1
|
Zhao W, Lu J, Wei Q, Cao J, Cui J, Hou Y, Zhang K, Chen H, Zhao W. Spatial distribution, source apportionment, and risk assessment of perfluoroalkyl substances in urban soils of a typical densely urbanized and industrialized city, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176166. [PMID: 39270864 DOI: 10.1016/j.scitotenv.2024.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
As an important capital city of intensive urbanization and industrialization in Northeast China, Changchun has experienced extremely rapid development, with diverse sectors such as automobile manufacturing, equipment manufacturing, optoelectronics, and pharmaceutical decoration. However, data on the levels and profiles of perfluoroalkyl substances (PFASs) in urban soils of Changchun is limited. This study investigated 17 PFASs across various functional zones within the main urban area of Changchun. ∑PFAS concentrations in the soils ranged from 0.236 to 6.483 ng/g, averaging 1.820 ng/g. Perfluorocarboxylic acids (PFCAs) were more prevalent than perfluorosulfonic acids (PFSAs), and short-chain PFASs (C ≤ 6) were the predominant residues. PFAS concentrations varied across functional zones, with commercial markets exhibiting the highest levels, followed by industrial areas, residential areas, suburban zones, and transportation areas. Molecular diagnostic ratio and PCA-MLR analysis identified industrial production processes of consumer goods and wastewater treatment plants as the primary sources of soil PFAS contamination. There were no obvious health risks of soil ∑PFASs, while soil PFOS and PFHxS may have an impact on the richness and diversity of soil microbial communities in some certain locations. This study provides new data on PFAS residues in soils influenced by diverse contamination sources within a key industrial city in Northeast China, offering valuable insights for prioritizing remediation and restoration efforts.
Collapse
Affiliation(s)
- Wei Zhao
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Jilong Lu
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China.
| | - Qiaoqiao Wei
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Jinxin Cao
- Third Geology and Mineral Resources Exploration Institute, Gansu Bureau of Geology and Mineral Resources, Lanzhou 730050, China
| | - Jiaxuan Cui
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Yaru Hou
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Kaiyu Zhang
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Hong Chen
- Soil and Environment Analysis Center, Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Zhao
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Wen W, Gao L, Cheng H, Xiao L, Zhang S, Li S, Jiang X, Xia X. Legacy and alternative perfluoroalkyl acids in the Yellow River on the Qinghai-Tibet Plateau: Levels, spatiotemporal characteristics, and multimedia transport processes. WATER RESEARCH 2024; 262:122095. [PMID: 39032330 DOI: 10.1016/j.watres.2024.122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
The source region of the Yellow River (SRYR) located in the northeast of the Qinghai-Tibetan Plateau is not only the largest runoff-producing area in the Yellow River Basin, but also the most important freshwater-supply ecological function area in China. In this study, the short-term spatiotemporal distribution of selected legacy and alternative perfluoroalkyl acids (PFAAs) in the SRYR was first investigated in multiple environmental media. Total PFAA concentrations were in the range of 1.16-14.3 ng/L, 4.25-42.1 pg/L, and 0.21-13.0 pg/g dw in rainwater, surface water, and sediment, respectively. C4-C7 PFAAs were predominant in various environmental matrices. Spatiotemporal characteristics were observed in the concentrations and composition profiles. Particularly, the spatial distribution of rainwater and the temporal distribution of surface water exhibited highly significant differences (p<0.01). Indian monsoon, westerly air masses, and local mountain-valley breeze were the driving factors that contributed to the change of rainwater. Rainwater, meltwater runoff, and precursor degradation were important sources of PFAA pollution in surface water. Organic carbon content was a major factor influencing PFAA distribution in sediment. These results provide a theoretical basis for revealing the regional transport and fate of PFAAs, and are also important prerequisites for effectively protecting the freshwater resource and aquatic environment of the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lijuan Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Office of Laboratory and Equipment Management, Beijing Normal University, Zhuhai 519087, China
| | - Hao Cheng
