1
|
Li D, Guo W, Chen B, Zhai Y, Lang Y, Guo T, Cao X, Zhao L. Niche construction in a bioelectrochemical system with 3D-electrodes for efficient and thorough biodechlorination. WATER RESEARCH 2024; 265:122260. [PMID: 39167969 DOI: 10.1016/j.watres.2024.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The design of bioelectrochemical system based on the principle of niche construction, offers a prospective pathway for achieving efficient and thorough biodechlorination in groundwater. This study designed a single-chamber microbial electrolysis cell, with porous three-dimensional (3D) electrodes introduced, to accelerate the niche construction process of functional communities. This approach allowed the growth of various bacteria capable of simultaneously degrading 2,4-dichlorophenol (DCP) and its refractory intermediates, 4-chlorophenol (4CP). The 3D-electrodes provided abundant attachment sites for diverse microbes with a high initial Shannon index (3.4), and along the degradation progress, functional bacteria (Hydrogenoanaerobacterium and Rhodococcus erythropolis for DCP-degrading, Sphingobacterium hotanense for 4CP-degrading and Delftia tsuruhatensis for phenol-degrading) constructed their niches. Applying an external voltage (0.6 V) further increased the selective pressure and niche construction pace, as well as provided 'micro-oxidation' site on the electrode surface, thereby achieving the degradation of 4CP and mineralization of phenol. The porous electrodes could also adsorb contaminants and narrow their interaction distance with microbes, which benefited the degradation efficiency. Thus a 10-fold increase in the overall mineralization of DCP was achieved. This study constructed a novel bioelectrochemical system for achieving efficient and thorough biodechlorination, which was suitable for in situ bioremediation of groundwater.
Collapse
Affiliation(s)
- Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Lang
- The Fourth Engineering Co., LTD. of China Railway No 4 Group, Hefei Anhui 230000, China
| | - Tianbao Guo
- Zhou Enlai School of Government Management, Nankai University, Tianjin 300071, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Ni S, Qu C, Gan X, Ding L, Xia W, Teng Y, Shu Y, Ren W. Synergistic biodegradation of trichloroethylene-contaminated soil using Typha angustifolia L. and an anaerobic degrading bacterial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177137. [PMID: 39442717 DOI: 10.1016/j.scitotenv.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant-microorganism combined bioremediation is a highly efficient and environmentally sustainable method for the remediation of contaminated soils. Despite its potential, the synergistic effects of wetland plants and anaerobic microbial consortium on the removal of chlorinated hydrocarbons (CAHs) from soil remain inadequately understood. In this study, an anaerobic bacterial consortium, capable of completely dechlorinating trichloroethylene (TCE), was enriched and screened from long-term CAH-contaminated soil. Subsequently, the combined effects of the wetland plant Typha angustifolia L. and the anaerobic bacterial consortium on the removal of TCE from soil were investigated, along with the underlying microbial mechanisms. The results demonstrated that the anaerobic bacterial consortium was able to completely convert 0.5 mM TCE to vinyl chloride (VC) within 7 days, and subsequently degrade VC to ethylene within 48 days. The integration of Typha angustifolia L. with the anaerobic bacterial consortium significantly enhanced both the removal and complete dechlorination of TCE from the soil compared to either treatment alone. Furthermore, this combination substantially increased the diversity and richness of soil bacterial communities, enriched dechlorinating microorganisms, and elevated the relative abundance of dehalogenating enzymes and peroxidases involved in pollutant degradation. In addition, the combination resulted in a more complex soil bacterial community, closer microbial interactions, and a more stable microbial co-occurrence network. This study extends the scope of plant-microorganism combined bioremediation for CAH- contaminated soils.
Collapse
Affiliation(s)
- Sha Ni
- Technology Innovation Center for Ecological Monitoring & Restoration Project on land (Arable), Ministry of Natural Resources, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Changsheng Qu
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Xinhong Gan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment (MEE) of China, Nanjing 210042, China
| | - Liang Ding
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Weiyi Xia
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Ying Teng
- Technology Innovation Center for Ecological Monitoring & Restoration Project on land (Arable), Ministry of Natural Resources, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yingge Shu
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Wenjie Ren
- Technology Innovation Center for Ecological Monitoring & Restoration Project on land (Arable), Ministry of Natural Resources, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
3
|
Wang Z, Yu Y, Zhao R, Li A. Construction of a synthetic anaerobic dechlorination microbiome to degrade chlorinated ethenes by application of metabolic interactions principle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176981. [PMID: 39427906 DOI: 10.1016/j.scitotenv.2024.176981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Bioaugmentation is a bioremediation approach to treat groundwater contaminated with chlorinated ethenes, but currently it faces challenges such as poor microbiome stability and effectiveness, due to blind species integration and metabolic inhibition. The objective of this study was to create a controllable and functionally stable microbial community for dichlorination application. For this, we utilized targeted screening to identify dechlorinating bacteria from contaminated groundwater, that in combination would form an anaerobic dechlorination microbial community with stabilizing metabolic interactions between the constituents. The results showed that two organohalide-respiring bacterial (OHRB) species were isolated, and these were identified as Enterobacter bugandensis X4 and Enterobacter sichuanensis C4. Upon co-cultivation with lactic acid as the carbon source, the strains demonstrated metabolic interactions and synergistic dehalogenation ability towards trichloroethene (TCE). It was further demonstrated that the functional microbiome constructed with the strains was stable over time and exhibited a robust TCE degradation rate of 80.85% at 13.13 mg/L TCE within 10 days. Additionally, the complete conversion of TCE was achieved through microbiome bioaugmentation, this augmented microbiome increased the degradation rate towards 52.55 mg/L TCE by approximately 30% within 6 days. Additionally, bioaugmentation stimulated the growth of indigenous OHRB, such as Dehalobacter and Desulfovibrio. It also promoted a positive succession of the microbial community. These findings offer valuable insights into the microbial remediation of chlorinated ethenes-contaminated groundwater and offers novel ideas for the construction of an artificial functional microbiome.
Collapse
Affiliation(s)
- Zeyi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Yang Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Rongjian Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
4
|
Wu Z, Niu H, Wang J, Guo R, Yang Z, Liang G, Ma X. A slow-release reduction material of Escherichia sp. F1 coupled with micron iron powder achieves the remediation of trichloroethylene-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122765. [PMID: 39362170 DOI: 10.1016/j.jenvman.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Trichloroethylene (TCE) is a prevalent organic pollutant found in soil. The oxide passivation layer on the surface of micron iron powder inhibits the release of its reducing components, leading to ineffective reduction and purification of TCE in soil. To enhance TCE degradation, a slow-release reduction material "Escherichia sp. F1-micron iron powder" was developed. A novel iron-reducing bacterium, Escherichia sp. F1, was isolated from soil contaminated with chlorinated hydrocarbons. This bacterium demonstrated a sustained iron reduction capability, achieving a reduction rate of 38.7% for Fe(Ⅲ) within 15 days. Genome sequencing revealed that strain F1 harbors 53 functional iron reduction genes and 2 dehalogenation genes. Single-factor experiments identified the optimal conditions for TCE degradation in soil using the coupling material: glucose concentration at 40 mmol/kg, soil water content at 50%, and bacterial inoculum at 1% (v:w). Under these optimal conditions, the coupled material achieved 86.86% degradation of TCE in soil within 28 days. Further analysis using X-ray photoelectron spectroscopy of micron iron powder, soil Fe(Ⅱ) concentration, and soil physicochemical properties demonstrated that the addition of strain F1 to the soil could disrupt the passivation layer of iron oxide on the surface of micron iron powder, promoting the exposure of its reactive sites and internal reducing active components. This resulted in an in situ self-actuated activation of passivated micron iron powder, leading to an improved removal rate and complete dechlorination of TCE in the soil. Soil microbial high-throughput sequencing revealed that the addition of strain F1 regulated the soil bacterial community, significantly enriching of Escherichia-Shigella species associated with iron-reducing functions. This enrichment facilitated the degradation of TCE in the soil through coupling materials. The functional material plays a crucial role in achieving green treatment and risk control of sites contaminated with chlorinated organic pollutants.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hanyu Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Runnan Guo
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zixuan Yang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gaolei Liang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
5
|
Dai L, Li J, Zhang J, Zeng Q, Liu T, Yu Q, Tao S, Zhou M, Hou H. Phosphorus-based soil prophylactics for managing Pb contamination in soil: Slow-release kinetics and microbiological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173647. [PMID: 38823702 DOI: 10.1016/j.scitotenv.2024.173647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Soil remediation poses significant challenges due to its spatial heterogeneity, surpassing the complexities of atmospheric and water remediation. This study introduces an innovative approach to prevent soil heavy metal pollution by developing three phosphorus slow-release heavy metal soil prophylactic agents (SLPs) - Sap-11, Sap-12, and Sap-21. At a liquid-to-solid ratio of 1:20, the three types of SLPs achieve phosphorus sustained slow release amounts of 1.586 g/L, 4.259 g/L, and 1.444 g/L within 30 days, respectively. Over a cultivation period of 120 days, after amendment with the three SLPs, the surface soil demonstrates stabilization capacities for Pb of 29.56 mg/g, 46.24 mg/g, and 25.77 mg/g, respectively, representing enhancements of 283.64 %, 500.12 %, and 250.74 % compared to the control. Firstly, the direct contribution of P (up to 3.778 mg/g) released from SLPs chemically binding with Pb, and secondly, a significant proportion of the indirect contribution originating from the microbial activity and soil organic matter. In summary, SLP emerges as an effective strategy for soil heavy metal management, stabilizing heavy metals by stimulating the soil's inherent physiological and biochemical reactions. This approach provides a practical solution for the application of P-containing materials and introduces novel perspectives for soil heavy metal management strategies.
