1
|
Nawaz M, Shahzadi E, Yaseen A, Khalid MR, Saleem MH, Alalawy AI, Omran AME, Khalil FMA, Alsuwat MA, Ercisli S, Malik T, Ali B. Selenium improved arsenic toxicity tolerance in two bell pepper (Capsicum annuum L.) varieties by modulating growth, ion uptake, photosynthesis, and antioxidant profile. BMC PLANT BIOLOGY 2024; 24:799. [PMID: 39179967 PMCID: PMC11344407 DOI: 10.1186/s12870-024-05509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Bell pepper (Capsicum annuum L.); an important spice crop of the region is a rich source of vitamins and antioxidants having many health benefits. Many biotic and abiotic factors contribute towards growth and yield losses of this crop. Arsenic (As) toxicity is a global issue, but it is particularly critical in developing countries. The current study was designed to evaluate the efficacy of selenium (Se) in mitigating the toxic effects of As in two varieties (HSP-181 A and PS09979325) of Capsicum annuum L. Different concentrations of As (0, 50, and 100 µM) and Se (0, 5, and 10 µM) were tested using 14 days old seedlings of C. annuum L. The As stress caused a significant (P ≤ 0.001) reduction in growth, uptake of nutrients, and eco-physiological attributes in both varieties however, the response was specific. While the overproduction of osmo-protectants and antioxidants intensified the symptoms of oxidative stress. The maximum reduction in shoot length (45%), fresh weight (29%), and dry weight (36%) was observed in under 100 µM As stress. The organic acids exudation from the roots of both cultivars were significantly increased with the increase in As toxicity. The Se treatment significantly (p ≤ 0.001) improved growth, nutrient uptake, gas exchange attributes, antioxidant production, while decreased oxidative stress indicators, and As uptake in the roots and shoots of all the subjects under investigation. It is concluded from the results of this study that Se application increased photosynthetic efficiency and antioxidant activity while decreasing As levels, organic acid exudation, and oxidative stress indicators in plants. Overall, the var. PS09979325 performed better and may be a good candidate for future pepper breeding program.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Eram Shahzadi
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aqsa Yaseen
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rehan Khalid
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Awatif M E Omran
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Ethiopia.
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144401, India.
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- School of Science, Western Sydney University, Penrith 2751, Australia.
| |
Collapse
|
2
|
Pathak HK, Chauhan PK, Seth CS, Dubey G, Upadhyay SK. Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172116. [PMID: 38575037 DOI: 10.1016/j.scitotenv.2024.172116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Climate change, food insecurity, and agricultural pollution are all serious challenges in the twenty-first century, impacting plant growth, soil quality, and food security. Innovative techniques are required to mitigate these negative outcomes. Toxic heavy metals (THMs), organic pollutants (OPs), and emerging contaminants (ECs), as well as other biotic and abiotic stressors, can all affect nutrient availability, plant metabolic pathways, agricultural productivity, and soil-fertility. Comprehending the interactions between root exudates, microorganisms, and modified biochar can aid in the fight against environmental problems such as the accumulation of pollutants and the stressful effects of climate change. Microbes can inhibit THMs uptake, degrade organic pollutants, releases biomolecules that regulate crop development under drought, salinity, pathogenic attack and other stresses. However, these microbial abilities are primarily demonstrated in research facilities rather than in contaminated or stressed habitats. Despite not being a perfect solution, biochar can remove THMs, OPs, and ECs from contaminated areas and reduce the impact of climate change on plants. We hypothesized that combining microorganisms with biochar to address the problems of contaminated soil and climate change stress would be effective in the field. Despite the fact that root exudates have the potential to attract selected microorganisms and biochar, there has been little attention paid to these areas, considering that this work addresses a critical knowledge gap of rhizospheric engineering mediated root exudates to foster microbial and biochar adaptation. Reducing the detrimental impacts of THMs, OPs, ECs, as well as abiotic and biotic stress, requires identifying the best root-associated microbes and biochar adaptation mechanisms.