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Xiao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Siling Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Tan X, Shi Y, Ma CF, Chi Q, Yang YH, Zhang WX, Xiao HM, Wang X. Fluoro-functionalized plant biomass adsorbent: Preparation and application in extraction of trace perfluorinated compounds from environmental water samples. J Environ Sci (China) 2024; 137:703-715. [PMID: 37980053 DOI: 10.1016/j.jes.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 11/20/2023]
Abstract
Perfluorinated compounds (PFCs) are toxic and widely present in the environment, and therefore effective adsorbents are required to remove PFCs from environmental water. In the present study, a new type of fluorinated biomass materials was synthesized via an ingenious fluorosilanization reaction. These adsorbents were applied for the adsorption of 13 typical PFCs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). By comparing their adsorption performance, Fluorinated cedar slag (FCS) was discovered to have the best absorption efficiency and enabled highly efficient enrichment of PFCs. The adsorption recovery of FCS with the investigated PFCs is greater than 90% under the optimal adsorption condition. Ascribed to the high affinity of F-F sorbent-sorbate interaction, FCS had good adsorption capacities of PFCs from aqueous solution, with the maximum adsorption capacity of 15.80 mg/g for PFOS and 10.71 mg/g for PFOA, respectively. Moreover, the adsorption time could be achieved in a short time (8 min). Using the FCS absorbent, an innovative FCS-solid phase extraction assisted with high performance liquid chromatography-electrospray-tandem mass spectrometry (FCS-SPE-HPLC-ESI-MS/MS) method was first developed to sensitively detect PFCs in the environmental water samples. The intra-day and inter-day recovery rates of the 13 compounds ranged from 90.7%-104.3%, with the RSD of 2.1%-4.7% (intra-day) and 2.5%-8.5% (inter-day), respectively. This research demonstrates the potential of the newly fluoro-functionalized plant biomass to adsorb PFCs from environmental water, with the advantages of high adsorption efficiencies, high anti-interference, easy operation and low economic cost.
Collapse
Affiliation(s)
- Xi Tan
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yan Shi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chun-Feng Ma
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Hang Yang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Xiang Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
4
|
Ogunbiyi OD, Massenat N, Quinete N. Dispersion and stratification of Per-and polyfluoroalkyl substances (PFAS) in surface and deep-water profiles: A case study of the Biscayne Bay area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168413. [PMID: 37949131 DOI: 10.1016/j.scitotenv.2023.168413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS) are a group of synthetic chemical compounds known for their persistent, bioaccumulation and toxic characteristics in all environmental compartments. As industrial and domestic applications of PFAS increase, their discharge into water bodies becomes of human and ecological concerns. Our research focuses on providing better understanding on the occurrence, vertical distribution, and dispersion of PFAS in surface and bottom water from inshore and offshore area of Biscayne Bay, Miami, Florida. We screened a total of 30 PFAS from inshore (N = 38) and offshore (N = 48) water samples using a semi-automated solid phase extraction (SPE) followed by instrumental analysis using Liquid chromatography-mass spectrometry techniques (LC-MS/MS). Our findings show a general surface-enrichment and depth-depletion pattern from inshore to offshore area. Average ∑PFAS loadings inshore (surface vs bottom; 29.52 ± 15.26 ng/L vs 21.45 ± 7.85 ng/L) is significantly greater than offshore (surface vs bottom; 5.18 ± 2.68 ng/L vs 2.42 ± 2.11 ng/L). PFOS had the highest mean concentration both inshore (6.36 ± 4.23 ng/L) and offshore (0.83 ± 0.87 ng/L). The most frequently detected (D·F > 91 %) PFAS are Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Perfluoroheptanoic acid (PFHpA), Perfluorohexanoic acid (PFHxA), Perfluorobutanoic acid (PFBA), Perfluorobutane sulfonic acid (PFBS) and Perfluorohexane sulfonic acid (PFHxS) in surface water samples. PFOS/PFOA >1 suggests that point sources are the major contribution to PFAS burden in the Biscayne Bay. An innovative Inverse distance weighted interpolation (IDW) special modelling approach was implemented to predict the potential contribution of oceanic current on the dispersion of ∑PFAS loadings in surface and bottom profiles from canals (inshore) to offshore areas. This will provide insights into transport mechanisms of PFAS from source emissions, and risk assessments of potential impacts on human and aquatic life in the Bay.
