1
|
Li J, Yang X, Zhang X, Zhang L. Effects and mechanisms of microbial ecology and diversity on phytoremediation of cadmium-contaminated soil under the influence of biodegradable organic acids. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2392-2403. [PMID: 39150230 DOI: 10.1080/15226514.2024.2391025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In recent years, heavy metal pollution has become a global environmental problem and poses a great threat to the health of people and ecosystems. Therefore, strategies for the effective remediation of Cd from contaminated soil are urgently needed. In this study, ryegrass was utilized as a remediation plant, and its remediation potential was enhanced through the application of Citric Acid (CA) in conjunction with Bacillus megaterium (B. megaterium). The P3 treatment (CA + Bacillus megaterium) exhibited a significantly higher efficiency in promoting cadmium extraction by ryegrass, resulting in a 1.79-fold increase in shoot cadmium accumulation compared to the control group (CK) with no Bacillus megaterium or CA. Moreover, the P3 treatment led to an increased abundance of Actinobacteriota, Acidobacteriota, and Patescibacteria in the rhizosphere. The concentration of amino derivatives (such as betaine, sulfolithocholylglycine, N-alpha-acetyl-lysine, glycocholic acid, arginyl-threonine) showed significant upregulation following the P3 treatment. In summary, this study proposes a viable approach for phytoremediation of soil contaminated with cadmium by harnessing the mobilizing abilities of soil bacteria.
Collapse
Affiliation(s)
- Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Xiaoxiao Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| |
Collapse
|
2
|
Deng Y, Zhao H, Zhang X, Li X, Chi G. The dissipation of organophosphate esters mediated by ryegrass root exudate oxalic acid in soil: Analysis of enzymes activities, microorganism. CHEMOSPHERE 2024; 356:141896. [PMID: 38579949 DOI: 10.1016/j.chemosphere.2024.141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Complex rhizoremediation is the main mechanism of phytoremediation in organic-contaminated soil. Low molecular weight organic acids (LMWOAs) in root exudates have been shown to increase the bioavailability of contaminants and are essential for promoting the dissipation of contaminants. The effects of root exudates on the dissipation of organophosphate esters (OPEs) in soil are unclear. Consequently, we studied the combined effects of root exudates, soil enzymes and microorganisms on OPEs (tri (1-chloro-2-propyl) phosphate (TCPP) and triphenyl phosphate (TPP)) dissipation through pot experiments. Oxalic acid (OA) was confirmed to be the main component of LMWOAs in root exudates of ryegrass. The existence of OA increased the dissipation rate of OPEs by 6.04%-25.50%. Catalase and dehydrogenase activities were firstly activated and then inhibited in soil. While, urease activity was activated and alkaline phosphatase activity was inhibited during the exposure period. More bacteria enrichment (e.g., Sphingomonas, Pseudomonas, Flavisolibacter, Pontibacter, Methylophilus and Massilia) improved the biodegradation of OPEs. In addition, the transformation paths of OPEs hydrolysis and methylation under the action of root exudates were observed. This study provided theoretical insights into reducing the pollution risk of OPEs in the soil.
Collapse
Affiliation(s)
- Yaxi Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Goujian Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
3
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
4
|
Su J, Zeng Q, Li S, Wang R, Hu Y. Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120553. [PMID: 38471314 DOI: 10.1016/j.jenvman.2024.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Soil remediation can be achieved through organic and synthetic amendments, but the differences in the phytomanagement of trace metal-contaminated land are unclear. We conducted an outdoor microcosm experiment to simulate the effects of organic amendment citric acid and synthetic amendments EDTA and EGTA on poplar phytomanagement of copper (Cu)- and lead (Pb)-contaminated calcareous land at doses of 0, 1, 3, and 9 mmol kg-1. We found that soil-bioavailable Cu and Pb contents increased by 2.11-27.27 and 1.48-269 times compared to the control, respectively. Additionally, synthetic amendments had a long-lasting (within 25 days) effect on metal bioavailability relative to organic amendments. Consequently, organic amendments increased the root Cu and Pb contents by 2.68-48.61% and 6.60-49.51%, respectively, whereas synthetic amendments increased them by 65.94-260% and 12.50-103%. The Cu and Pb contents in the leaves were lower than those in the roots, and increased significantly by 47.04-179% and 237-601%, respectively, only under synthetic amendments. Interestingly, none of the amendments increased the Cu and Pb content in poplar stems (<5 mg kg-1), which remained within the normal range for terrestrial plants. Regardless of the type and addition level, the amendments did not affect poplar growth. Nevertheless, synthetic amendments caused a significant redistribution of metals (Cu: 22-32%; Pb: 23-53%) from the topsoil into the subsoil within the root zone at medium and high levels relative to organic amendments. Therefore, organic and synthetic amendments can assist poplar phytomanagement with a phytostabilization strategy for Cu- and Pb-contaminated calcareous land and obtain marketable wood biomass. Moreover, collecting leaf litter is crucial when using synthetic amendments at optimum concentration levels.