Collapse
Affiliation(s)
- Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | | | - Gopal Dubey
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India.
| |
Collapse
|
3
|
Zhang J, Li J, Lin Q, Huang Y, Chen D, Ma H, Zhao Q, Luo W, Nawaz M, Jeyakumar P, Trakal L, Wang H. Impact of coconut-fiber biochar on lead translocation, accumulation, and detoxification mechanisms in a soil-rice system under elevated lead stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133903. [PMID: 38430601 DOI: 10.1016/j.jhazmat.2024.133903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Biochar, an environmentally friendly material, was found to passivate lead (Pb) in contaminated soil effectively. This study utilized spectroscopic investigations and partial least squares path modeling (PLS-PM) analysis to examine the impact of coconut-fiber biochar (CFB) on the translocation, accumulation, and detoxification mechanisms of Pb in soil-rice systems. The results demonstrated a significant decrease (p < 0.05) in bioavailable Pb concentration in paddy soils with CFB amendment, as well as reduced Pb concentrations in rice roots, shoots, and brown rice. Synchrotron-based micro X-ray fluorescence analyses revealed that CFB application inhibited the migration of Pb to the rhizospheric soil region, leading to reduced Pb uptake by rice roots. Additionally, the CFB treatment decreased Pb concentrations in the cellular protoplasm of both roots and shoots, and enhanced the activity of antioxidant enzymes in rice plants, improving their Pb stress tolerance. PLS-PM analyses quantified the effects of CFB on the accumulation and detoxification pathways of Pb in the soil-rice system. Understanding how biochar influences the immobilization and detoxification of Pb in soil-rice systems could provide valuable insights for strategically using biochar to address hazardous elements in complex agricultural settings.
Collapse
Affiliation(s)
- Jingmin Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Jianhong Li
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Qinghuo Lin
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Yanyan Huang
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Dongliang Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Haiyang Ma
- Key Laboratory of Tropical Crops Nutrition of Hainan Province/ South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Zhanjiang, Guangdong 524091, China
| | - Qingjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Luo
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China.
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture & Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China.
| |
Collapse
|
4
|
Liu J, Fan X, Jiang Y, Ni J, Mo A, Cai M, Li T, Wang Y, He P, Hu S, Peng T, Peng C, Yang F. Strontium alleviated the growth inhibition and toxicity caused by cadmium in rice seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166948. [PMID: 37696404 DOI: 10.1016/j.scitotenv.2023.166948] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Cadmium (Cd) contamination of rice is an urgent ecological and agricultural problem. Strontium (Sr) has been shown to promote plant growth. However, the effect of Sr on rice seedlings under Cd stress is currently unclear. In this work hydroponic experiments were used to assess the impact of Sr on rice seedling growth under Cd stress. The findings demonstrated that foliar application of 0.5 mg L-1 Sr had no discernible impact on the development of rice seedlings. However, Sr significantly alleviated growth inhibition and toxicity in rice seedlings when threatened by Cd. Compared with the Cd treatment (Cd, 2.5 mg L-1), the root length, shoot height, and whole plant length of rice seedlings in the Cd + Sr treatment (Cd, 2.5 mg L-1; Sr, 0.5 mg L-1) increased by 4.96 %, 12.47 % and 9.60 %, respectively. The content of Cd in rice decreased by 23.34 % (roots) and 5.79 % (shoots). Sr lessened the degree of membrane lipid peroxidation damage (lower MDA concentration) among the seedlings of rice under Cd stress by controlling the activities of antioxidant enzymes and GSH content. By changing the expression of antioxidant enzyme-encoding genes and downregulating the heavy metal transporter gene (OsNramp5), Sr reduced accumulation and the detrimental effects of Cd on rice seedlings. Our study provides a new solution to the problem of Cd contamination in rice, which may promote the safe production of rice and benefit human health.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China.
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Tong Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Wang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Peishuang He
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Shiyu Hu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Tangjian Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Fei Yang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China; The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Sun P, Chen Y, Li X, Liu L, Guo J, Zheng X, Liu X. Detoxification mechanisms of biochar on plants in chromium contaminated soil: Chromium chemical forms and subcellular distribution. CHEMOSPHERE 2023; 327:138505. [PMID: 36965535 DOI: 10.1016/j.chemosphere.2023.138505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The complete pathway of chromium (Cr) transfer from soil to plant tissues and subcellular components under biochar amendment remains to be quantified, as well as the involved diverse detoxification processes in roots and stems respectively. Pot experiments and quantitative analysis were conducted to investigate Cr fixation in soil amended with Enteromorpha prolifera-derived biochar and subsequent phytoprocesses (Cr uptake, transfer, and phytotoxicity) in cultivated Secale cereale L. (rye). The results indicated that adding 5-30 g kg-1 of biochar increased the residual form of Cr (B4) in soil by 8-21% and decreased the bioavailable form of Cr (B1) by 9-29%. For Cr transferred to rye, Cr in the rye was mainly present in the low-toxicity bound state, with the acetic acid-extracted Cr (F4) (45-54%) in roots and the NaCl-extracted Cr (F3) (37-47%) in stems. The subcellular distribution of Cr in both roots and stems was predominantly in the cell wall and residues (T1), followed by the cytoplasm (T4). Partial least squares path model (PLS-PM) was used for quantifying the effect of biochar on the form changes and subcellular detoxification of Cr from soil to roots and stems to sub-cells. In soils, biochar reduced the bioavailability of Cr and decreased the transfer of Cr to rye. In plant roots, Cr was distributed mainly as low-toxicity phosphate complexes in cell walls and vacuoles in sub-cells (with the largest path coefficients of 0.90 and -0.91, respectively). In the stems, Cr was distributed mainly as proteins integrated into the cell walls and vacuoles. This was due to the difference in subcellular compartmentalization of detoxification in the roots and stems. These PLS-PM results provide new insights into the entire process of pollutant detoxification in complex environments.