Collapse
Affiliation(s)
- Luming Dai
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Jiahao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| | - Jiaxing Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Qingyuan Zeng
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Tong Liu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Qinqin Yu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Shaoyang Tao
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Min Zhou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing 526200, Guangdong, China.
| |
Collapse
|
6
|
Lu Q, Liang Q, Wang S. Burning question: Rethinking organohalide degradation strategy for bioremediation applications. Microb Biotechnol 2024; 17:e14539. [PMID: 39075849 PMCID: PMC11286677 DOI: 10.1111/1751-7915.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Organohalides are widespread pollutants that pose significant environmental hazards due to their high degree of halogenation and elevated redox potentials, making them resistant to natural attenuation. Traditional bioremediation approaches, primarily relying on bioaugmentation and biostimulation, often fall short of achieving complete detoxification. Furthermore, the emergence of complex halogenated pollutants, such as per- and polyfluoroalkyl substances (PFASs), further complicates remediation efforts. Therefore, there is a pressing need to reconsider novel approaches for more efficient remediation of these recalcitrant pollutants. This review proposes novel redox-potential-mediated hybrid bioprocesses, tailored to the physicochemical properties of pollutants and their environmental contexts, to achieve complete detoxification of organohalides. The possible scenarios for the proposed bioremediation approaches are further discussed. In anaerobic environments, such as sediment and groundwater, microbial reductive dehalogenation coupled with fermentation and methanogenesis can convert organohalides into carbon dioxide and methane. In environments with anaerobic-aerobic alternation, such as paddy soil and wetlands, a synergistic process involving reduction and oxidation can facilitate the complete mineralization of highly halogenated organic compounds. Future research should focus on in-depth exploration of microbial consortia, the application of ecological principles-guided strategies, and the development of bioinspired-designed techniques. This paper contributes to the academic discourse by proposing innovative remediation strategies tailored to the complexities of organohalide pollution.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Liu C, Chen X, Wang S, Luo Y, Du W, Yin Y, Guo H. A field study of a novel permeable-reactive-biobarrier to remediate chlorinated hydrocarbons contaminated groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124042. [PMID: 38679128 DOI: 10.1016/j.envpol.2024.124042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Chlorinated hydrocarbons (CHs) pose significant health risks due to their suspected carcinogenicity, necessitating urgent remediation efforts. While the combination of zero-valent iron (Fe0) and microbial action shows promise in mitigating CH contamination, field studies on this approach are scarce. We devised a novel three-layer permeable reactive barrier (PRB) material incorporating Fe0 and coconut shell biochar, effectively implemented at a typical CH-contaminated site. Field monitoring data revealed conducive conditions for reductive dechlorination of CHs, characterized by low oxygen levels and a relatively neutral pH in the groundwater. The engineered PRB material consistently released organic carbon and iron, fostering the proliferation of CH-dechlorinating bacteria. Over a 250-day operational period, the pilot-scale PRB demonstrated remarkable efficacy in CH removal, achieving removal efficiencies ranging from 21.9% to 99.6% for various CH compounds. Initially, CHs were predominantly eliminated through adsorption and iron-mediated reductive dechlorination. However, microbial reductive dechlorination emerged as the predominant mechanism for sustained and long-term CHs removal. These findings underscore the economic viability and effectiveness of our approach in treating CH-contaminated groundwater, offering promising prospects for broader application in environmental remediation efforts.
Collapse
Affiliation(s)
- Cuicui Liu
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Xiaohui Chen
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Shui Wang
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Wenchao Du
- School of the Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Ni S, Teng Y, Zhang G, Xia W, Shu Y, Ren W. Exploring bacterial community assembly in vadose and saturated zone soil for tailored bioremediation of a long-term hydrocarbon-contaminated site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121114. [PMID: 38754192 DOI: 10.1016/j.jenvman.2024.121114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Indigenous soil microbial communities play a pivotal role in the in situ bioremediation of contaminated sites. However, research on the distribution characteristics of microbial communities at various soil depths remains limited. In particular, there is little information on the assembly of microbial communities, especially those with degradation potential, in the vadose and saturated zones of hydrocarbon-contaminated sites. In this study, 18 soil samples were collected from the vadose zone and saturated zone at a long-term hydrocarbon-contaminated site. The diversity, composition, and driving factors of assembly of the soil bacterial community were determined by high-throughput sequencing analysis. Species richness and diversity were significantly higher in the vadose zone soils than in the saturated zone soils. Significant differences in abundance at both the phylum and genus levels were observed between the two zones. Soil bacterial community assembly was driven by the combination of pollution stress and nutrients in the vadose zone but by nutrient limitations in the saturated zone. The abundance of dechlorinating bacteria was greater in the saturated zone soils than in the vadose zone soils. Compared with contaminant concentrations, nutrient levels had a more pronounced impact on the abundance of dechlorinating bacteria. In addition, the interactions among dechlorinating bacterial populations were stronger in the saturated zone soils than in the vadose zone soils. These findings underscore the importance of comprehensively understanding indigenous microbial communities, especially those with degradation potential, across different soil layers to devise specific, effective in situ bioremediation strategies for contaminated sites.
Collapse
Affiliation(s)
- Sha Ni
- College of Agriculture, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Guang Zhang
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210036, China
| | - Weiyi Xia
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210036, China
| | - Yingge Shu
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Wenjie Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
9
|
Xu G, Ng HL, Chen C, Rogers MJ, He J. Combatting multiple aromatic organohalide pollutants in sediments by bioaugmentation with a single Dehalococcoides. WATER RESEARCH 2024; 255:121447. [PMID: 38508042 DOI: 10.1016/j.watres.2024.121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Dehalococcoides are capable of dehalogenating various organohalide pollutants under anaerobic conditions, and they have been applied in bioremediation. However, the presence of multiple aromatic organohalides, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), at contaminated sites may pose challenges to Dehalococcoides-mediated bioremediation due to the lack of knowledge about the influence of co-contamination on bioremediation. In this study, we investigated the bioremediation of aromatic organohalides present as individual and co-contaminants in sediments by bioaugmentation with a single population of Dehalococcoides. Bioaugmentation with Dehalococcoides significantly increased the dehalogenation rate of PCBs, PBDEs, and TBBPA in sediments contaminated with individual pollutants, being up to 19.7, 27.4 and 2.1 times as that in the controls not receiving bioinoculants. For sediments containing all the three classes of pollutants, bioaugmentation with Dehalococcoides also effectively enhanced dehalogenation, and the extent of enhancement depended on the bioinoculants and types of pollutants. Interestingly, in many cases co-contaminated sediments bioaugmented with Dehalococcoides mccartyi strain CG1 displayed a greater enhancement in dehalogenation rates compared to the sediments polluted with individual pollutant. For instance, when augmented with a low quantity of strain CG1, the dehalogenation rates of Aroclor1260 and PBDEs in co-contaminated sediments were approximately two times as that in sediments containing individual pollutants (0.428 and 9.03 vs. 0.195 and 4.20 × 10-3d-1). Additionally, D. mccartyi CG1 grew to higher abundances in co-contaminated sediments. These findings demonstrate that a single Dehalococcoides population can sustain dehalogenation of multiple aromatic organohalides in contaminated sediments, suggesting that co-contamination does not necessarily impede the use of Dehalococcoides for bioremediation. The study also underscores the significance of anaerobic organohalide respiration for effective bioremediation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Hung Liang Ng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576.
| |
Collapse
|
10
|
Huang SW, Hussain B, Chen JS, Asif A, Hsu BM. Evaluating groundwater ecosystem dynamics in response to post in-situ remediation of mixed chlorinated volatile organic compounds (CVOCs): An insight into microbial community resilience, adaptability, and metabolic functionality for sustainable remediation and ecosystem restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170874. [PMID: 38350560 DOI: 10.1016/j.scitotenv.2024.170874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
The in-situ remediation of groundwater contaminated with mixed chlorinated volatile organic compounds (CVOCs) has become a significant global research interest. However, limited attention has been given in understanding the effects of these remediation efforts on the groundwater microbial communities, which are vital for maintaining ecosystem health through their involvement in biogeochemical cycles. Hence, this study aimed to provide valuable insights into the impacts of in-situ remediation methods on groundwater microbial communities and ecosystem functionality, employing high-throughput sequencing coupled with functional and physiological assays. The results showed that both bioremediation and chemical remediation methods adversely affected microbial diversity and abundance compared to non-polluted sites. Certain taxa such as Pseudomonas, Acinetobacter, and Vogesella were sensitive to these remediation methods, while Aquabacterium exhibited greater adaptability. Functional annotation unveiled the beneficial impact of bioremediation on the sulfur cycle and specific taxa such as Cellvibrio, Massilia, Algoriphagus, and Flavobacterium which showed a significant positive relationship with dark oxidation of sulfur compounds. In contrast, chemical remediation showed adverse impacts on the nitrogen cycle with a reduced abundance of nitrogen and nitrate respiration along with a reduced utilization of amines (nitrogen rich substrate). The findings of this study offer valuable insights into the potential impacts of in-situ remediation methods on groundwater microbial communities and ecosystem functionality, emphasizing the need for meticulous consideration to ensure the implementation of effective and sustainable remediation strategies that safeguard ecosystem health and function.