Collapse
Affiliation(s)
- Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiaohong Zeng
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuqi Li
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Wang
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Yuan TY, Wan DJ, Yang WJ, Gu JF, Zhou H, Zeng P, Liao BH. Tartaric acid coupled with gibberellin improves remediation efficiency and ensures safe production of crops: A new strategy for phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168319. [PMID: 37949124 DOI: 10.1016/j.scitotenv.2023.168319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Phytoremediation is the direct use of living green plants and it is an effective, inexpensive, non-invasive, and environmentally friendly technique used to transfer or stabilize all the toxic metals and environmental pollutants in polluted soil or ground water. To study the effect of tartaric acid, gibberellin, and tartaric acid coupled with gibberellin on rape-kenaf or rape-sweet sorghum rotation, a field experiment was carried out on a farmland combined polluted with Cd and Pb in eastern Hunan Province, China. The results showed that these two rotation systems coupled with superposition measure has potential to enhance yield and biomass of rape (Brassica napus L.), kenaf (Hibiscus cannabinus) and sweet sorghum (Sorghum dochna (F.) Snowden), as well as to increase Cd and Pb uptake of the three crops, thus accelerating phytoextraction. The Cd and Pb annual removal by rape-kenaf rotation in one year under different treatments were 269-438 and 112-149 g·hm-2, respectively. And the Cd and Pb annual removal by rape-sweet sorghum rotation in one year under different treatments were 68.0-111 and 43.8-92.3 g·hm-2, respectively. Under the two rotation systems, these integrated management measures can remove Cd and Pb up to 438 g·hm-2·year-1 and 149 g·hm-2·year-1, respectively. The Cd and Pb content in rape seeds or sweet sorghum stems and leaves were lower than the food or forage standard, indicating that we can use this rotation system for both remediation and safety production. Furthermore, the two rotation systems also generated considerable economic value. These results showed that the combination of phytoremediation and agricultural production is a feasible technical mode in the field of Cd and Pb co-contamination, and also provides useful information for further study of the interaction mechanism between rotation crops and enhancement measures. In subsequent experiments we can set concentration gradients for tartaric acid and gibberellin, and we can also select other crops for rotation, with a view to finding the optimal auxiliary measure and crop rotation modern.
Collapse
Affiliation(s)
- Teng-Yue Yuan
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Da-Juan Wan
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Wen-Jun Yang
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| | - Jiao-Feng Gu
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China.
| | - Hang Zhou
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| | - Peng Zeng
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| | - Bo-Han Liao
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| |
Collapse
|
6
|
Paridar Z, Ghasemi-Fasaei R, Yasrebi J, Ronaghi A, Moosavi AA. Applicability of the sigmoid model to estimate heavy metal uptake in maize and sorghum as affected by organic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3222-3238. [PMID: 38085482 DOI: 10.1007/s11356-023-31410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Although assisted phytoremediation using chemical treatments is a suitable technique for the removal of heavy metals (HMs), the estimation of this process using simple models is also crucial. For this purpose, a greenhouse trial was designed to evaluate the effectiveness of citric, oxalic, and tartaric acid on Cd, Pb, Ni, and Zn phytoremediation by maize and sorghum and to estimate this process using sigmoid HMs uptake model. Results showed that mean values of root and shoot dry weight and metals uptake, translocation factor (TF) of Pb and Zn, and uptake efficiency (UE) of Cd in maize were higher than sorghum but the TF of Cd and the phytoextraction efficiency (PEE) and UE of Pb in sorghum were higher than maize. Citric, oxalic, and tartaric acid significantly increased the UE of Pb by 17.7%, 22.5%, and 32.5%, respectively. Tartaric acid significantly increased the mean values of shoot dry weight, shoot Cd, Pb, and Ni uptake, and PEE of Pb and Ni, but decreased TF of Zn. The R2, NRMSE, and KM values indicated the ability of sigmoid HM uptake model in estimating HMs uptake in maize and sorghum treated with organic acids. Thus, tartaric acid was more effective than citric and oxalic acids to enhance phytoremediation potential. Sigmoid HM uptake model is suitable to estimate the HMs uptake in plants treated with organic acids at different growth stages.
