1
|
Xing G, Lu J, Xuan L, Chen J, Xiong J. Sediment prokaryotic assembly, methane cycling, and ammonia oxidation potentials in response to increasing antibiotic pollution at shrimp aquafarm. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128885. [PMID: 35421673 DOI: 10.1016/j.jhazmat.2022.128885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
Antibiotic pollution poses serious threats to public health and ecological processes. However, systematic research regarding the interactive effects of increasing nutrient and antibiotic pollutions on the prokaryotic community, particularly taxa that contribute to greenhouse gas emissions, is lacking. By exploring the complex interactions that occur between interkingdom bacteria and archaea, biotic and abiotic factors, the responses of sediment prokaryotic assembly were determined along a significant antibiotic pollution gradient. Bacterial and archaeal communities were primarily governed by sediment antibiotic pollution, ammonia, phosphate, and redox potential, which further affected enzyme activities. The two communities nonlinearly responded to increasing antibiotic pollution, with significant tipping points of 3.906 and 0.979 mg/kg antibiotics, respectively. The combined antibiotic concentration-discriminatory taxa of bacteria and archaea accurately (98.0% accuracy) diagnosed in situ antibiotic concentrations. Co-abundance analysis revealed that the methanogens, methanotrophs, sulfate-reducing bacteria, and novel players synergistically contributed to methane cycling. Antibiotic pollution caused the dominant role of ammonia-oxidizing archaea in ammonia oxidation at these alkaline sediments. Collectively, the significant tipping points and bio-indicators afford indexes for regime shift and quantitative diagnosis of antibiotic pollution, respectively. Antibiotic pollution could expedite methane cycling and mitigate nitrous oxide yield, which are previously unrecognized ecological effects. These findings provide new insights into the interactive biological and ecological consequences of increasing nutrient and antibiotic pollutions.
Collapse
Affiliation(s)
- Guorui Xing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lixia Xuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Nadella RK, Panda SK, Badireddy MR, Kurcheti PP, Raman RP, Mothadaka MP. Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37527-37542. [PMID: 35066837 DOI: 10.1007/s11356-021-18163-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Multi-drug resistance (MDR) in bacteria is regarded as an emerging pollutant in different food production avenues including aquaculture. One hundred and sixty out of 2304 bacterial isolates from shrimp farm samples (n = 192) of Andhra Pradesh, India, were MDR. Based on biochemical identification and 16S rRNA sequencing, they were grouped into 35 bacterial species with the predominance of Vibrio parahaemolyticus (12.5%). The MDR isolates showed highest resistance toward oxytetracycline (89%) with more than 0.2 MAR (multiple antibiotic resistance), demonstrates a high-risk source. The most prevalent antibiotic-resistance gene (ARG) and mobile genetic element (MGE) detected were tetA (47.5%) and int1 (46.2%), respectively. In conjugation experiments, overall transfer frequency was found to be in the range of 1.1 × 10-9 to 1.8 × 10-3 with the transconjugants harbouring ARGs and MGEs. This study exposed the wide distribution of MDR bacteria in shrimp and its environment, which can further aggravate the already raised concerns of antibiotic residues in the absence of proper mitigation measures.
Collapse
Affiliation(s)
- Ranjit Kumar Nadella
- MFB Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri P.O., Cochin, 682029, Kerala, India
| | - Satyen Kumar Panda
- QAM Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri P.O, Cochin, 682029, Kerala, India
| | - Madhusudana Rao Badireddy
- Visakhapatnam Research Centre, ICARCentral Institute of Fisheries Technology, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Pani Prasad Kurcheti
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Ram Prakash Raman
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Mukteswar Prasad Mothadaka
- MFB Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri P.O., Cochin, 682029, Kerala, India.