Collapse
Affiliation(s)
- Shih-Wei Huang
- Center for environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
11
|
Lu CW, Lo KH, Wang SC, Kao CM, Chen SC. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170885. [PMID: 38342459 DOI: 10.1016/j.scitotenv.2024.170885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Permeable reactive bio-barrier (PRBB), an innovative technology, could treat many contaminants via the natural gradient flow of groundwater based on immobilization or transformation of pollutants into less toxic and harmful forms. In this field study, we developed an innovative PRBB system comprising immobilized Dehalococcoides mccartyi (Dhc) and Clostridium butyricum embedded into the silica gel for long-term treatment of trichloroethene (TCE) polluted groundwater. Four injection wells and two monitoring wells were installed at the downstream of the TCE plume. Without PRBB, results showed that the TCE (6.23 ± 0.43 μmole/L) was converted to cis-dichloroethene (0.52 ± 0.63 μmole/L), and ethene was not detected, whereas TCE was completely converted to ethene (3.31 μmole/L) with PRBB treatment, indicating that PRBB could promote complete dechlorination of TCE. Noticeably, PRBB showed the long-term capability to maintain a high dechlorinating efficiency for TCE removal during the 300-day operational period. Furthermore, with qPCR analysis, the PRBB application could stably maintain the populations of Dhc and functional genes (bvcA, tceA, and vcrA) at >108 copies/L within the remediation course and change the bacterial communities in the contaminated groundwater. We concluded that our PRBB was first set up for cleaning up TCE-contaminated groundwater in a field trial.
Collapse
Affiliation(s)
- Che-Wei Lu
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Sun-Chong Wang
- Systems Biology and Bioinformatics Institute, National Central University, Taoyuan 32001, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
12
|
Li ZT, Song X, Yuan S, Zhao HP. Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: Kinetics and microbial responses. WATER RESEARCH 2024; 253:121328. [PMID: 38382292 DOI: 10.1016/j.watres.2024.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Chromium and organochlorine solvents, particularly trichloroethene (TCE), are pervasive co-existing contaminants in subsurface aquifers due to their extensive industrial use and improper disposal practices. In this study, we investigated the microbial dechlorination kinetics under different TCE-Cr(Ⅲ/VI) composite pollution conditions and elucidated microbial response mechanisms based on community shift patterns and metagenomic analysis. Our results revealed that the reductive dechlorinating consortium had high resistance to Cr(III) but extreme sensitivity to Cr(VI) disturbance, resulting in a persistent inhibitory effect on subsequent dechlorination. Interestingly, the vinyl chloride-respiring organohalide-respiring bacteria (OHRB) was notably more susceptible to Cr(III/VI) exposure than the trichloroethene-respiring one, possibly due to inferior competition for growth substrates, such as electron donors. In terms of synergistic non-OHRB populations, Cr(III/VI) exposure had limited impacts on lactate fermentation but significantly interfered with H2-producing acetogenesis, leading to inhibited microbial dechlorination due to electron donor deficiencies. However, this inhibition can be effectively mitigated by the amendment of exogenous H2 supply. Furthermore, being the predominant OHRB, Dehalococcoides have inherent Cr(VI) resistance defects and collaborate with synergistic non-OHRB populations to achieve concurrent bio-detoxication of Cr(VI) and TCE. Our findings expand the understanding of the response patterns of different functional populations towards Cr(III/VI) stress, and provide valuable insights for the development of in situ bioremediation strategies for sites co-contaminated with chloroethene and chromium.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
13
|
Sun Y, Teng Y, Li R, Wang X, Zhao L. Microbiome resistance mediates stimulation of reduced graphene oxide to simultaneous abatement of 2,2',4,4',5-pentabromodiphenyl ether and 3,4-dichloroaniline in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133121. [PMID: 38056279 DOI: 10.1016/j.jhazmat.2023.133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Paddy soils near electrical and electronic waste recycling sites generally suffer from co-pollution of polybrominated diphenyl ethers and 3,4-dichloroaniline (3,4-DCA). This study tested the feasibility of reduced graphene oxide (rGO) to stimulate the simultaneous abatement of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) and 3,4-DCA in percogenic paddy soil (PPS) and hydromorphic paddy soil (HPS). rGO improved the debromination extent of BDE99 and the transformation rate of 3,4-DCA in PPS, but did not affect their abatement in HPS. The inhibition of specific fermenters, acetogens, and methanogens after rGO addition contributed to BDE99 debromination by obligate organohalide-respiring bacteria (OHRB) in PPS, but relevant soil microbiomes (e.g., fermenters, acetogens, methanogens, and obligate OHRB) responded little to rGO in HPS. For 3,4-DCA, the enhanced activities of nitrogen-metabolic chloroaniline degraders by rGO increased its transformation rate in PPS, but was compensated by the decreased biotransformation from 3,4-DCA to 3,4-dichloroacetanilide after the addition of rGO to HPS. The discrepant stimulation of rGO between PPS and HPS was mediated by soil microbiome resistance. rGO has the application potential to stimulate the simultaneous abatement of polybrominated diphenyl ethers and chloroanilines in paddy soils with relatively low microbiome resistance.
Collapse
Affiliation(s)
- Yi Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ran Li
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Li W, Zhang W, Dong J, Liang X, Sun C. Groundwater chlorinated solvent plumes remediation from the past to the future: a scientometric and visualization analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17033-17051. [PMID: 38334923 DOI: 10.1007/s11356-024-32080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Contamination of groundwater with chlorinated hydrocarbons has serious adverse effects on human health. As research efforts in this area have expanded, a large body of literature has accumulated. However, traditional review writing suffers from limitations regarding efficiency, quantity, and timeliness, making it difficult to achieve a comprehensive and up-to-date understanding of developments in the field. There is a critical need for new tools to address emerging research challenges. This study evaluated 1619 publications related to this field using VOSviewer and CiteSpace visual tools. An extensive quantitative analysis and global overview of current research hotspots, as well as potential future research directions, were performed by reviewing publications from 2000 to 2022. Over the last 22 years, the USA has produced the most articles, making it the central country in the international collaboration network, with active cooperation with the other 7 most productive countries. Additionally, institutions have played a positive role in promoting the publication of science and technology research. In analyzing the distribution of institutions, it was found that the University of Waterloo conducted the majority of research in this field. This paper also identified the most productive journals, Environmental Science & Technology and Applied and Environmental Microbiology, which published 11,988 and 3253 scientific articles over the past 22 years, respectively. The main technologies are bioremediation and chemical reduction, which have garnered growing attention in academic publishing. Our findings offer a useful resource and a worldwide perspective for scientists engaged in this field, highlighting both the challenges and the possibilities associated with addressing groundwater chlorinated solvent plumes remediation.
Collapse
Affiliation(s)
- Wenyan Li
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Weihong Zhang
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China.
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China.
| | - Jun Dong
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Xue Liang
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Chen Sun
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| |
Collapse
|
15
|
Willmann A, Tiehm A. Aerobic co-metabolic cis-Dichloroethene degradation with Trichloroethene as primary substrate and effects of concentration ratios. CHEMOSPHERE 2024; 350:141000. [PMID: 38135124 DOI: 10.1016/j.chemosphere.2023.141000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Pollution with chloroethenes threaten groundwater resources worldwide. Cis-Dichloroethene (cDCE) and Trichloroethene (TCE) are widespread pollutants that often occur together at contaminated sites, either as primary discharges or as degradation products of anaerobic dechlorination. In this study, comprehensive microcosm experiments were conducted with groundwater samples of seven sites contaminated with chloroethenes. In total, twelve wells with different pollutant concentrations and chloroethene compositions were sampled, and aerobic microcosms including sterile controls were set up. The results revealed interactions as well as interferences between cDCE and TCE. First, co-metabolic cDCE degradation with TCE as growth substrate was detected for the first time in this work. Transformation yields Ty' (molar ratio of co-substrate degraded to primary substrate degraded) of the degradation process were determined and showed a linear relationship with the cDCE/TCE concentration ratio. At low cDCE/TCE ratio, aerobic metabolic TCE degradation can result in complete cDCE removal due to co-metabolic degradation. Secondly, interfering effects were detected at notable cDCE levels resulting in deceleration of TCE degradation and residual concentrations which were also correlating linearly with the cDCE/TCE concentration ratio. These findings are significant for investigating chloroethene contaminated sites and planning remediation strategies. In particular, the efficiency biological remediation methods in the presence of both pollutants can be evaluated more precisely through the knowledge of interactions and interferences. Our study emphasizes that co-contaminants and possible effects of contaminant mixtures on the degradation rates of individual substances should be considered in general.