Collapse
Affiliation(s)
- Olutobi Daniel Ogunbiyi
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Modesto Maidique Campus, Miami, FL, 33199, USA; Institute of Environment, Florida International University, 11200 SW 8th St, Modesto Maidique Campus, Miami, FL, 33199, USA
| | - Neumiah Massenat
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Modesto Maidique Campus, Miami, FL, 33199, USA; Institute of Environment, Florida International University, 11200 SW 8th St, Modesto Maidique Campus, Miami, FL, 33199, USA
| | - Natalia Quinete
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Modesto Maidique Campus, Miami, FL, 33199, USA; Institute of Environment, Florida International University, 11200 SW 8th St, Modesto Maidique Campus, Miami, FL, 33199, USA.
| |
Collapse
|
5
|
Hua ZL, Gao C, Zhang JY, Li XQ. Perfluoroalkyl acids in the aquatic environment of a fluorine industry-impacted region: Spatiotemporal distribution, partition behavior, source, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159452. [PMID: 36265630 DOI: 10.1016/j.scitotenv.2022.159452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The present study investigated the temporal and spatial distributions, partition behaviors, sources, and risks of 14 perfluoroalkyl acids (PFAAs) in the aquatic environment of a fluorine industry-impacted region. The total concentrations of 14 PFAAs (ΣPFAAs) were 118.10-2235.4 ng/L, 40.00-2316.1 ng/g dw, and 6.90-180.5 ng/g dw in dissolved, suspended particle matter (SPM), and sedimentary phases, respectively. The predominant pollutants in the dissolved and SPM phases were perfluoroalkyl carboxylic acids (PFCAs) with carbon chain lengths <9, whereas C13 and C14 PFCAs accounted for a large proportion in the sedimentary phase. The dry season exhibited the highest concentration of ΣPFAAs in the dissolved phase (500.9 ± 350.2 ng/L), while the wet season showed the highest concentrations of ΣPFAAs in the SPM and sedimentary phases (591.6 ± 469.1 ng/g dw and 59.7 ± 35.5 ng/g dw, respectively). Significantly higher concentrations of PFAAs have been found in sewage plant and industrial areas. The concentration of PFAAs in the Xupu water source area (XPS) was slightly higher than that in other water source areas of the Yangtze River, which were either not affected or were less affected by the fluorine industry. The log KD-SPM (distribution coefficient between SPM and water), log KD-SED (distribution coefficient between sediment and water), and log KOC-SED (the organic carbon normalized distribution coefficient) of PFAAs showed significant differences between the wet season and dry season, which may also be affected by carbon chain length. Source identification results showed that industries, wastewater discharge, and nonpoint sources were the main sources of PFAAs in this region. The ecological risk posed by long-chain PFAAs in aquatic organisms cannot be ignored, especially in areas with intensive industrial and agricultural activities. Health risks may exist for local toddlers with long-term exposure to perfluorooctanoic acid (PFOA) through drinking water intake and dermal contact.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Chang Gao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Medeiros FS, Mota C, Chaudhuri P. Perfluoropropionic Acid-Driven Nucleation of Atmospheric Molecules under Ambient Conditions. J Phys Chem A 2022; 126:8449-8458. [DOI: 10.1021/acs.jpca.2c05068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Flávio Soares Medeiros
- Department of Physics, Federal University of Amazonas, Manaus69080-900, Amazonas, Brazil
| | - Cicero Mota
- Department of Mathematics, Federal University of Amazonas, Manaus69080-900, Amazonas, Brazil
| | | |
Collapse
|
7
|
Liu Z, Zhou J, Xu Y, Lu J, Chen J, Wang J. Distributions and sources of traditional and emerging per- and polyfluoroalkyl substances among multiple environmental media in the Qiantang River watershed, China. RSC Adv 2022; 12:21247-21254. [PMID: 35975075 PMCID: PMC9345021 DOI: 10.1039/d2ra02385g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in the food chain poses a threat to human health. Water and the atmosphere are the major transport pathways for PFASs in the environment, while water, soil and sediment are sinks. Herein, the concentrations and distributions of traditional and emerging PFASs in multi-environmental media samples in the Qiantang River watershed were comprehensively investigated. Twenty-five PFASs, including seven emerging PFASs, were identified. The concentrations in water, soil, sediment and PM2.5 ranged from 3.58 to 786 ng L-1, 0.72 to 12.3 ng g-1, 0.73 to 6.60 ng g-1, and 93.9 to 255 pg m-3, respectively, with mean concentrations of 149 ng L-1, 4.70 ng g-1, 4.31 ng g-1, and 156 pg m-3. Perfluorooctanoic acid (PFOA) was the dominant contaminant in water, soil, and sediment, and perfluoropentanoic acid (PFPeA) was the dominant contaminant in PM2.5. Hexafluoropropylene oxide-dimer acid (HFPO-DA) and 6 : 2 chlorinated polyfluorinated ether sulfonate (6 : 2 Cl-PFESA), as substitutes for PFOA and perfluorooctane sulfonate (PFOS), were detected, indicating the gradual replacement of traditional PFOA and PFOS in this area. Perfluoro-3,6-dioxaheptanoic acid (NFDHA), as a component of the aqueous film-forming foam FN-3, was first detected in this area. Short-chain PFASs were mainly distributed in water and PM2.5, while long-chain PFASs were distributed in the solid phase, such as soil, sediment, and PM2.5. Based on principal component analysis (PCA), the major PFAS sources were emulsifiers from fluorine polymerization and surface-active agents from the textile, papermaking, leather, and other industries. In addition, correlation analysis showed that water was the main source and transport pathway of short-chain perfluoroalkyl carboxylic acid (PFCA), HFPO-DA, and NFDHA in this area, while the atmosphere combined with PM2.5 was the main transport pathway for both short- and long-chain PFCAs, PFOS, and 6 : 2 Cl-PFESA.