| |
Collapse
|
3
|
Zhou R, Hou D, Zeng S, Wei D, Yu L, Bao S, Weng S, He J, Huang Z. Sedimentary Nitrogen and Sulfur Reduction Functional-Couplings Interplay With the Microbial Community of Anthropogenic Shrimp Culture Pond Ecosystem. Front Microbiol 2022; 13:830777. [PMID: 35308336 PMCID: PMC8931606 DOI: 10.3389/fmicb.2022.830777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Sediment nitrogen and sulfur cycles are essential biogeochemical processes that regulate the microbial communities of environmental ecosystems, which have closely linked to environment ecological health. However, their functional couplings in anthropogenic aquaculture sedimentary ecosystems remain poorly understood. Here, we explored the sediment functional genes in shrimp culture pond ecosystems (SCPEs) at different culture stages using the GeoChip gene array approach with 16S amplicon sequencing. Dissimilarity analysis showed that the compositions of both functional genes and bacterial communities differed at different phases of shrimp culture with the appearance of temporal distance decay (p < 0.05). During shrimp culture, the abundances of nitrite and sulfite reduction functional genes decreased (p < 0.05), while those of nitrate and sulfate reduction genes were enriched (p < 0.05) in sediments, implying the enrichment of nitrites and sulfites from microbial metabolism. Meanwhile, nitrogen and sulfur reduction genes were found to be linked with carbon degradation and phosphorous metabolism (p < 0.05). The influence pathways of nutrients were demonstrated by structural equation modeling through environmental factors and the bacterial community on the nitrogen and sulfur reduction functions, indicating that the bacterial community response to environmental factors was facilitated by nutrients, and led to the shifts of functional genes (p < 0.05). These results indicate that sediment nitrogen and sulfur reduction functions in SCPEs were coupled, which are interconnected with the SCPEs bacterial community. Our findings will be helpful for understanding biogeochemical cycles in anthropogenic aquaculture ecosystems and promoting sustainable management of sediment environments through the framework of an ecological perspective.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongdong Wei
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lingfei Yu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jianguo He,
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Zhijian Huang,
| |
Collapse
|
4
|
Liu L, Cai X, Ai Y, Li J, Long H, Ren W, Huang A, Zhang X, Xie ZY. Effects of Lactobacillus pentosus combined with Arthrospira platensis on the growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 120:345-352. [PMID: 34883257 DOI: 10.1016/j.fsi.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Litopenaeus vannamei is one of the most productive shrimp species in the world. However, shrimp farming is suffering from adverse environmental conditions and disease outbreaks. Typically, Lactobacillus pentosus and Arthrospira platensis are used as substitutes for some antibiotics. In the present study, we assessed the effects of dietary supplements along with living bacteria or cell-free extracts of L. pentosus combined with A. platensis on the growth performance, immune response, intestinal microbiota, and disease resistance of L. vannamei against Vibrio alginolyticus. Shrimp fed L. pentosus live bacteria combined with A. platensis showed the best growth performance and lowest feed conversion rate. The supplementation diet with L. pentosus live bacteria and A. platensis could significantly enhance the trypsin activity in shrimp after the feeding trial. Given the lowest feed conversion rate in shrimp fed L. pentosus live bacteria combined with A. platensis, we reasonably speculated that the decrease in feed conversion rate may be related to the increase in trypsin activity. In addition, dietary cell-free extracts of L. pentosus combined with A. platensis enhanced the expression of immune-related genes after the feeding trial or challenge test. Moreover, results of the bacterial challenge test indicated that the shrimp fed cell-free extracts of L. pentosus combined with A. platensis diet resulted in the highest survival rate, which suggested that cell-free extracts of L. pentosus and A. platensis could improve the disease resistance against V. alginolyticus by up-regulating the expressions of immune-related genes. Dietary L.pentosus or A. platensis, or their combination, reduced the abundance of harmful bacteria, including Proteobacteria in shrimp intestine, which suggested that L. pentosus and A. platensis could improve the growth performance and health of shrimp by regulating the structure of the intestinal microbiota. The findings of this study demonstrated that L. pentosus live bacteria and A. platensis exerted synergistic effects on the growth performance and digestion in shrimp, while cell-free extracts of L. pentosus and A. platensis showed synergistic effects on the immune response and disease resistance of shrimp against V. alginolyticus.