Collapse
Affiliation(s)
- Anna Willmann
- Department of Water Microbiology TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139, Karlsruhe, Germany; Working Group Environmental Mineralogy & Environmental System Analysis of the Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, 76131, Karlsruhe, Germany
| | - Andreas Tiehm
- Department of Water Microbiology TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139, Karlsruhe, Germany.
| |
Collapse
|
16
|
Romantschuk M, Lahti-Leikas K, Kontro M, Galitskaya P, Talvenmäki H, Simpanen S, Allen JA, Sinkkonen A. Bioremediation of contaminated soil and groundwater by in situ biostimulation. Front Microbiol 2023; 14:1258148. [PMID: 38029190 PMCID: PMC10658714 DOI: 10.3389/fmicb.2023.1258148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Bioremediation by in situ biostimulation is an attractive alternative to excavation of contaminated soil. Many in situ remediation methods have been tested with some success; however, due to highly variable results in realistic field conditions, they have not been implemented as widely as they might deserve. To ensure success, methods should be validated under site-analogous conditions before full scale use, which requires expertise and local knowledge by the implementers. The focus here is on indigenous microbial degraders and evaluation of their performance. Identifying and removing biodegradation bottlenecks for degradation of organic pollutants is essential. Limiting factors commonly include: lack of oxygen or alternative electron acceptors, low temperature, and lack of essential nutrients. Additional factors: the bioavailability of the contaminating compound, pH, distribution of the contaminant, and soil structure and moisture, and in some cases, lack of degradation potential which may be amended with bioaugmentation. Methods to remove these bottlenecks are discussed. Implementers should also be prepared to combine methods or use them in sequence. Chemical/physical means may be used to enhance biostimulation. The review also suggests tools for assessing sustainability, life cycle assessment, and risk assessment. To help entrepreneurs, decision makers, and methods developers in the future, we suggest founding a database for otherwise seldom reported unsuccessful interventions, as well as the potential for artificial intelligence (AI) to assist in site evaluation and decision-making.
Collapse
Affiliation(s)
- Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Katariina Lahti-Leikas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Merja Kontro
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | | | - Harri Talvenmäki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Suvi Simpanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - John A. Allen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Horticulture Technologies, Turku, Finland
| |
Collapse
|
17
|
Han Z, Hou A, Cai X, Xie M, Sun F, Shen C, Lin H, Yu H, Su X. Unlocking the potential of resuscitation-promoting factor for enhancing anaerobic microbial dechlorination of polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165440. [PMID: 37437637 DOI: 10.1016/j.scitotenv.2023.165440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Microbial dechlorination of polychlorinated biphenyls (PCBs) is limited by the slow growth rate and low activity of dechlorinators. Resuscitation promoting factor (Rpf) of Micrococcus luteus, has been demonstrated to accelerate the enrichment of highly active PCB-dechlorinating cultures. However, it remains unclear whether the addition of Rpf can further improve the dechlorination performance of anaerobic dechlorination cultures. In this study, the effect of Rpf on the performance of TG4, an enriched PCB-dechlorinating culture obtained by Rpf amendment, for reductive dechlorination of four typical PCB congeners (PCBs 101, 118, 138, 180) was evaluated. The results indicated that Rpf significantly enhanced the dechlorination of the four PCB congeners, with residual mole percentages of PCBs 101, 118, 138 and 180 in Rpf-amended cultures being 16.2-29.31 %, 13.3-20.1 %, 11.9-14.4 % and 9.4-17.3 % lower than those in the corresponding cultures without Rpf amendment after 18 days of incubation. Different models were identified as appropriate for elucidating the dechlorination kinetics of distinct PCB congeners, and it was observed that the dechlorination rate constant is significantly influenced by the PCB concentration. The supplementing Rpf did not obviously change dechlorination metabolites, and the removal of chlorines occurred mainly at para- and meta- positions. Analysis of microbial community and functional gene abundance suggested that Rpf-amended cultures exhibited a significant enrichment of Dehalococcoides, Dehalogenimonas and Desulfitobacterium, as well as non-dechlorinators belonging to Desulfobacterota and Bacteroidetes. These findings highlight the potential of Rpf as an effective additive for enhancing PCB dechlorination, providing new insights into the survival of functional microorganisms involved in anaerobic reductive dechlorination.
Collapse
Affiliation(s)
- Zhen Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Aiqin Hou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaolin Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Mengqi Xie
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
18
|
Xu L, Tang Y, Liu S, Chen X, Wang Y, Liu Z, Qin Q, Fu D, Xu Y. Short-chain fatty acids facilitated long-term dechlorination of PCBs in Taihu Lake sediment microcosms: Evidence from PCB congener and microbial community analyses. CHEMOSPHERE 2023; 340:139935. [PMID: 37619750 DOI: 10.1016/j.chemosphere.2023.139935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Microbial reductive dechlorination hosts great promise as an in situ bioremediation strategy for polychlorinated biphenyls (PCBs) contamination. However, the slow dechlorination in sediments limits natural attenuation. Short-chain fatty acids, as preferred carbon sources and electron donors for dechlorinating microorganisms, might stimulate PCB dechlorination. Herein, two sets of short-chain fatty acids, sole acetate and a fatty acid mixture (acetate, propionate, and butyrate), were amended periodically into Taihu Lake (China) sediment microcosms containing nine PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170) after 24 weeks of incubation. Short-chain fatty acids facilitated the long-term PCB dechlorination and the promoting effect of the fatty acid mixture compared favorably with that of sole acetate. By the end of 108 weeks, the total PCB mass concentrations in acetate amended and fatty acid mixture amended microcosms significantly declined by 7.6% and 10.3% compared with non-amended microcosms (P < 0.05), respectively. Short-chain fatty acids selectively favored the removal of flanked meta and single-flanked para chlorines. Notably, a rare ortho dechlorination pathway, PCB25 (24-3-CB) to PCB13 (3-4-CB), was enhanced. Supplementary fatty acids significantly increased reductive dehalogenases (RDase) gene pcbA5 instead of improving the growth of Dehalococcoides. These findings highlight the merits of low cost short-chain fatty acids on in situ biostimulation in treating PCBs contamination.
Collapse
Affiliation(s)
- Lei Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yanqiang Tang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Sha Liu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Xi Chen
- Water Affairs Bureau of Nanjing Pukou District, Nanjing, 211899, China
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Zheming Liu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Qingdong Qin
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yan Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
19
|
Wang D, Zhou E, Xu D, Lovley DR. Burning question: Are there sustainable strategies to prevent microbial metal corrosion? Microb Biotechnol 2023; 16:2026-2035. [PMID: 37796110 PMCID: PMC10616648 DOI: 10.1111/1751-7915.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The global economic burden of microbial corrosion of metals is enormous. Microbial corrosion of iron-containing metals is most extensive under anaerobic conditions. Microbes form biofilms on metal surfaces and can directly extract electrons derived from the oxidation of Fe0 to Fe2+ to support anaerobic respiration. H2 generated from abiotic Fe0 oxidation also serves as an electron donor for anaerobic respiratory microbes. Microbial metabolites accelerate this abiotic Fe0 oxidation. Traditional strategies for curbing microbial metal corrosion include cathodic protection, scrapping, a diversity of biocides, alloys that form protective layers or release toxic metal ions, and polymer coatings. However, these approaches are typically expensive and/or of limited applicability and not environmentally friendly. Biotechnology may provide more effective and sustainable solutions. Biocides produced with microbes can be less toxic to eukaryotes, expanding the environments for potential application. Microbially produced surfactants can diminish biofilm formation by corrosive microbes, as can quorum-sensing inhibitors. Amendments of phages or predatory bacteria have been successful in attacking corrosive microbes in laboratory studies. Poorly corrosive microbes can form biofilms and/or deposit extracellular polysaccharides and minerals that protect the metal surface from corrosive microbes and their metabolites. Nitrate amendments permit nitrate reducers to outcompete highly corrosive sulphate-reducing microbes, reducing corrosion. Investigation of all these more sustainable corrosion mitigation strategies is in its infancy. More study, especially under environmentally relevant conditions, including diverse microbial communities, is warranted.