Collapse
Affiliation(s)
- Zeynab Paridar
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Jafar Yasrebi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Akbar Moosavi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Pang Z, Yin W, Wang Y, Zeng W, Peng H, Liang Y. Silicon-phosphorus pathway mitigates heavy metal stress by buffering rhizosphere acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166887. [PMID: 37683860 DOI: 10.1016/j.scitotenv.2023.166887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Heavy metal pollution threatens food security, and rhizosphere acidification will increase the bioavailability of heavy metals. As a beneficial element in plants, silicon can relieve heavy metal stress. However, less attention has been paid to its effects on plant rhizosphere processes. Here, we show that for Japonica (Nipponbare and Oochikara) and Indica (Jinzao 47) rice cultivars, the degree of root acidification was significantly reduced after silicon uptake, and the total organic carbon, citric acid, and malic acid concentrations in rice root exudates were significantly reduced. We further confirmed the results by q-PCR that the expressions of proton pump and organic acid secretion genes were down-regulated by 35-61 % after silicon treatment. Intriguingly, phosphorus allocation, an intensively studied mechanism of rhizosphere acidification, was altered by silicon treatment. Specifically, among total phosphorus in rice seedlings, the soluble proportion increased from 52.0 % to 61.7 %, while cell wall phosphorus decreased from 48.0 % to 32.3 %. Additionally, silicon-mediated alleviation of rhizosphere acidification has positive effects on relieving heavy metal stress. Simulation revealed that low acidification of the nutrient solution resulted in a decrease in bioavailable heavy metal concentrations, thereby reducing rice uptake. We further confirmed that the impediment of rhizosphere acidification led to free-state Cr3+ in solutions decreasing by 43 % and contributed up to 63 % of silicon's mitigation of Cr(III) stress. Overall, we propose a novel mechanism in which silicon reduces heavy metal absorption by increasing plant soluble phosphorus concentration and buffering rhizosphere acidification. This paper provides a unique insight into the role of silicon in plants and, more importantly, a theoretical reference for the rational application of silicon fertilizer to improve phosphorus utilization efficiency, alleviate heavy metal stress, and balance soil pH.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weisong Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Yan Z, Ding W, Xie G, Yan M, Han Y, Xiong X. Quantitative relationship between soil pH and electrical conductivity values and cadmium phytoavailability for Chinese cabbage under simulated conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115566. [PMID: 37839190 DOI: 10.1016/j.ecoenv.2023.115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Pot experiments were conducted to investigate the impacts of continuous addition of different concentrations of calcium chloride (CaCl2) and/or low-molecular-weight organic acids (LMWOAs) on soil pH, electrical conductivity (EC), and cadmium (Cd) transformation. These factors subsequently affected Cd phytoavailability in a system consisting of Cd-contaminated soil and Chinese cabbage (Brassica chinensis L.). The results indicate that CaCl2 addition had a greater impact on reducing soil pH value, increasing soil EC value, and enhancing Cd phytoaccumulation in Chinese cabbage compared to LMWOAs. When soil pH dropped by 0.3 unit and the soil EC increased by 500 µS cm-1, the Cd concentration in the Chinese cabbage shoots was 3 times higher than that in the control group. Throughout two planting terms of Chinese cabbage, the addition of CaCl2 (1.6-3.2 g kg-1) and LMWOAs (≤ 1.0 g kg-1) led to phytoextracted Cd concentration exceeding exchangeable Cd concentration in soil samples before the pot experiment. Regarding phytoextracted Cd, desorption from carbonate-bound Cd contributes more than desorption from bound to organic matter Cd and adsorption to Fe/Mn oxide Cd. This study underscores the influence of soil pH and EC value variations and Cd transformation on Cd phytoavailability. Special attention should be given to leafy vegetables grown in Cd-contaminated soil, as the phytoavailable Cd concentration reaches approximately 2.0 µg kg-1, which may lead to Cd levels surpassing acceptable limits for Chinese cabbage.
Collapse
Affiliation(s)
- Zhuoyi Yan
- College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400045, China; Center of Space Exploration, Ministry of Education, Chongqing University, Campus A 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Wenchuan Ding
- College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400045, China.
| | - Gengxin Xie
- College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400045, China; Center of Space Exploration, Ministry of Education, Chongqing University, Campus A 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Ya Han
- College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400045, China.
| | - Xin Xiong
- College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400045, China.
| |
Collapse
|
9
|
Jalali M, Jalali M, Antoniadis V. The release of Cd, Cu, Fe, Mn, Ni, Pb, and Zn from clay loam and sandy loam soils under the influence of various organic amendments and low-molecular-weight organic acids. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132111. [PMID: 37499502 DOI: 10.1016/j.jhazmat.2023.132111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Low-molecular-weight organic acids (LMWOAs) interact with potentially toxic elements (PTEs) and affect their mobility; however, the effect of different amendments on PTEs release from soils when added along with LMWOAs is still unclear. In this study, two soils (a clay loam and a sandy loam) amended with sugar beet bagasse ash (SBBA), poultry manure (PM), sewage sludge (SS) from Kermanshah city (SSK), and SS from Toyserkan city (SST) at a rate of 5 %. In these treatments we studied release of Cd, Cu, Fe, Mn, Ni, Pb, and Zn with citric, oxalic, and malic acids added at 10 different rates each, i.e., 0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mmol L-1. We found that the percentage of PTEs release was higher for citric, followed by oxalic and malic acids. The highest amount of PTEs released in both soils decreased in the following order: SST > SBBA > SSK > PM. The percentage of PTEs complexed with LMWOAs and the log activity of PTEs species mostly increased with decreasing pH. It could be concluded that the application of PM is more environmentally friendly than that of the other amendments. Since Cd had the highest percentage of release in all treated soils and LMWOAs, more consideration should be given to Cd to prevent environmental pollution.
