1
|
Zhang F, Sun M, Li D, You M, Yan J, Bai S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules 2024; 29:5133. [PMID: 39519780 PMCID: PMC11548012 DOI: 10.3390/molecules29215133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is a common species in the alpine meadows of the QTP, with high-stress resistance, large biomass, and high nutritional value. This species plays an important role in establishing artificial grasslands and improving degraded grasslands. In this study, UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes were subjected to simulated short-term (5 days, 10 days) and long-term (15 days, 20 days) UV-B radiation stress and the metabolite profiles evaluated to explore the mechanism underlying UV-B radiation resistance in E. sibiricus. A total of 699 metabolites were identified, including 11 primary metabolites such as lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and their derivatives, and organic oxygen compounds. Principal component analysis distinctly clustered the samples according to the cultivar, indicating that the two genotypes exhibit distinct response mechanisms to UV-B radiation stress. The results showed that 14 metabolites, including linoleic acid, LPC 18:2, xanthosine, and 23 metabolites, including 2-one heptamethoxyflavone, glycyrrhizin, and caffeic acid were differentially expressed under short-term and long-term UV-B radiation stress, respectively. Therefore, these compounds are potential biomarkers for evaluating E. sibiricus response to UV-B radiation stress. Allantoin specific and consistent expression was up-regulated in the UV-B radiation-tolerant genotype, thereby it can be used to identify varieties resistant to UV-B radiation. Different metabolic profiles and UV-B radiation response mechanisms were observed between the UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes. A model for the metabolic pathways and metabolic profiles was constructed for the two genotypes. This metabolomic study on the E. sibiricus response to UV-B radiation stress provides a reference for the breeding of new UV-B radiation-tolerant E. sibiricus cultivars.
Collapse
Affiliation(s)
- Fei Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Sun
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Daxu Li
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Minghong You
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Jiajun Yan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiqie Bai
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
2
|
Yu W, Zhou X, Xu H, Zhou X. UV-B Stress-Triggered Amino Acid Reprogramming and ABA-Mediated Hormonal Crosstalk in Rhododendron chrysanthum Pall. PLANTS (BASEL, SWITZERLAND) 2024; 13:2232. [PMID: 39204669 PMCID: PMC11359875 DOI: 10.3390/plants13162232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC-MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
3
|
Antenozio ML, Caissutti C, Caporusso FM, Marzi D, Brunetti P. Urban Air Pollution and Plant Tolerance: Omics Responses to Ozone, Nitrogen Oxides, and Particulate Matter. PLANTS (BASEL, SWITZERLAND) 2024; 13:2027. [PMID: 39124144 PMCID: PMC11313721 DOI: 10.3390/plants13152027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Urban air pollution is a crucial global challenge, mainly originating from urbanization and industrial activities, which are continuously increasing. Vegetation serves as a natural air filter for air pollution, but adverse effects on plant health, photosynthesis, and metabolism can occur. Recent omics technologies have revolutionized the study of molecular plant responses to air pollution, overcoming previous limitations. This review synthesizes the latest advancements in molecular plant responses to major air pollutants, emphasizing ozone (O3), nitrogen oxides (NOX), and particulate matter (PM) research. These pollutants induce stress responses common to other abiotic and biotic stresses, including the activation of reactive oxygen species (ROSs)-scavenging enzymes and hormone signaling pathways. New evidence has shown the central role of antioxidant phenolic compound biosynthesis, via the phenylpropanoid pathway, in air pollution stress responses. Transcription factors like WRKY, AP2/ERF, and MYB, which connect hormone signaling to antioxidant biosynthesis, were also affected. To date, research has predominantly focused on laboratory studies analyzing individual pollutants. This review highlights the need for comprehensive field studies and the identification of molecular tolerance traits, which are crucial for the identification of tolerant plant species, aimed at the development of sustainable nature-based solutions (NBSs) to mitigate urban air pollution.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Cristina Caissutti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Francesca Maria Caporusso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- Department of Biology and Biotechnologies ‘Charles Darwin’ (BBCD), Sapienza University of Roma, 00185 Roma, Italy
| | - Davide Marzi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| |
Collapse
|
4
|
Lv X, Zhu L, Ma D, Zhang F, Cai Z, Bai H, Hui J, Li S, Xu X, Li M. Integrated Metabolomics and Transcriptomics Analyses Highlight the Flavonoid Compounds Response to Alkaline Salt Stress in Glycyrrhiza uralensis Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5477-5490. [PMID: 38416716 DOI: 10.1021/acs.jafc.3c07139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Glycyrrhiza uralensis is a saline-alkali-tolerant plant whose aerial parts are rich in flavonoids; however, the role of these flavonoids in saline-alkali tolerance remains unclear. Herein, we performed physiological, metabolomics, and transcriptomics analyses in G. uralensis leaves under alkaline salt stress for different durations. Alkaline salt stress stimulated excessive accumulation of reactive oxygen species and consequently destroyed the cell membrane, causing cell death, and G. uralensis initiated osmotic regulation and the antioxidant system to respond to stress. In total, 803 metabolites, including 244 flavonoids, were detected via metabolomics analysis. Differentially altered metabolites and differentially expressed genes were coenriched in flavonoid-related pathways. Genes such as novel.4890, Glyur001511s00039602, and Glyur000775s00025737 were highly expressed, and flavonoid metabolites such as 2'-hydroxygenistein, apigenin, and 3-O-methylquercetin were upregulated. Thus, flavonoids as nonenzymatic antioxidants play an important role in stress tolerance. These findings provide novel insights into the response of G. uralensis to alkaline salt stress.