Collapse
Affiliation(s)
- Di Wang
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina
- Shenyang National Laboratory for Materials ScienceNortheastern UniversityShenyangChina
| | - Enze Zhou
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina
- Shenyang National Laboratory for Materials ScienceNortheastern UniversityShenyangChina
| | - Dake Xu
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina
- Shenyang National Laboratory for Materials ScienceNortheastern UniversityShenyangChina
| | - Derek R. Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina
- Department of MicrobiologyUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
20
|
Xu G, Zhao S, Chen C, Zhang N, He J. Alleviating Chlorinated Alkane Inhibition on Dehalococcoides to Achieve Detoxification of Chlorinated Aliphatic Cocontaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15112-15122. [PMID: 37772791 DOI: 10.1021/acs.est.3c04535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Cocontamination by multiple chlorinated solvents is a prevalent issue in groundwater, presenting a formidable challenge for effective remediation. Despite the recognition of this issue, a comprehensive assessment of microbial detoxification processes involving chloroethenes and associated cocontaminants, along with the underpinning microbiome, remains absent. Moreover, strategies to mitigate the inhibitory effects of cocontaminants have not been reported. Here, we revealed that chloroform exhibited the most potent inhibitory effects, followed by 1,1,1-trichloroethane and 1,1,2-trichloroethane, on dechlorination of dichloroethenes (DCEs) in Dehalococcoides-containing consortia. The observed inhibition could be attributed to suppression of biosynthesis and enzymatic activity of reductive dehalogenases and growth of Dehalococcoides. Notably, cocontaminants more profoundly inhibited Dehalococcoides populations harboring the vcrA gene than those possessing the tceA gene, thereby explaining the accumulation of vinyl chloride under cocontaminant stress. Nonetheless, we successfully ameliorated cocontaminant inhibition by augmentation with Desulfitobacterium sp. strain PR owing to its ability to attenuate cocontaminants, resulting in concurrent detoxification of DCEs, trichloroethanes, and chloroform. Microbial community analyses demonstrated obvious alterations in taxonomic composition, structure, and assembly of the dechlorinating microbiome in the presence of cocontaminants, and introduction of strain PR reshaped the dechlorinating microbiome to be similar to its original state in the absence of cocontaminants. Altogether, these findings contribute to developing bioremediation technologies to clean up challenging sites polluted with multiple chlorinated solvents.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ning Zhang
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
21
|
Li C, Xue C, Ouyang W, Liu M, Sun Y, Liu H. Identification and synergetic mechanism of TCE, H 2 and O 2 metabolic microorganisms in the joint H 2/O 2 system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163026. [PMID: 36965730 DOI: 10.1016/j.scitotenv.2023.163026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/19/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
The sole H2 and O2 usually promote chlorinated hydrocarbons (CHCs) biotransformation by several mechanisms, including reductive dechlorination and aerobic oxidation. However, the mechanism of the CHCs transformation in joint H2 and O2 system (H2/O2 system) is still unclear. In this study, the degradation kinetics of trichloroethene (TCE) were investigated and DNA stable isotope probing (DNA-SIP) were used to explore the synergistic mechanism of functional microorganisms on TCE degradation under the condition of H2/O2 coexistence. In the H2/O2 microcosm, TCE was significantly removed by 13.00 μM within 40 days, much higher than N2, H2 and O2 microcosms, and 1,1-DCE was detected as an intermediate. DNA-SIP technology identified three anaerobic TCE metabolizers, five aerobic TCE metabolizers, nine hydrogen-oxidizing bacteria (HOB), some TCE metabolizers utilizing limited O2, and some anaerobic dechlorinating bacteria reductively using H2 to dechlorinate TCE. It is also confirmed for the first time that 3 OUTs belonging to Methyloversatilis and SH-PL14 can simultaneously utilize H2 and O2 as energy sources to grow and metabolize TCE or 1,1-DCE. HOB may provide carbon sources or electron acceptors or donors for TCE biotransformation. These findings confirm the coexistence of anaerobic and aerobic TCE metabolizers and degraders, which synergistically promoted the conversion of TCE in the joint H2/O2 system. Our results provide more information about the functional microbe resources and synergetic mechanisms for TCE degradation.
Collapse
Affiliation(s)
- Cui Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Chen Xue
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Weiwei Ouyang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Minghui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, PR China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China.
| |
Collapse
|
22
|
Yu Y, Zhang Y, Liu Y, Lv M, Wang Z, Wen LL, Li A. In situ reductive dehalogenation of groundwater driven by innovative organic carbon source materials: Insights into the organohalide-respiratory electron transport chain. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131243. [PMID: 36989787 DOI: 10.1016/j.jhazmat.2023.131243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
In situ bioremediation using organohalide-respiring bacteria (OHRB) is a prospective method for the removal of persistent halogenated organic pollutants from groundwater, as OHRB can utilize H2 or organic compounds produced by carbon source materials as electron donors for cell growth through organohalide respiration. However, few previous studies have determined the suitability of different carbon source materials to the metabolic mechanism of reductive dehalogenation from the perspective of electron transfer. The focus of this critical review was to reveal the interactions and relationships between carbon source materials and functional microbes, in terms of the electron transfer mechanism. Furthermore, this review illustrates some innovative strategies that have used the physiological characteristics of OHRB to guide the optimization of carbon source materials, improving the abundance of indigenous dehalogenated bacteria and enhancing electron transfer efficiency. Finally, it is proposed that future research should combine multi-omics analysis with machine learning (ML) to guide the design of effective carbon source materials and optimize current dehalogenation bioremediation strategies to reduce the cost and footprint of practical groundwater bioremediation applications.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yueyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuqing Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengran Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zeyi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Lian Wen
- College of Resource and Environmental Science, Hubei University, Wuhan 430062, China.
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Chen Y, Ni L, Liu Q, Deng Z, Ding J, Zhang L, Zhang C, Ma Z, Zhang D. Photo-aging promotes the inhibitory effect of polystyrene microplastics on microbial reductive dechlorination of a polychlorinated biphenyl mixture (Aroclor 1260). JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131350. [PMID: 37030223 DOI: 10.1016/j.jhazmat.2023.131350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) and microplastics (MPs) commonly co-exist in various environments. MPs inevitably start aging once they enter environment. In this study, the effect of photo-aged polystyrene MPs on microbial PCB dechlorination was investigated. After a UV aging treatment, the proportion of oxygen-containing groups in MPs increased. Photo-aging promoted the inhibitory effect of MPs on microbial reductive dechlorination of PCBs, mainly attributed to the inhibition of meta-chlorine removal. The inhibitory effects on hydrogenase and adenosine triphosphatase activity by MPs increased with increasing aging degree, which may be attributed to electron transfer chain inhibition. PERMANOVA showed significant differences in microbial community structure between culturing systems with and without MPs (p < 0.05). Co-occurrence network showed a simpler structure and higher proportion of negative correlation in the presence of MPs, especially for biofilms, resulting in increased potential for competition among bacteria. MP addition altered microbial community diversity, structure, interactions, and assembly processes, which was more deterministic in biofilms than in suspension cultures, especially regarding the bins of Dehalococcoides. This study sheds light on the microbial reductive dechlorination metabolisms and mechanisms where PCBs and MPs co-exist and provides theoretical guidance for in situ application of PCB bioremediation technology.
Collapse
Affiliation(s)
- Youhua Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lingfang Ni
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Qing Liu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Jiawei Ding
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, PR China
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China.
| |
Collapse
|
24
|
Falconi M, Grenni P. International approaches to contamination management: Introduction to the RemTech Europe 2021 Special Series. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023. [PMID: 36894184 DOI: 10.1002/ieam.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Soil is a nonrenewable resource, and groundwater is a critical source of drinking water. Effective soil and water protection, assessment and, if affected, recovery from contamination are priorities around the world; eco-friendly interventions in line with the United Nations Sustainable Development Goals are favored objectives. These issues were discussed during the sixth RemTech Europe conference (https://www.remtechexpo.com/it/remtech-europe/remtech-europe), which focused on sustainable technologies for land and water remediation; environmental protection; and the rehabilitation, regeneration, and sustainable development of contaminated sites, encouraging diverse stakeholders to share cutting-edge technologies, case studies, and innovation. Effective, practical, and sustainable management of remediation is only possible if the projects are completed, which is supported when the participants start the remediation planning with this end in mind. Several strategies to support and achieve the finalization of sustainable remediation processes were discussed at the conference. Addressing these gaps were among the goals of the papers included in this special series, which were selected from the RemTech EU conference presentations. The papers include risk management plan case studies, bioremediation tools, and preventive measures for minimizing disaster impacts. Moreover, the use of common and shared international best practices for effective and sustainable contaminated site management, with policy alignment among the remediation stakeholders in different countries, was also reported. Finally, many regulatory gaps, for example, the lack of practical end-of-waste criteria for contaminated soils, were also discussed. Integr Environ Assess Manag 2023;00:1-3. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Marco Falconi
- ISPRA, Italian Institute for Environmental Protection and Research, Rome, Italy
| | - Paola Grenni
- CNR-IRSA, National Research Council, Water Research Institute, Rome, Italy
| |
Collapse
|
25
|
Cai Q, Shi C, Yuan S, Tong M. Integrated anaerobic-aerobic biodegradation of mixed chlorinated solvents by electrolysis coupled with groundwater circulation in a simulated aquifer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31188-31201. [PMID: 36445524 DOI: 10.1007/s11356-022-24377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated solvents are widespread subsurface contaminants that are often present as complex mixtures. Complete biodegradation of mixed chlorinated solvents remains challenging because the optimal redox conditions for biodegradation of different chlorinated solvents differ significantly. In this study, anaerobic and aerobic conditions were integrated by electrolysis coupled with groundwater circulation for biodegradation of a mixture of chloroform (CF, 8.25 mg/L), 1,2-dichloroethane (DCA, 7.01 mg/L), and trichloroethylene (TCE, 4.56 mg/L). A two-dimensional tank was filled with field sandy and silty-clayed sediments to simulate aquifer conditions, a pair of electrodes was installed between an injection well and abstraction well, and groundwater circulation transported cathodic H2 and anodic O2 to produce multiple redox conditions. Microbial community analysis demonstrated that the system constructed a habitat suitable for the co-existence of aerobic and anaerobic microbes. After 50 days of treatment, 93.1%, 100%, and 87.3% of CF, 1,2-DCA, and TCE were removed without observed intermediates, respectively. Combined with compound specific isotope analysis, the degradation of 1,2-DCA and CF was mainly attributed to aerobic oxidation and reductive dechlorination, respectively, and TCE was removed by both aerobic and anaerobic biodegradation. Our findings provide a new and efficient strategy for in situ bioremediation of groundwater contaminated by mixed chlorinated solvents.