Collapse
Affiliation(s)
- Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mahdi Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Vasileios Antoniadis
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Volos, Greece
| |
Collapse
|
10
|
Chen HH, Zheng ZC, Chen WS, Rao RY, Chen XF, Ye X, Guo J, Yang LT, Chen LS. Regulation on copper-tolerance in Citrus sinensis seedlings by boron addition: Insights from root exudates, related metabolism, and gene expression. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132277. [PMID: 37591167 DOI: 10.1016/j.jhazmat.2023.132277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Boron (B) can alleviate Citrus copper (Cu)-toxicity. However, the underlying mechanism by which B mitigates Cu-toxicity is unclear. 'Xuegan' (Citrus sinensis) seedlings were exposed to 0.5 (control) or 350 (Cu-toxicity) µM Cu and 2.5 or 25 µM B for 24 weeks. Thereafter, we investigated the secretion of low molecular weight compounds [LMWCs; citrate, malate, total soluble sugars (TSS), total phenolics (TP), and total free amino acids (TFAA)] by excised roots and their concentrations in roots and leaves, as well as related enzyme gene expression and activities in roots and leaves. Cu-stress stimulated root release of malate and TFAA, which might contribute to citrus Cu-tolerance. However, B-mediated-mitigation of Cu-stress could not be explained in this way, since B addition failed to further stimulate malate and TFAA secretion. Indeed, B addition decreased Cu-stimulated-secretion of malate. Further analysis suggested that Cu-induced-exudation of malate and TFAA was not regulated by their levels in roots. By contrast, B addition increased malate, citrate, and TFAA concentrations in Cu-toxic roots. Cu-toxicity increased TP concentration in 25 μM B-treated leaves, but not in 2.5 μM B-treated leaves. Our findings suggested that the internal detoxification of Cu by LMWCs played a role in B-mediated-alleviation of Cu-toxicity.
Collapse
Affiliation(s)
- Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chao Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Shu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong-Yu Rao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Ye
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Sur IM, Hegyi A, Micle V, Gabor T, Lăzărescu AV. Influence of the Extraction Solution on the Removal of Heavy Metals from Polluted Soils. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6189. [PMID: 37763466 PMCID: PMC10532594 DOI: 10.3390/ma16186189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Soil pollution with heavy metals is a problem for the whole geosystem. The aim of the research is to identify new solutions for extracting heavy metals from polluted soils so that they can be further exploited. To this end, investigations of the physicochemical characteristics of the soil sample under study were carried out. Following the analyses, the soil was characterised as lute-coarse sand (UG) with a strongly acidic pH (4.67), a hygroscopicity coefficient (CH = 4.8% g/g), and a good supply of nutrients: nitrogen (Nt): 0.107%; mobile phosphorus (PAL): 6 mg kg-1 and mobile potassium (KAL): 26 mg kg-1, but is low in humus (2.12%). The metal content of the soil was determined by atomic absorption spectrometry (AAS), and the analyses showed high concentrations of metals (Pb: 27,660 mg kg-1; Cu: 5590 mg kg-1; Zn: 2199 mg kg-1; Cd: 11.68 mg kg-1; Cr: 146 mg kg-1). The removal of metals (Pb, Cu, Zn, Cd, and Cr) from polluted soil by different extraction agents (water, humus, malic acid, chitosan, and gluconic acid) was investigated. Metal extraction experiments were carried out in a continuous orbital rotation-oscillation stirrer at a solid/liquid/ (S/L ratio; g:mL) of 1:4, at two concentrations of extraction solution (1% and 3%), and at different stirring times (2, 4, 6, and 8 h). The yield of the extraction process is very low for all proposed extraction solutions. The maximum values of extraction efficiency are: 0.5% (Pb); 3.28% (Zn); and 5.72% (Cu). Higher values were obtained in the case of Cr (11.97%) in the variant of using humus 3% as an extraction solution at a stirring time of 6 h. In the investigated experimental conditions, the best removal efficiencies were obtained in the case of cadmium (26.71%) when using a 3% malic acid solution. In conclusion, it is considered that, from case to case, the type of extraction solution as well as the nature of the metal influence the mechanism of the depollution process, i.e., the capacity of the fine soil granules to free themselves from the pollutant metal that has adhered to them, and further research is considered necessary in the future.