Collapse
Affiliation(s)
- Xuelian Lv
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Lin Zhu
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Dongmei Ma
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Fengju Zhang
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- Department of Life and Food Science, Ningxia University, Yinchuan 750021, China
| | - Haibo Bai
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Jian Hui
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Shuhua Li
- Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xing Xu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Ming Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
5
|
Jiang L, Yun M, Ma Y, Qu T. Melatonin Mitigates Water Deficit Stress in Cenchrus alopecuroides (L.) Thunb through Up-Regulating Gene Expression Related to the Photosynthetic Rate, Flavonoid Synthesis, and the Assimilatory Sulfate Reduction Pathway. PLANTS (BASEL, SWITZERLAND) 2024; 13:716. [PMID: 38475560 DOI: 10.3390/plants13050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Melatonin can improve plant adaptability to water deficit stress by regulating the biosynthesis of flavonoids and improving the reactive oxygen species-scavenging enzyme system. However, it remains unclear whether melatonin mitigates the effects and causes of water deficit stress in Cenchrus alopecuroides. We conducted a PEG-simulated water stress pot experiment to determine whether and how exogenous melatonin alleviates water deficit in C. alopecuroides. The experiment was divided into four treatments: (1) normal watering (Control), (2) 40% PEG-6000 treatment (D), (3) 100 μmol·L-1 melatonin treatment (MT), and (4) both melatonin and PEG-6000 treatment (DMT). The results showed that melatonin can alleviate water deficit in C. alopecuroides by effectively inhibiting plant chlorophyll degradation and MDA accumulation while increasing antioxidant enzyme activities and photosynthetic rates under water deficit stress. The transcriptome results indicated that melatonin regulates the expression of genes with the biosynthesis pathway of flavonoids (by increasing the expression of PAL, 4CL, HCT, and CHS), photosynthesis-antenna proteins (by increasing the expression of LHC), and sulfur metabolism (the expression of PAPSS and CysC is up-regulated in the assimilatory sulfate reduction pathway), while up-regulating the transcription factors (AP2/ERF-ERF-, C2H2-, WRKY-, Tify-, bHLH-, NAC-, and MYB-related). These findings revealed the possible causes by which melatonin mitigates water deficit stress in C. alopecuroides, which provided novel insights into the role of melatonin in water deficit stress.
Collapse
Affiliation(s)
- Li Jiang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Minqiang Yun
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Yinxi Ma
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Tongbao Qu
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Liu Y, Zhang Y, Liu Y, Lin L, Xiong X, Zhang D, Li S, Yu X, Li Y. Genome-Wide Identification and Characterization of WRKY Transcription Factors and Their Expression Profile in Loropetalum chinense var. rubrum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2131. [PMID: 37299110 PMCID: PMC10255886 DOI: 10.3390/plants12112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The WRKY gene family plays important roles in plant growth and development, as well as in the responses to biotic and abiotic stresses. Loropetalum chinense var. rubrum has high ornamental and medicinal value. However, few WRKY genes have been reported in this plant, and their functions remain unknown. To explore the roles that the WRKY genes play in L. chinense var. rubrum, we identified and characterized 79 LcWRKYs through BLAST homology analysis and renamed them (as LcWRKY1-79) based on their distribution on the chromosomes of L. chinense var. rubrum. In this way, according to their structural characteristics and phylogenetic analysis, they were divided into three groups containing 16 (Group I), 52 (Group II), and 11 (Group III) WRKYs, respectively. LcWRKYs in the same group have similar motifs and gene structures; for instance, Motifs 1, 2, 3, 4, and 10 constitute the WRKY domain and zinc-finger structure. The LcWRKY promoter region contains light response elements (ACE, G-box), stress response elements (TC-rich repeats), hormone response elements (TATC-box, TCA-element), and MYB binding sites (MBS, MBSI). Synteny analysis of LcWRKYs allowed us to establish orthologous relationships among the WRKY gene families of Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum L., Vitis vinifera L., Oryza sativa L., and Zea mays L.; furthermore, analysis of the transcriptomes of mature leaves and flowers from different cultivars demonstrated the cultivar-specific LcWRKY gene expression. The expression levels of certain LcWRKY genes also presented responsive changes from young to mature leaves, based on an analysis of the transcriptome in leaves at different developmental stages. White light treatment led to a significant decrease in the expression of LcWRKY6, 18, 24, 34, 36, 44, 48, 61, 62, and 77 and a significant increase in the expression of LcWRKY41, blue light treatment led to a significant decrease in the expression of LcWRKY18, 34, 50, and 77 and a significant increase in the expression of LcWRKY36 and 48. These results enable a better understanding of LcWRKYs, facilitating the further exploration of their genetic functions and the molecular breeding of L. chinense var. rubrum.