Collapse
Affiliation(s)
- Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
| |
Collapse
|
26
|
Kyere-Yeboah K, Qiao XC. Process optimization of dielectric barrier discharge reactor for chloroform degradation using central composite design. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2172571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kwasi Kyere-Yeboah
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiu-chen Qiao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Duc HD. Anaerobic degradation of thiobencarb by mixed culture of isolated bacteria. FEMS Microbiol Lett 2023; 370:6912244. [PMID: 36521844 DOI: 10.1093/femsle/fnac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Thiobencarb is a highly effective thiocarbamate herbicide frequently used in rice fields globally. In this study, three bacterial strains (Dechloromonas sp. Th1, Thauera sp. Th2, and Azoarcus sp. Th3) isolated from immobilized biomass were analyzed for thiobencarb degradation under anaerobic conditions, with nitrate serving as an electron acceptor. The experimental results showed that thiobencarb was transformed by Dechloromonas sp. Th1 and Thauera sp. Th2 to produce high concentrations of metabolites in a mineral medium. Dechloromonas sp. Th1 dechlorinated the herbicide to benzyl mercaptan, which was then degraded by Thauera sp. Th2 and Azoarcus sp. Th3. Azoarcus sp. Th3 effectively degraded intermediates, i.e. 4-chlorobenzyl alcohol, 4-chlorobenzoic acid, and benzoic acid, produced from the degradation by Dechloromonas sp. Th1 and Thauera sp. Th2. The cross-feeding, nutrient sharing, and cooperation of all isolates in the degradation process decreased the concentrations of intermediate products. The determination of the degradation kinetics showed that the utilization in the exponential phase of the mixed bacteria was consistent with the Michaelis-Menten model, with a maximum degradation rate of 1.56 ± 0.16 µM day-1. This study showed the degradation mechanisms in bacteria and the synergistic process in the degradation of thiobencarb and its metabolites.
Collapse
Affiliation(s)
- Ha Danh Duc
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, 81100, Viet Nam
| |
Collapse
|
28
|
Wu Z, Man Q, Niu H, Lyu H, Song H, Li R, Ren G, Zhu F, Peng C, Li B, Ma X. Recent advances and trends of trichloroethylene biodegradation: A critical review. Front Microbiol 2022; 13:1053169. [PMID: 36620007 PMCID: PMC9813602 DOI: 10.3389/fmicb.2022.1053169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Trichloroethylene (TCE) is a ubiquitous chlorinated aliphatic hydrocarbon (CAH) in the environment, which is a Group 1 carcinogen with negative impacts on human health and ecosystems. Based on a series of recent advances, the environmental behavior and biodegradation process on TCE biodegradation need to be reviewed systematically. Four main biodegradation processes leading to TCE biodegradation by isolated bacteria and mixed cultures are anaerobic reductive dechlorination, anaerobic cometabolic reductive dichlorination, aerobic co-metabolism, and aerobic direct oxidation. More attention has been paid to the aerobic co-metabolism of TCE. Laboratory and field studies have demonstrated that bacterial isolates or mixed cultures containing Dehalococcoides or Dehalogenimonas can catalyze reductive dechlorination of TCE to ethene. The mechanisms, pathways, and enzymes of TCE biodegradation were reviewed, and the factors affecting the biodegradation process were discussed. Besides, the research progress on material-mediated enhanced biodegradation technologies of TCE through the combination of zero-valent iron (ZVI) or biochar with microorganisms was introduced. Furthermore, we reviewed the current research on TCE biodegradation in field applications, and finally provided the development prospects of TCE biodegradation based on the existing challenges. We hope that this review will provide guidance and specific recommendations for future studies on CAHs biodegradation in laboratory and field applications.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Quanli Man
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Hanyu Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Honghong Lyu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Haokun Song
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Rongji Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Fujie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China,*Correspondence: Xiaodong Ma,
| |
Collapse
|
29
|
Remediation of chlorinated aliphatic hydrocarbons (CAHs) contaminated site coupling groundwater recirculation well (IEG-GCW®) with a peripheral injection of soluble nutrient supplement (IEG-C-MIX) via multilevel-injection wells (IEG-MIW). Heliyon 2022; 8:e11402. [DOI: 10.1016/j.heliyon.2022.e11402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
|
30
|
Li JP, Zhao W, Li SH, Yang XJ, Lyu SG, Liu YD, Wang HL. A novel hydrocyclone for use in underground DNAPL phase separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156866. [PMID: 35753481 DOI: 10.1016/j.scitotenv.2022.156866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Halogenated organic solvents are the most commonly detected pollutants in groundwater and are particularly toxic and harmful. How to separate these dense nonaqueous phase liquid (DNAPL) pollutants efficiently from groundwater has become an important research question. Here, a novel hydrocyclone with annular overflow structure was designed, which eliminated the short-circuit flow of the traditional hydrocyclone and solved the problem of overflow entrainment caused by the enrichment of droplets near the locus of zero vertical velocities (LZVV) into turbulence. The flow field characteristics of this novel hydrocyclone were studied using Computational Fluid Dynamics (CFD) simulation and compared with the traditional hydrocyclone. It was found that the annular gap structure of the novel hydrocyclone increased the tangential velocity of the outer vortex. Moreover, the radius of the LZVV was expanded outward by 0.17 mm, which reduced the possibility of droplets with small particle sizes in the second phase escaping from the overflow pipe. The collective effect was to eliminate the short-circuit flow. This novel hydrocyclone was able to separate DNAPL pollutants with low consumption and high efficiency, across a range of inlet velocity from 4 to 6 m/s. The maximum separation efficiency was 99.91 %. In addition, with trichloroethylene (TCE) as the target pollutant, the maximum volume fraction of the dispersed phase in the hydrocyclone was located on the side wall of the hydrocyclone. Taken together, we believe that this work will provide a low-cost, efficient separation method for the separation of groundwater- contaminated liquid mixtures. Furthermore, it has broad application prospects in the field of heterotopic remediation of groundwater.
Collapse
Affiliation(s)
- Jian-Ping Li
- National Engineering Laboratory for High Concentration Refractory Organic Wastewater Treatment Technology, East China University of Science and Technology, Shanghai 200237, China.
| | - Wei Zhao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Hao Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue-Jing Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shu-Guang Lyu
- National Key Laboratory of Environmental Risk Assessment and Control for Chemical Processes in Environmental Protection, East China University of Science and Technology, 200237, China
| | - Yong-di Liu
- National Engineering Laboratory for High Concentration Refractory Organic Wastewater Treatment Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Hua-Lin Wang
- National Engineering Laboratory for High Concentration Refractory Organic Wastewater Treatment Technology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
31
|
Li C, Chen R, Liu H, Huang Y, Yu J, Ouyang W, Xue C. Response of chlorinated hydrocarbon transformation and microbial community structure in an aquifer to joint H 2 and O 2. RSC Adv 2022; 12:23252-23262. [PMID: 36090448 PMCID: PMC9380535 DOI: 10.1039/d2ra04185e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogen (H2) and oxygen (O2) are critical electron donors and acceptors to promote the anaerobic and aerobic microbial transformation of chlorinated hydrocarbons (CHCs), respectively. Electrochemical technology can effectively supply H2 and O2 directly to an aquifer. However, the response of CHC transformation and microbial community structure to joint H2 and O2 are still unclear. In this work, microcosms containing different combinations of H2 and O2 were constructed with natural sediments and nine mixed CHCs. The joint H2 and O2 microcosm (H2/O2 microcosm) significantly promoted the biotransformation of trichloroethylene (TCE), trans-dichloroethene (tDCE) and chloroform (CF). Illumina sequencing analyses suggested that a particular microbial community was formed in the H2/O2 microcosm. The specific microbial species included Methyloversatilis, Dechloromonas, Sediminibacterium, Pseudomonas, Acinetobacter, Curvibacter, Comamonas and Acidovorax, and the relative abundance of the tceA, phe and soxB genes synchronously increased. These results suggested that some specific microbes are potential CHC converters using H2 and O2 as energy sources, and aerobic and anaerobic transformations exist simultaneously in the H2/O2 microcosm. It provides a theoretical basis for establishing efficient green remediation technologies for CHC contaminated aquifers.