Collapse
Affiliation(s)
- Ioana Monica Sur
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
| | - Andreea Hegyi
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Florești, 400524 Cluj-Napoca, Romania
| | - Valer Micle
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
| | - Timea Gabor
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania; (I.M.S.); (A.H.); (V.M.)
| | | |
Collapse
|
12
|
You M, Wang L, Zhou G, Wang Y, Wang K, Zou R, Cao W, Fan H. Effects of microbial agents on cadmium uptake in Solanum nigrum L. and rhizosphere microbial communities in cadmium-contaminated soil. Front Microbiol 2023; 13:1106254. [PMID: 36687578 PMCID: PMC9849675 DOI: 10.3389/fmicb.2022.1106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Solanum nigrum L. (S. nigrum) and microbial agents are often used for the remediation of cadmium (Cd)-contaminated soil; however, no studies to date have examined the efficacy of using various microbial agents for enhancing the remediation efficiency of Cd-contaminated soil by S. nigrum. Here, we conducted greenhouse pot experiments to evaluate the efficacy of applying Bacillus megaterium (BM) along with citric acid (BM + CA), Glomus mosseae (BM + GM), and Piriformospora indica (BM + PI) on the ability of S. nigrum to remediate Cd-contaminated soil. The results showed that BM + GM significantly increased the Cd accumulation of each pot of S. nigrum by 104% compared with the control. Application of microbial agents changed the soil microbial communities. Redundancy analysis showed that the activities of Catalase (CAT) and urease (UE), soil organic matter, available N and total Cd were the main influencing factors. By constructing the microbial co-occurrence networks, the soil microbe was divided into four main Modules. BM + GM and BM + PI significantly increased the relative abundance of Module#1 and Module#3, respectively, when compared with the control. Additionally, Module#1 showed a significant positive correlation with translocation factor (TF), which could be regarded as the key microbial taxa. Further research found that Ascomycota, Glomeromycota, Proteobacteria, and Actinobacteria within Module#1 were also significantly correlated with TF, and these key species enriched in BM + GM. Overall, our findings indicate that the BM + GM treatment was the most effective for the remediation of Cd pollution. This treatment method may further affect the rhizosphere microbial community by affecting soil indicators, which might drive the formation of Module#1, thus greatly enhancing the Cd remediation capacity of S. nigrum.
Collapse
Affiliation(s)
- Meng You
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yikun Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Weidong Cao, ✉
| | - Hongli Fan
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Hongli Fan, ✉
| |
Collapse
|
13
|
Chen W, Zhang Z, Sun C. Differences in Carbon Sequestration Ability of Diverse Tartary Buckwheat Genotypes in Barren Soil Caused by Microbial Action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:959. [PMID: 36673719 PMCID: PMC9858926 DOI: 10.3390/ijerph20020959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Planting plants to increase soil carbon input has been widely used to achieve carbon neutrality goals. Tartary buckwheat not only has good barren tolerance but is also rich in nutrients and very suitable for planting in barren areas. However, the effects of different genotypes of Tartary buckwheat roots and rhizosphere microorganisms on soil carbon input are still unclear. In this study, ozone sterilization was used to distinguish the sources of soil organic acids and C-transforming enzymes, and the contribution of root and rhizosphere microorganisms to soil carbon storage during the growth period of two genotypes of tartary buckwheat was studied separately to screen suitable varieties. Through the analysis of the experimental results, the conclusions are as follows: (1) The roots of Diqing tartary buckwheat have stronger carbon sequestration ability in a barren environment than Heifeng, and the microorganisms in Diqing tartary buckwheat soil will also increase soil carbon input. Therefore, Diqing tartary buckwheat is more suitable for carbon sequestration than Heifeng tartary buckwheat in barren soil areas. (2) In the absence of microorganisms, the rhizosphere soil of tartary buckwheat can regulate the storage of soil organic carbon by secreting extracellular enzymes and organic acids. (3) The structural equation model showed that to promote carbon sequestration, Heifeng tartary buckwheat needed to inhibit microbial action when planted in the barren area of Loess Plateau, while Diqing tartary buckwheat needed to use microbial-promoting agents. Adaptive strategies should focus more on cultivar selection to retain carbon in soil and to assure the tolerance of fineness in the future.