Collapse
Affiliation(s)
- Yang Liu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yifan Zhang
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yang Liu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha 410128, China;
| | - Xingyao Xiong
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
| | - Donglin Zhang
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Sha Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou311300, China;
| | - Xiaoying Yu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yanlin Li
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
7
|
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223158. [PMID: 36432887 PMCID: PMC9699315 DOI: 10.3390/plants11223158] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
- Faculty of Environmental Studies, Dehli School of Journalism, University of Delhi, Delhi 110007, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Noreen Zahra
- Department of Botany, Government College for Women University, Faisalabad 38000, Pakistan
| | - Vaishali Yadav
- Department of Botany, Multanimal Modi College Modinagar, Ghaziabad 201204, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
8
|
The roles of WRKY transcription factors in Malus spp. and Pyrus spp. Funct Integr Genomics 2022; 22:713-729. [PMID: 35906324 DOI: 10.1007/s10142-022-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
The WRKY transcription factor gene family is known to be involved in plant defense against pathogens and in tolerance to different environmental stresses at different stages of development. The response mechanisms through which these genes act can be influenced by different phytohormones as well as by many trans- and cis-acting elements, making this network an important topic for analysis, but still something complex to fully understand. According to available reports, these genes can also perform important roles in pome species (Malus spp. and Pyrus spp.) metabolism, especially in adaptation of these plants to stressful conditions. Here, we present a quick review of what is known about WRKY genes in Malus and Pyrus genomes offering a simple way to understand what is already known about this topic. We also add information connecting the evolution of these transcription factors with others that can also be found in pomes.
Collapse
|
9
|
Xu M, Shen C, Zhu Q, Xu Y, Xue C, Zhu B, Hu J. Comparative metabolomic and transcriptomic analyses revealed the differential accumulation of secondary metabolites during the ripening process of acerola cherry (Malpighia emarginata) fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1488-1497. [PMID: 34402073 DOI: 10.1002/jsfa.11483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Acerola cherry is a famous functional fruit containing plentiful antioxidants and other nutrients. However, studies on the variations among nutrients during the ripening process of acerola fruit are scare. RESULTS Comparative metabolomic and transcriptomic analyses were performed and identified 31 331 unigenes and 1896 annotated metabolite features in acerola cherry fruit. K Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several antioxidant and nutrient-related metabolic pathways, such as the flavonoids, vitamins, carotenoids, amino acids, and fatty acids metabolic pathways, were significantly changed during the ripening process. The metabolites related to the vitamin, carotenoid, and fatty acid metabolic pathways were downregulated during the ripening process. Several flavonoid biosynthesis-related genes (including dihydroflavonol 4-reductase, chalcone synthase, flavanone 3-hydroxylase, and anthocyanidin synthase), were significantly upregulated, suggesting their essential functions in the accumulation of flavonoids in mature fruit. CONCLUSION Most of the vitamin and carotenoid metabolism-related metabolites significantly accumulated in immature fruit, suggesting that immature acerola fruit is a good material for the extraction of vitamins and carotenoids. For macronutrients, most of the amino acids accumulated in mature fruit and most of the fatty acids greatly accumulated in immature fruit. Our data revealed the differential accumulation of antioxidants and nutrients during the ripening process of acerola cherry fruit. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingfeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yunsheng Xu
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiangning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Zhang J, Wang Y, Mao Z, Liu W, Ding L, Zhang X, Yang Y, Wu S, Chen X, Wang Y. Transcription factor McWRKY71 induced by ozone stress regulates anthocyanin and proanthocyanidin biosynthesis in Malus crabapple. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113274. [PMID: 35124421 DOI: 10.1016/j.ecoenv.2022.113274] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In plants, anthocyanins and proanthocyanidins (PAs) play important roles in plant resistance to abiotic stress. In this study, ozone (O3) treatments caused the up-regulation of Malus crabapple structural genes McANS, McCHI, McANR and McF3H, which promoted anthocyanin and PA accumulation. We identified the WRKY transcription factor (TF) McWRKY71 by screening differentially expressed genes (DEGs) that were highly expressed in response to O3 stress from an RNA sequencing (RNA-seq) analysis. Overexpressing McWRKY71 increased the resistance of 'Orin' apple calli to O3 stress and promoted the accumulation of anthocyanins and PAs, which facilitated reactive oxygen species scavenging to further enhance O3 tolerance. Biochemical and molecular analyses showed that McWRKY71 interacted with McMYB12 and directly bound the McANR promoter to participate in the regulation of PA biosynthesis. These findings provide new insights into the WRKY TFs mechanisms that regulate the biosynthesis of secondary metabolites, which respond to O3 stress, in Malus crabapple.