Collapse
Affiliation(s)
- Cui Li
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Rong Chen
- School of Environmental and Biological Engineering, Wuhan Technology and Business University Wuhan Hubei 430065 PR China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Yao Huang
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Jintao Yu
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Weiwei Ouyang
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Chen Xue
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| |
Collapse
|
32
|
Li X, Xu Q, Cheng Y, Chen C, Shen C, Zhang C, Zheng D, Zhang D. Effect of microplastics on microbial dechlorination of a polychlorinated biphenyl mixture (Aroclor 1260). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154904. [PMID: 35364163 DOI: 10.1016/j.scitotenv.2022.154904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) generally coexist in the environment, posing risks to public health and the environment. This study investigated the effect of different MPs on the microbial anaerobic reductive dechlorination of Aroclor 1260, a commercial PCB mixture. MP exposure inhibited microbial reductive dechlorination of PCBs, with inhibition rates of 39.43%, 23.97%, and 17.53% by polyethylene (PE), polypropylene (PP), and polystyrene (PS), respectively. The dechlorination rate decreased from 1.63 μM Cl- d-1 to 0.99-1.34 μM Cl- d-1 after MP amendment. Chlorine removal in the meta-position of PCBs was primarily inhibited by MPs, with no changes in the final PCB dechlorination metabolites. The microbial community compositions in MP biofilms were not significantly different (P > 0.05) from those in suspension culture, although possessing greater Dehalococcoides abundance (0.52-0.81% in MP biofilms; 0.03-0.12% in suspension culture). The co-occurrence network analysis revealed that the presence of MPs attenuated microbial synergistic interactions in the dechlorinating culture systems, which may contribute to the inhibitory effect on microbial PCB dechlorination. These findings are important for comprehensively understanding microbial dechlorination behavior and the environmental fate of PCBs in environments with co-existing PCBs and MPs and for guiding the application of in situ PCB bioremediation.
Collapse
Affiliation(s)
- Xinkai Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Qiang Xu
- Ocean Academy, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Youjun Cheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Daoqiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
33
|
Rossi MM, Alfano S, Amanat N, Andreini F, Lorini L, Martinelli A, Petrangeli Papini M. A Polyhydroxybutyrate (PHB)-Biochar Reactor for the Adsorption and Biodegradation of Trichloroethylene: Design and Startup Phase. Bioengineering (Basel) 2022; 9:bioengineering9050192. [PMID: 35621470 PMCID: PMC9137886 DOI: 10.3390/bioengineering9050192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, polyhydroxy butyrate (PHB) and biochar from pine wood (PWB) are used in a mini-pilot scale biological reactor (11.3 L of geometric volume) for trichloroethylene (TCE) removal (80 mgTCE/day and 6 L/day of flow rate). The PHB-biochar reactor was realized with two sequential reactive areas to simulate a multi-reactive permeable barrier. The PHB acts as an electron donor source in the first “fermentative” area. First, the thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses were performed. The PHB-powder and pellets have different purity (96% and 93% w/w) and thermal properties. These characteristics may affect the biodegradability of the biopolymer. In the second reactive zone, the PWB works as a Dehalococcoides support and adsorption material since its affinity for chlorinated compounds and the positive effect of the “coupled adsorption and biodegradation” process has been already verified. A specific dechlorinating enriched culture has been inoculated in the PWB zone to realize a coupled adsorption and biodegradation process. Organic acids were revealed since the beginning of the test, and during the monitoring period the reductive dichlorination anaerobic pathway was observed in the first zone; no chlorinated compounds were detected in the effluent thanks to the PWB adsorption capacity.
Collapse
Affiliation(s)
- Marta M. Rossi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
- Correspondence:
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Neda Amanat
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | | | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| |
Collapse
|
34
|
Zhang S, Li Y, Wang S. Microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins: Pathways and features unravelled via electron density. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127673. [PMID: 34776298 DOI: 10.1016/j.jhazmat.2021.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Microbial reductive dechlorination provides a promising approach for remediating sites contaminated with polychlorinated dibenzo-p-dioxins (PCDDs). Nonetheless, the overall dechlorination pathways and features remain elusive. Herein, we address these issues by quantum chemical calculations, considering the calibrations of reductive dechlorination of 15 PCDDs mediated by three Dehalococcoides strains. Chlorine substituents with lower electron density are prone to be microbially abstracted, which differentiates 72 microbe-active PCDDs from 3 nonactive analogues with a success rate of 100%. For all 256 transformation routes of 75 PCDDs, electron density differences of chlorines pinpoint 105 viable and 125 unviable pathways, corresponding a success rate of 90%. The feasibility of 26 reductive dechlorination pathways are uncertain because of the limited available experimental data. 98% (251/256) of microbial chlorine abstraction follows an order of ClO,Cl>ClCl,Cl>ClH,O>ClH,Cl>ClH,H=0. PCDDs solely containing chlorines at C1, C4, C6, and/or C9 can be completely dechlorinated to non-chlorinated dioxin; while PCDDs housing chlorines at C2, C3, C7, and/or C8 can be dechlorinated to 2-MCDD or 2,7/8-DCDD as final products. These findings also support reductive dechlorination of PCDDs in mixed cultures and sediments (> 98% and 83%). These findings would promote the application of dechlorinating bacteria in targeted remediation and facilitate the respective studies on other POPs.
Collapse
Affiliation(s)
- Shangwei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Koner S, Chen JS, Hsu BM, Rathod J, Huang SW, Chien HY, Hussain B, Chan MWY. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127266. [PMID: 34600373 DOI: 10.1016/j.jhazmat.2021.127266] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
This study explores the toxic effect of TCE at different depths of sub-surface soil and underpins microbial community-level suitable carbon (C)-sources that provided directionality to the in situ biostimulation effort via augmentation strategy for effective TCE remediation in soil. The impacts on resident microbial communities and their functional profiles that govern the TCE biodegradation process were identified. Highly contaminated PW01 soil (9 m depth) had severely limited microbial diversity and was enriched in Proteobacteria and Firmicutes. The abundance of TCE degradation-associated genera was observed in all contaminated samples, and the abundance of TCE-degradation-related taxa were positively correlated with soil TCE contamination levels. Community-level metabolic activity associated with the utilization of diverse external C-sources was directly influenced by TCE concentration and soil depth. Multivariate data analysis revealed that the functional genus, TCE concentration, and selected available C substrate uptake capacity correlated in soil samples. Pearson's correlation tests revealed that C sources such as L-arginine, phenylethylamine and γ-hydroxybutyric acid utilization trait exhibited significant positive correlations with chloroalkane and chloroalkene degradation pathway abundance. Ultimately, depth and TCE contamination level-associated soil microbiota and their most preferred C-source understanding could add to facilitate effective biostimulation via external nutrient amendment for efficient in situ TCE degradation.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Wei Huang
- Center for environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Hua-Yi Chien
- Environmental Technology Development Department, Taiwan VCM Corporation, Kaohsiung, Taiwan; Department of Environmental Sciences and Engineering, Fooyin University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
36
|
Ma E, Liang X, Zhang J, Zhang YK. Dynamics in Diffusive Emissions of Dissolved Gases from Groundwater Induced by Fluctuated Ground Surface Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2355-2365. [PMID: 35112835 DOI: 10.1021/acs.est.1c06009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During the lateral transport with subsurface flow, amounts of manufactured volatile organic chemicals and gases dissolved in groundwater are emitted into the atmosphere via upward diffusion through soils. Quantifying gas emissions is important for assessing environmental risk associated with these constituents (e.g., air pollution and global warming). It is widely recognized that the temperature would affect gas spreading in soils, which in turn regulates the gas emission from groundwater. However, the upward diffusive gas emission induced by the fluctuated ground surface temperature (GST) remains unexplored. A coupled heat transfer and gas transport model is developed to investigate emissions of tetrachloroethylene (PCE) and N2O, a typical manufactured volatile organic chemical and a natural gas, from groundwater with seasonally fluctuating GSTs. The results indicate that both PCE and N2O emissions vary significantly from month to month. Moreover, fluctuations of emissions lag obviously behind the fluctuation of GST due to the damping effects of both capillary fringe and soil sorption. The proposed model agrees with the observed data from a monolith lysimeter experiment well. The model is also applied to the estimations of N2O emissions from 12 aquifers in Walloon Region, Belgium. The estimated N2O emission is 12.6 μg N/m2/d that falls in the estimated range (9.0-21.5 μg N/m2/d) using the IPCC emission factor approach that commonly accounts for the N2O emission of groundwater discharge to surface water only. It suggests that the upward diffusion is non-negligible for estimations of N2O emission from groundwater.