Collapse
Affiliation(s)
- Wei Chen
- School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China
| | | | | |
Collapse
|
14
|
Liu W, Gao J, Wan X, Li Q, Fu Q, Zhu J, Hu H. Effect of phosphorus fertilizer on phytoextraction using Ricinus communis L. in Cu and Cd co-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:822-831. [PMID: 35996867 DOI: 10.1080/15226514.2022.2112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mining activities have led to Cu and Cd contaminated of surrounding agricultural soil. To decrease the Cu and Cd accumulation in crops, the Ricinus communis L. (castor) has been used for phytoremediation. A pot experiment was served to investigate the effect of phosphate fertilizer (Ca(H2PO4)2) on the growth and Cu/Cd uptake of castor in contaminated soil. The results showed that the application of P fertilizer improved the leaf cell morphology, decreased the malonaldehyde (MDA) content of castor leaves, and increased the plant biomass (28.2-34.2%). Besides, phosphate fertilizer still facilitated accumulation Cu and Cd by castor. The addition of phosphate fertilizer increased the contents of Cu in the root of castor, improved the bioconcentration factor (BCF) of Cu, and observably enhanced the accumulation of Cu (up to 201 μg/plant) in castor. Applying phosphorus increased the percentage of residual Cd, diminished the percentage of acid extractable Cd in soil, and the accumulation of Cd in castor was not significantly increased. These results suggest that phosphorus alleviated the stress of heavy metals on castor leaves and enhanced the accumulation of Cu and Cd in castor by promoting the growth of castor.
Collapse
Affiliation(s)
- Wenying Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jieyu Gao
- Hubei Geological Survey Institute, Wuhan, China
| | - Xiang Wan
- Hubei Geological Survey Institute, Wuhan, China
| | - Qian Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Chen HH, Chen XF, Zheng ZC, Huang WL, Guo J, Yang LT, Chen LS. Characterization of copper-induced-release of exudates by Citrus sinensis roots and their possible roles in copper-tolerance. CHEMOSPHERE 2022; 308:136348. [PMID: 36087738 DOI: 10.1016/j.chemosphere.2022.136348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Copper (Cu) excess is often observed in old Citrus orchards. Little information is available on the characterization of Cu-induced-release of root exudates and their possible roles in plant Cu-tolerance. Using sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] seedlings as materials, we investigated the impacts of 0, 0.5, 25, 150, 350, 550, 1000, 2000 or 5000 μM CuCl2 (pH 4.8) on Cu uptake, root exudates [malate, citrate, total phenolics (TP), total soluble sugars (TSS) and total free amino acids (TFAA)], electrolyte leakage and malondialdehyde, and solution pH under hydroponic conditions; the time-course of root exudates and solution pH in response to Cu; and the impacts of protein synthesis and anion-channel inhibitors, and temperature on Cu-induced-secretion of root exudates and solution pH. About 70% of Cu was accumulated in 0 and 0.5 μM Cu-exposed roots, while over 97% of Cu was accumulated in ≥25 μM Cu-exposed roots. Without Cu, the seedlings could alkalize the solution pH from 4.8 to above 6.0. Cu-stimulated-secretion of root exudates elevated with the increment of Cu concentration from 0 to 1000 μM, then decreased or remained unchanged with the further increment of Cu concentration, while root electrolyte leakage and malondialdehyde (root-induced alkalization) increased (lessened) with the increment of Cu concentration from 0 to 5000 μM. Further analysis indicated that Cu-stimulated-secretion of root exudates was an energy-dependent process and could repressed by inhibitors, and that there was no discernible delay between the onset of exudate release and the addition of Cu. To conclude, both root-induced alkalization and Cu-stimulated-release of root exudates played a key role in sweet orange Cu-tolerance via increasing root Cu accumulation and reducing Cu uptake and phytotoxicity.
Collapse
Affiliation(s)
- Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhi-Chao Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Yang Q, Xie J, Liu H, Fang Z. The addition of exogenous low-molecular-weight organic acids improved phytoremediation by Bidens pilosa L. in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76766-76781. [PMID: 35670943 DOI: 10.1007/s11356-022-20686-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Enhancing the uptake and enrichment of heavy metals in plants is one of the important means to strengthen phytoremediation. In the present study, citric acid (CA), tartaric acid (TA), and malic acid (MA) were applied to enhance phytoremediation by Bidens pilosa L. in Cd-contaminated soil. The results showed that by the addition of appropriate concentrations of CA, TA, and MA, the values of the bioconcentration factor increased by 77.98%, 78.33%, and 64.49%, respectively, the translocation factor values increased by 16.45%, 12.61%, and 5.73%, respectively, and the values of the phytoextraction rates increased by 169.21%, 71.28%, and 63.11%, respectively. The minimum fluorescence values of leaves decreased by 31.62%, 0.28%, and 17.95%, while the potential efficiency of the PSII values of leaves increased 117.87%, 2.25%, and 13.18%, respectively, when CA, TA, and MA with suitable concentration were added. Redundancy analysis showed that CA and MA in plants were significantly positively correlated with plant growth, photosynthesis, and other indicators, whereas TA showed a negative correlation with most indicators. Moreover, CA addition could significantly increase the abundances of Azotobacter, Pseudomonas, and other growth-promoting bacteria, and the abundance values of Actinophytocola and Ensifer were improved in TA treatments. Therefore, our results demonstrated that low-molecular-weight organic acids could enhance phytoremediation, and exogenous CA could significantly improve the phytoremediation of Cd-contaminated soil by Bidens pilosa L.