Collapse
Affiliation(s)
- Lei Liu
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| | - Yu Ai
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Juan Li
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| |
Collapse
|
5
|
Lu J, Zhang X, Wang C, Li M, Chen J, Xiong J. Responses of sediment resistome, virulence factors and potential pathogens to decades of antibiotics pollution in a shrimp aquafarm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148760. [PMID: 34323773 DOI: 10.1016/j.scitotenv.2021.148760] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 05/28/2023]
Abstract
Aquaculture ecosystem has become a hotspot of antibiotics resistance genes (ARGs) dissemination, owing to the abuse of prophylactic antibiotics. However, it is still unclear how and to what extent ARGs respond to the increasing antibiotic pollution, a trend as expected and as has occurred. Herein, a significant sediment antibiotic pollution gradient was detected along a drainage ditch after decades of shrimp aquaculture. The increasing antibiotic pollution evidently promoted the diversities and tailored the community structures of ARGs, mobile genetic elements (MGEs), virulence factors and pathogens. The profiles of ARGs and MGEs were directly altered by the concentrations of terramycin and sulphadimidine. By contrast, virulence factors were primarily affected by nutrient variables in sediment. The pathogens potentially hosted diverse virulence factors and ARGs. More than half of the detected ARGs subtypes non-linearly responded to increasing antibiotic pollution, as supported by significant tipping points. However, we screened seven antibiotic concentration discriminatory ARGs that could serve as independent variable for quantitatively diagnosing total antibiotic concentration. Co-occurrence analysis depicted that notorious aquaculture pathogens of Vibrio harveyi and V. parahaemolyticus potentially hosted ARGs that confer resistance to multiple antibiotics, while priority pathogens for humankind, e.g., Helicobacter pylori and Staphylococcus aureus, could have harbored redundant virulence factors. Collectively, the significant tipping points and antibiotic concentration-discriminatory ARGs may translate into warning index and diagnostic approach for diagnosing antibiotic pollution. Our findings provided novel insights into the interplay among ARGs, MGEs, pathogens, virulence factors and geochemical variables under the scenario of increasing antibiotic pollution.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinxu Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chaohua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Wei L, Li H, Lu J. Algae-induced photodegradation of antibiotics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115589. [PMID: 33234380 DOI: 10.1016/j.envpol.2020.115589] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/21/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics are a typical group of pharmaceutical and personal care products (PPCPs) with emerging pollutant effects. The presence of residual antibiotics in the environment is a prominent issue owing to their potential hazards, toxic effects, and persistence. Several treatments have been carried out in aquatic environments in order to eliminate antibiotic residues. Among these, photodegradation is regarded as an environmentally-friendly and efficient option. Indirect photodegradation is the main pathway for the degradation of residual antibiotics in natural water, as opposed to direct photodegradation. Algae, working as photosensitizers, play an important role in the indirect photolysis of residual antibiotics in natural water bodies. They promote this reaction by secreting extracellular organic matters (EOMs) and inducing the generation of active species. In order to provide a thorough understanding of the effects of algae on residual antibiotic degradation in the environment, this paper comprehensively reviews the latest research regarding algae-induced antibiotic photodegradation. The summary of the different pathways and photosensitive mechanisms involved in this process show that EOMs are indispensable to antibiotic photodegradation. The influencing factors of algae-induced photodegradation are also discussed here: these include algae species, antibiotic types, and environmental variables such as light source, ferric ion presence, temperature, and ultrasound treatment. Based on the review of existing literature, this paper also considers several pathways for the future study of algae-induced antibiotic photodegradation.
Collapse
Affiliation(s)
- Lianxue Wei
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Jinfeng Lu
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin, 300071, China.
| |
Collapse
|