Collapse
Affiliation(s)
- Zhengzheng Liu
- College of Environment, Zhejiang University of Technology Hangzhou China
| | - Jingqing Zhou
- Zhejiang Ecological and Environmental Monitoring Center, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control Hangzhou China
| | - Yalu Xu
- Zhejiang Ecological and Environmental Monitoring Center, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control Hangzhou China
| | - Jiafeng Lu
- Zhejiang Ecological and Environmental Monitoring Center, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control Hangzhou China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology Hangzhou China
| | - Jing Wang
- Zhejiang Ecological and Environmental Monitoring Center, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control Hangzhou China
| |
Collapse
|
8
|
Gao C, Hua ZL, Li XQ. Distribution, sources, and dietetic-related health risk assessment of perfluoroalkyl acids (PFAAs) in the agricultural environment of an industrial-agricultural interaction region (IAIR), Changshu, East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152159. [PMID: 34896133 DOI: 10.1016/j.scitotenv.2021.152159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The exploration of the distribution and dietetic-related health risks of perfluoroalkyl acids (PFAAs) in industrial-agricultural interaction regions (IAIRs) is of significant importance, due to the transfer of many PFAA-related factories to developing countries with intensive agricultural activities. In the present study, based on the local diet, edible parts of rice, vegetables, fish, and their corresponding soils and irrigation/aquaculture water were investigated in a typical Chinese city (Changshu). The concentrations of total perfluoroalkyl acids (ΣPFAAs) in the edible parts of rice /vegetables and fish tissues ranged from 26.69 to 37.09 ng/g dw, 12.93 to 40.77 ng/g dw, and 13.27 to 29.82 ng/g ww, with perfluorohexanoic acid (PFPeA) and perfluorooctane sulfonic acid (PFOS) as the most dominant compounds. The PFAA concentrations in the corresponding rice soils, vegetable soils, irrigation water, and aquaculture water ranged from 11.99 to 26.33 ng/g dw, 14.06 to 36.19 ng/g dw, 141.36 to 297.00 ng/L, and 179.23 to 235.82 ng/L, respectively. Biota-sediment accumulation factor (BSAF) values for the plant-soil system were far greater than those for bioaccumulation factor (BAF) values for the plant-irrigation water system. PFAAs were more inclined to accumulate in the gills of fish as determined by their highest BAF values. Correlation analysis showed that PFAAs in root vegetables had a stronger correlation with those in soil compared with those in irrigation water. Source analysis showed that emissions from fluoride industries, textiles, and food industries may be the dominant sources of PFAAs in agricultural environments. The estimated dietary intake (EDI) for the selected diet was lower than that for rice/vegetables but was higher than that found in fish. Toddlers (2-5 years) had the highest exposure risk, and rural residents were more exposed to PFAAs than urban residents under the selected diet.
Collapse
Affiliation(s)
- Chang Gao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| |
Collapse
|
9
|
Zhang W, Pang S, Lin Z, Mishra S, Bhatt P, Chen S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115908. [PMID: 33190976 DOI: 10.1016/j.envpol.2020.115908] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C-F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|