Collapse
Affiliation(s)
- Qing Yang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Junting Xie
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
17
|
Yang X, Zhang Z, Yuan Y, Wang K, Chen Y, Wang H. Control efficiency of hexaconazole-lentinan against wheat sharp eyespot and wheat crown rot and the associated effects on rhizosphere soil fungal community. Front Microbiol 2022; 13:1014969. [PMID: 36212818 PMCID: PMC9537369 DOI: 10.3389/fmicb.2022.1014969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
The use of polysaccharides to induce the systemic immune response of plants for disease resistance has become an effective plant protection measure. Sharp eyespot wheat and crown rot wheat are serious diseases of wheat. In this study, the control effects of hexaconazole and lentinan (LNT) seed dressing of the two wheat diseases were evaluated by field experiments, and the effects of the seed dressing on plant growth, soil enzyme activity, and community diversity in the wheat rhizosphere were discussed. The results showed that the combined seed dressing of hexaconazole at 0.5 a.i. g·100 kg−1 and LNT at 4 a.i. g·100 kg−1 could significantly improve the control effect of the two wheat diseases. The combined treatment of hexaconazole and LNT had little effect on wheat soil enzyme activities. Different seed dressing treatments changed the fungal community structure in the wheat rhizosphere soil, and the combination of LNT and hexaconazole reduced the relative abundance of Rhizoctonia, Cladosporium, Fusarium, Bipolaris, and Gibberella in wheat planting soils. These findings suggested that the combined seed dressing of hexaconazole and LNT could effectively control soilborne diseases of wheat, concurrently could change in rhizosphere fungal community, and reduce in potential soilborne pathogens.
Collapse
Affiliation(s)
- Xiu Yang
- Department of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhongxiao Zhang
- Department of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yazhen Yuan
- Department of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yuan Chen
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
- *Correspondence: Hongyan Wang, ; Yuan Chen,
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
- *Correspondence: Hongyan Wang, ; Yuan Chen,
| |
Collapse
|
18
|
Chelating Agents in Assisting Phytoremediation of Uranium-Contaminated Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14106379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Massive stockpiles of uranium (U) mine tailings have resulted in soil contamination with U. Plants for soil remediation have low extraction efficiency of U. Chelating agents can mobilize U in soils and, hence, enhance phytoextraction of U from the soil. However, the rapid mobilization rate of soil U by chelating agents in a short period than plant uptake rate could increase the risk of groundwater contamination with soluble U leaching down the soil profile. This review summarizes recent progresses in synthesis and application of chelating agents for assisting phytoremediation of U-contaminated soils. In detail, the interactions between chelating agents and U ions are initially elucidated. Subsequently, the mechanisms of phytoextraction and effectiveness of different chelating agents for phytoremediation of U-contaminated soils are given. Moreover, the potential risks associated with chelating agents are discussed. Finally, the synthesis and application of slow-release chelating agents for slowing down metal mobilization in soils are presented. The application of slow-release chelating agents for enhancing phytoextraction of soil U is still scarce. Hence, we propose the preparation of slow-release biodegradable chelating agents, which can control the release speed of chelating agent into the soil in order to match the mobilization rate of soil U with plant uptake rate, while diminishing the risk of residual chelating agent leaching to groundwater.
Collapse
|
19
|
Gao M, Tang F, Wang K, Zeng F, Wang Y, Tian G. Heterogeneity of humic/fulvic acids derived from composts explains the differences in accelerating soil Cd-hyperaccumulation by Sedum alfredii. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113837. [PMID: 34592668 DOI: 10.1016/j.jenvman.2021.113837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The hyperaccumulating mechanism concerning heavy metal activation or passivation and plant response triggered by fulvic acid (FA) and humic acid (HA) recruitments are investigated herein. We carefully examine the Cd activation effect by various FA and HA, tracing from pig, goat, and duck manure composts to straw compost and commercial materials (i.e., PC, GC, DC, SC, and CM), as well as their roles in plant growth promotion and Cd uptake. Our results indicate that due to the decrease of soil pH and their multiple functional groups, the contents of available Cd (AE-Cd) increased by 4.3-4.8% and 3.6-6.3% when all FA and HA sources were applied for 30 days. A 13.1-19.9% increase in AE-Cd was observed when CFA, DFA, and PFA were applied for five days, and a 9.5% increment was found when PHA was applied for 10 days. In the pot experiment, the Cd accumulation in plants increased by 2.78 and 2.17 folds with PFA and PHA applications, respectively, compared to the blank control group. This result can be attributed to the stimulative effects of the simultaneous Sedum alfredii growth and Cd phytoavailability. Notably, the Cd accumulation increased by 2.26 times with the SFA amendment due to the predominant stimulation effect to the phytoavailable Cd rather than plant growth. However, slight inhibitory effects were observed upon plant growth or Cd uptake, which led to the reduction of the Cd accumulation with DHA, SHA, and CHA employments. Consistently, the corresponding soil Cd removal efficiencies were 43.5% and 34.6% with PFA and PHA, respectively, which hold abundant O- and N-containing groups. Our research aims to gain insights into the ternary interaction in the presence of heavy metal, humic substances, and S. alfredii to simultaneously accelerate Cd activation and hyperaccumulation.
