/2021] [Indexed: 01/22/2025]
Abstract
AbstractAlthough the process of microbial degradation of coal to produce biomethane has got much attention from many research works, the products profiles of coal at the initial stage of methanogenic bioconversion are not clear yet. In this study, five coal‐degrading bacterial strains (CD1, CD10, CD20, CD24, and CD25) from a methanogenic community were isolated and identified. Among them, CD1 and CD24 belong to Paenibacillus sp., CD10 and CD20 belong to Bacillus sp., and CD25 belongs to Stenotrophomonas sp. After biotreatment of lignite and bituminous coal, the kinds of newly produced compounds were 33 and 45, respectively. Metabolomics analysis showed that a large number of alkane compounds and heterocyclic aromatic compounds were produced after degradation of bituminous coal and lignite by isolated bacteria, and most of the compounds had been produced in a hydroxylated or acylated manner, indicating that the initial microbial treatment enhanced the bioavailability of coal. Some alkaloids and biosurfactants were also detected in the aforementioned products, such as glycerophosphocholine, proveratrol A, proveratrol B, surfactin, etc. These microbial metabolites may play an important role in solubilization during the degradation of coal. This study added to the understanding of the complicated metabolic process of methanogenic coal bioconversion and enabled effective production of biomethane with appropriate metabolic strategies.
Collapse
Affiliation(s)
- Bobo Wang
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Fabrice Ndayisenga
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Guilong Zhang
- Agro‐Environmental Protection Institute Ministry of Agriculture and Rural Affairs China
| | - Zhisheng Yu
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
Zhang Y, Jiao Y, Li Z, Tao Y, Yang Y. Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145418. [PMID: 33548714 DOI: 10.1016/j.scitotenv.2021.145418] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Phthalates (PAEs) are of wide concern because they are commonly used in various plastic products as plasticizers, and can found their way into the environment. However, their interaction with the environment and their toxicity in aquatic animals is still a matter of intense debate. In this review on PAEs in aquatic environments (lakes, rivers and seas), it is found that there is a large variety and abundance of PAEs in developing countries, and the total concentration of PAEs even exceeds 200 μg / L. The interaction between metabolic processes involved in the toxicity induced by various PAEs is summarized for the first time in the article. Exposure of PAEs can lead to activation of the detoxification system CYP450 and endocrine system receptors of aquatic animals, which in turn causes oxidative stress, metabolic disorders, endocrine disorders, and immunosuppression. Meanwhile, each system can activate / inhibit each other, causing genotoxicity and cell apoptosis, resulting in the growth and development of organisms being blocked. The mixed PAEs shows no cumulative toxicity changes to aquatic animals. For the combined pollution of other chemicals and PAEs, PAE can act as an agonist or antagonist, leading to combined toxicity in different directions. Phthalate monoesters (MPEs), the metabolites of PAEs, are also toxic to aquatic animals, however, the toxicity is weaker than the corresponding parent compounds. This review summarizes and analyzes the current ecotoxicological effects of PAEs on aquatic animals, and provides guidance for future research.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
24
|
Feng NX, Feng YX, Liang QF, Chen X, Xiang L, Zhao HM, Liu BL, Cao G, Li YW, Li H, Cai QY, Mo CH, Wong MH. Complete biodegradation of di-n-butyl phthalate (DBP) by a novel Pseudomonas sp. YJB6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143208. [PMID: 33162130 DOI: 10.1016/j.scitotenv.2020.143208] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 05/26/2023]
Abstract
Phthalate acid esters (PAEs) are environmentally ubiquitous and have aroused a worldwide concern due to their threats to environment and human health. Di-n-butyl phthalate (DBP) is one of the most frequently observed PAEs in the environment. In this study, a novel bacterium identified as Pseudomonas sp. YJB6 that isolated from PAEs-contaminated soil was determined to have strong DBP-degrading activity. A complete degradation of DBP in 200 mg/L was achieved within 3 days when YJB6 was cultivated at 31.4 °C with an initial inoculation size of 0.6 (OD600) in basic mineral salts liquid medium (MSM), pH 7.6. The degradation curves of DBP (50-2000 mg/L) fitted well the first-order kinetics model, with a half-life (t1/2) ranging from 0.86 to 1.88 d. The main degradation intermediates were identified as butyl-ethyl phthalate (BEP), mono-butyl phthalate (MBP), phthalic acid (PA) and benzoic acid (BA), indicating a new complex and complete biodegradation pathway presented by YJB6. DBP might be metabolized through de-esterification, β-oxidation, and hydrolysis, followed by entering the Krebs cycle of YJB6 as a final step. Strain YJB6 was successfully immobilized with sodium alginate (SA), polyvinyl alcohol (PVA), and SA-PVA. The immobilization significantly improved the stability and adaptability of the cells thus resulting in high volumetric DBP-degrading rates compared to that of the freely suspended cells. In addition, these immobilized cells can be reused for many cycles with well conserved in DBP-degrading activity. The ideal DBP degrading ability of the free and immobilized YJB6 cells suggests that strain YJB6, especially the SA-PVA+ YJB6 promises great potential to remove hazardous PAEs.
Collapse
Affiliation(s)
- Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Xi Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qi-Feng Liang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|