Collapse
Affiliation(s)
- Enze Ma
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Xiuyu Liang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Jiangwei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - You-Kuan Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
37
|
Reduction of Chlorinated Ethenes by Ag- and Cu-Amended Green Rust. MINERALS 2022. [DOI: 10.3390/min12020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Chlorinated ethenes have been used extensively as solvents, degreasers, and dry-cleaning agents in a range of commercial and industrial applications. This has created a legacy of contaminated soils and groundwater, particularly with respect to perchloroethylene (PCE; a.k.a. tetrachloroethene—C2Cl4), and trichloroethylene (TCE; a.k.a. trichloroethene—C2HCl3), prompting the development of a wide array of treatment technologies for remediation of chlorinated ethene-contaminated environments. Green rusts are highly redox-active layered Fe(II)-Fe(III) hydroxides that have been shown to be facile reductants for a wide range of organic and inorganic pollutants. The reduction of chlorinated ethenes [vinyl chloride (VC); 1,1-dichloroethene(11DCE), cis-1,2-dichloroethene (c12DCE), trans-1,2-dichloroethene (t12DCE), TCE, and PCE] was examined in aqueous suspensions of green rust, alone as well as with the addition of Ag(I) (AgGR) or Cu(II) (CuGR). Green rust alone was ineffective as a reductant for the reductive dechlorination for all of the chlorinated ethenes. Near-complete removal of PCE was observed in the presence of AgGR, but all other chlorinated ethenes were essentially non-reactive. Partial removal of chlorinated ethenes was observed in the presence of CuGR, particularly 11DCE (34%), t12DCE (51%), and VC (66%). Significant differences were observed in the product distributions of chlorinated ethene reduction by AgGR and CuGR. The effectiveness of Ag(I)- and Cu(II)-amended green rusts for removal of chlorinated ethenes may be improved under different conditions (e.g., pH and interlayer anion) and warrants further investigation.
Collapse
|
38
|
Xu L, Liu S, Tang Y, Han X, Wang Y, Fu D, Qin Q, Xu Y. Long-Term Dechlorination of Polychlorinated Biphenyls (PCBs) in Taihu Lake Sediment Microcosms: Identification of New Pathways, PCB-Driven Shifts of Microbial Communities, and Insights into Dechlorination Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:938-950. [PMID: 34958198 DOI: 10.1021/acs.est.1c06057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) is regarded as an alternative approach for in situ remediation and detoxification in the environment. To better understand the process of PCB dechlorination in freshwater lake sediment, a long-term (108 weeks) dechlorination study was performed in Taihu Lake sediment microcosms with nine parent PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170). Within 108 weeks, the total PCBs declined by 32.8%, while parent PCBs declined by 84.8%. PCB dechlorinators preferred to attack meta- and para-chlorines, principally para-flanked meta and single-flanked para chlorines. A total of 58 dechlorination pathways were observed, and 20 of them were not in 8 processes, suggesting the broad spectrum of PCB dechlorination in the environment. Rare ortho dechlorination was confirmed to target the unflanked ortho chlorine, indicating a potential for complete dechlorination. PCBs drove the shifts of the microbial community structures, and putative dechlorinating bacteria were growth-linked to PCB dechlorination. The distinct jump of RDase genes ardA, rdh12, pcbA4, and pcbA5 was found to be consistent with the commencement of dechlorination. The maintained high level of putative dechlorinating phylum Chloroflexi (including Dehalococcoides and o-17/DF-1), genus Dehalococcoides, and four RDase genes at the end of incubation revealed the long-term dechlorination potential. This work provided insights into dechlorination potential for long-term remediation strategies at PCB-contaminated sites.
Collapse
Affiliation(s)
- Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Sha Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xuexin Han
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dafang Fu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
39
|
Xu Y, Tang Y, Xu L, Wang Y, Liu Z, Qin Q. Effects of iron-carbon materials on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls in Taihu Lake sediment microcosms: Enhanced chlorine removal, detoxification and shifts of microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148454. [PMID: 34465049 DOI: 10.1016/j.scitotenv.2021.148454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron particles (nZVI, 0.09 wt%), micro zero-valent iron particles (mZVI, 0.09 wt%), granular activated carbon (GAC, 3.03 wt%), GAC supported nZVI (nZVI/GAC, 3.12 wt%) and nZVI&GAC (nZVI 0.09 wt%, GAC 3.03 wt%) were evaluated for their effects on polychlorinated biphenyls (PCBs) anaerobic reductive dechlorination, detoxification, as well as microbial community structure in Taihu Lake (China) sediment microcosms. The results showed that all of these five materials could stimulate PCBs reductive dechlorination, especially for dioxin-like PCB congeners, and nZVI&GAC had the best removal effect on PCBs. The reduction of total PCBs increased from 13.5% to 33.2%. H2 generated by zero-valent iron corrosion was utilized by organohalide-respiring bacteria (OHRB) to enhance the dechlorination of PCBs predominantly via meta chlorine removal in the short term. The addition of ZVI had little impact on the total bacterial abundance and the microbial community structure. The adsorption of GAC and potential bioremediation properties of attached biofilm could promote the long-term removal of PCBs. GAC, nZVI/GAC, nZVI&GAC had different influences on the microbial structure. These findings provide insights into the biostimulation technique for in situ remediations of PCBs contaminated sediments.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
40
|
Shi C, Hu Y, Kobayashi T, Zhang N, Kuramochi H, Zhang Z, Lei Z, Xu KQ. Comparison of decabromodiphenyl ether degradation in long-term operated anaerobic bioreactors under thermophilic and mesophilic conditions and the pathways involved. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113009. [PMID: 34126536 DOI: 10.1016/j.jenvman.2021.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/12/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion of decabromodiphenyl ether was carried out and compared in two continuously stirred anaerobic bioreactors for 210 days under thermophilic and mesophilic conditions. Results show that the degradation of decabromodiphenyl ether followed the first-order reaction kinetics, which exhibited a higher removal rate in the thermophilic reactor when compared to the mesophilic one, reaching its maximum of 1.1 μg·day-1. The anaerobic digestion of decabromodiphenyl ether was found to involve the replacement of bromines from polybrominated diphenyl ether by hydrogen atoms, gradually forming nona-, octa- and hepta-brominated diphenyl ether, respectively. Under the thermophilic condition, the reactors were dominated by Bacillus sp. and Methanosarcina sp. with high bioactivity and high concentrations of debromination microorganisms.
Collapse
Affiliation(s)
- Chen Shi
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yong Hu
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takuro Kobayashi
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Nan Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hidetoshi Kuramochi
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kai-Qin Xu
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan; Fujian Ospring Technology Development Co., Ltd., No. 22 Jinrong North Road Cangshan District, Fuzhou, 350000, PR China.
| |
Collapse
|
41
|
Rossi MM, Dell’Armi E, Lorini L, Amanat N, Zeppilli M, Villano M, Petrangeli Papini M. Combined Strategies to Prompt the Biological Reduction of Chlorinated Aliphatic Hydrocarbons: New Sustainable Options for Bioremediation Application. Bioengineering (Basel) 2021; 8:bioengineering8080109. [PMID: 34436112 PMCID: PMC8389326 DOI: 10.3390/bioengineering8080109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Groundwater remediation is one of the main objectives to minimize environmental impacts and health risks. Chlorinated aliphatic hydrocarbons contamination is prevalent and presents particularly challenging scenarios to manage with a single strategy. Different technologies can manage contamination sources and plumes, although they are usually energy-intensive processes. Interesting alternatives involve in-situ bioremediation strategies, which allow the chlorinated contaminant to be converted into non-toxic compounds by indigenous microbial activity. Despite several advantages offered by the bioremediation approaches, some limitations, like the relatively low reaction rates and the difficulty in the management and control of the microbial activity, can affect the effectiveness of a bioremediation approach. However, those issues can be addressed through coupling different strategies to increase the efficiency of the bioremediation strategy. This mini review describes different strategies to induce the reduction dechlorination reaction by the utilization of innovative strategies, which include the increase or the reduction of contaminant mobility as well as the use of innovative strategies of the reductive power supply. Subsequently, three future approaches for a greener and more sustainable intervention are proposed. In particular, two bio-based materials from renewable resources are intended as alternative, long-lasting electron-donor sources (e.g., polyhydroxyalkanoates from mixed microbial cultures) and a low-cost adsorbent (e.g., biochar from bio-waste). Finally, attention is drawn to novel bio-electrochemical systems that use electric current to stimulate biological reactions.
Collapse
|