Collapse
Affiliation(s)
- Mao Gao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fan Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaidi Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fanjian Zeng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangming Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China.
| |
Collapse
|
20
|
Han R, Dai H, Skuza L, Wei S. Comparative study on different organic acids for promoting Solanum nigrum L. hyperaccumulation of Cd and Pb from the contaminated soil. CHEMOSPHERE 2021; 278:130446. [PMID: 33838411 DOI: 10.1016/j.chemosphere.2021.130446] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Organic acids-assisted phytoremediation is a promising strategy to remove metal pollutants from the soil. However, few reports have focused on the mechanisms of organic acids promoting the uptake of heavy metals by hyperaccumulators. In this study, 5 types of organic acids, namely polybasic carboxylic acids, acidic amino acids, acidic plant growth regulators, phosphoric and gluconic acids, were comprehensively investigated the effects on the solubility of Cd and Pb in the soil along with their uptake by Cd hyperaccumulator Solanum nigrum L. The results indicated that the addition of Hydroxyethylidene-1,1-diphosphonic acid (HEDP) and d-Gluconic acid (D-GA) effectively extracted the most of acid-extractable and some of reducible and oxidizable fractions of Cd and Pb in the soil, with the extraction rates of 64.8% and 34.4% for total Cd and 53.6% and 30.0% for total Pb, respectively. HEDP and D-GA significantly increased the accumulations of Cd (57.1% and 35.0%) and Pb (43.4% and 31.9%) by S. nigrum without the inhibition of its biomass, making the great removal efficiencies of Cd (1.35% and 1.16%) and Pb (0.039% and 0.036%) from the soil. The enhanced phytoremediation efficiency of S. nigrum was due to the increase of the extractable Cd and Pb in the rhizosphere but little changes of soil pH and enzyme activities (catalase and urease). Among all of organic acids, HEDP may be an alternative to EDTA because of its characteristics of environmental friendliness and high efficiency.
Collapse
Affiliation(s)
- Ran Han
- Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Lidia Skuza
- Department of Molecular Biology and Cytology, Institute for Research on Biodiversity, University of Szczecin, Szczecin, 71-415, Poland
| | - Shuhe Wei
- Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
21
|
Low Molecular Weight Organic Acids Increase Cd Accumulation in Sunflowers through Increasing Cd Bioavailability and Reducing Cd Toxicity to Plants. MINERALS 2021. [DOI: 10.3390/min11030243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of low molecular weight organic acids (LMWOAs) for the phytoremediation of heavy metals has become a promising technique. We chose five kinds of organic acids (oxalic acid (OA), acetic acid (AA), tartaric acid (TA), malic acid (MA), and citric acid (CA)) with six application rates (1, 2, 3, 4, 5, and 6 mmol/kg) and planted sunflowers (Helianthus annuus L.) in Cd-polluted soil to study the efficiency of the phytoremediation of Cd and the degree of Cd toxicity to plants. Treatment with no acid application served as the control (CK). We analyzed the plant height dry matter and the Cd and nonprotein sulfhydryl (NPT) contents in the soil and plant tissues. OA, AA, TA, MA, and CA increased plant heights by 17.6–47.40%, 21.25–39.17%, 12.5–35.52, 5.10–30.50%, and 16.15–49.17%, respectively; shoot biomass of the sunflowers was increased except with MA. NPT decreased under LMWOA application, which, in the roots, increased with the increase in root Cd under LMWOA treatment; however, there was no obvious relationship in the stems and leaves. The composition of Cd in the soil changed significantly under the LMWOA treatments compared to the CK, and the changes in carbonate Cd and Fe-Mn oxide Cd were the most prominent. The plant Cd accumulation of OA, AA, TA, MA, and CA increased by 43.31%, 55.25%, 48.69%, 0.52%, and 32.94%, respectively, and the increase in root Cd content and shoot dry matter quality promoted the increase in Cd accumulation. The LMWOAs were more likely to affect the phytoremediation of Cd by changing total P (TP) rather than total N (TN).
Collapse
|