Collapse
Affiliation(s)
- Junkang Zhang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zuolin Mao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Weina Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Licheng Ding
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Xiaonan Zhang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Yuwei Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Shuqing Wu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yanling Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, China.
| |
Collapse
|
11
|
Zhao C, Yang M, Wu X, Wang Y, Zhang R. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:128-142. [PMID: 34628174 DOI: 10.1016/j.plaphy.2021.09.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
Water deficit inhibits maize (Zea mays L.) seedling growth and yield. Application of exogenous melatonin can improve drought tolerance of corn, but little is known regarding the transcriptional mechanisms of melatonin-mediated drought tolerance in maize. Increased understanding of the effects of melatonin on maize plants under drought stress is vital to alleviate the adverse effects of drought on food production in the future. The aim of this investigation was to use physiological and transcriptome analyses for exploring the possible mechanisms of exogenous melatonin against drought stress in maize. In this study, maize seedlings were subjected to drought stress and some were treated with exogenous melatonin. The physiological results showed that melatonin inhibited H2O2 accumulation and promoted the scavenging of excessive reactive oxygen species to reduce oxidative damage in maize leaves. Transcriptomic analysis identified 957 differentially expressed genes between melatonin and non-melatonin treatment groups. Further detailed analyses suggested that melatonin-regulated genes are mainly related to glutathione metabolism, calcium signaling transduction, and jasmonic acid biosynthesis. Some transcription factor families, such as WRKY, AP2/ERF-ERF, MYB, NAC, and bZIP, were also activated by exogenous melatonin. Moreover, crosstalk between melatonin and other hormones that mediate drought tolerance was observed. In conclusion, the combination of physiological and transcriptome analyses revealed some mechanisms underlying the role of melatonin in alleviating drought; knowledge of these mechanisms may assist in successful maize cultivation under drought stress.
Collapse
Affiliation(s)
- Chengfeng Zhao
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Mei Yang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Xi Wu
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China.
| |
Collapse
|
12
|
Fan X. Gaseous ozone to preserve quality and enhance microbial safety of fresh produce: Recent developments and research needs. Compr Rev Food Sci Food Saf 2021; 20:4993-5014. [PMID: 34323365 DOI: 10.1111/1541-4337.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Fresh fruits and vegetables are highly perishable and are subject to large postharvest losses due to physiological (senescence), pathologic (decay), and physical (mechanical damage) factors. In addition, contamination of fresh produce with foodborne human pathogens has become a concern. Gaseous ozone has multiple benefits including destruction of ethylene, inactivation of foodborne and spoilage microorganisms, and degradation of chemical residues. This article reviews the beneficial effects of gaseous ozone, its influence on quality and biochemical changes, foodborne human pathogens, and spoilage microorganisms, and discusses research needs with an emphasis on fruits. Ozone may induce synthesis of a number of antioxidants and bioactive compounds by activating secondary metabolisms involving a wide range of enzymes. Disparities exist in the literature regarding the impact of gaseous ozone on quality and physiological processes of fresh produce, such as weight loss, ascorbic acid, and fruit ripening. The disparities are complicated by incomplete reporting of the necessary information, such as relative humidity and temperatures at which ozone measurement and treatment were performed, which is needed for accurate comparison of results among studies. In order to fully realize the benefits of gaseous ozone, research is needed to evaluate the molecular mechanisms of gaseous ozone in inhibiting ripening, influence of relative humidity on the antimicrobial efficacy, interaction between ozone and the cuticle of fresh produce, ozone signaling pathways in the cells and tissues, and so forth. Possible adverse effects of gaseous ozone on quality of fresh produce also need to be carefully evaluated for the purpose of enhancing microbial and chemical safety of fresh produce.
Collapse
Affiliation(s)
- Xuetong Fan
- Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| |
Collapse
|