Collapse
Affiliation(s)
- Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiaochen Li
- China Institute for Radiation Protection, Taiyuan, 030006, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
6
|
Mehmood S, Ahmed W, Mahmood M, Rizwan MS, Asghar RMA, Alatalo JM, Imtiaz M, Akmal M, Abdelrahman H, Ma J, Ali EF, Li W, Lee SS, Shaheen SM. Aquaculture sediments amended with biochar improved soil health and plant growth in a degraded soil. MARINE POLLUTION BULLETIN 2023; 191:114899. [PMID: 37027965 DOI: 10.1016/j.marpolbul.2023.114899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Sustainable and safe management of aquaculture sediments is of great concern. Biochar (BC) and fishpond sediments (FPS) are rich in organic carbon and nutrients and thus can be used as soil amendments; however, it is not fully explored how the biochar amended fishpond sediments can affect soil properties/fertility and modulate plant physiological and biochemical changes, particularly under contamination stress. Therefore, a comprehensive investigation was carried out to explore the effects of FPS and BC-treated FPS (BFPS) on soil and on spinach (Spinacia oleracea L.) grown in chromium (Cr) contaminated soils. Addition of FPS and BFPS to soil caused an increase in nutrients content and reduced Cr levels in soil, which consequently resulted in a significant increase in plant biomass, chlorophyll pigments, and photosynthesis, over the control treatment. The most beneficial effect was observed with the BFPS applied at 35 %, which further increased the antioxidant enzymes (by 2.75-fold, at minimum), soluble sugars by 24.9 %, and upregulated the gene expression activities. However, the same treatment significantly decreased proline content by 74.9 %, Malondialdehyde by 65.6 %, H2O2 by 65.1 %, and Cr concentration in spinach root and shoot tissues. Moreover, the average daily intake analysis showed that BFPS (at 35 %) could effectively reduce human health risks associated with Cr consumption of leafy vegetables. In conclusion, these findings are necessary to provide guidelines for the reutilization of aquaculture sediments as an organic fertilizer and a soil amendment for polluted soils. However, more future field studies are necessary to provide guidelines and codes on aquaculture sediments reutilization as organic fertilizer and soil amendment for polluted soils, aiming for a more sustainable food system in China and globally, with extended benefits to the ecosystem and human.
Collapse
Affiliation(s)
- Sajid Mehmood
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Waqas Ahmed
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Mohsin Mahmood
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Muhammad Shahid Rizwan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan
| | | | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Akmal
- Institute of Soil and Water Conversation, PMAS-Arid Agriculture University, Punjab, Pakistan
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jifu Ma
- School of Life Science, Yan'an University, Yan'an 716000, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Weidong Li
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste-Management, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
7
|
Liu J, Wen Y, Mo Y, Liu W, Yan X, Zhou H, Yan B. Chemical speciation determines combined cytotoxicity: Examples of biochar and arsenic/chromium. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130855. [PMID: 36708695 DOI: 10.1016/j.jhazmat.2023.130855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
As both electron donors and acceptors, biochars (BCs) may interact with multivalent metal ions in the environment, causing changes in ionic valence states and resulting in unknown combined toxicity. Therefore, we systematically investigated the interaction between BCs and Cr (Cr(III) & Cr(VI)) or As (As(III) & As(V)) and their combined cytotoxicity in human colorectal mucosal (FHC) cells. Our results suggest that the redox-induced valence state change is a critical factor in the combined cytotoxicity of BCs with Cr/As. Specifically, when Cr(VI) was adsorbed on BCs, 86.4 % of Cr(VI) was reduced to Cr(III). In contrast, As(III) was partially oxidized to As(V) with a ratio of 37.2 %, thus reaching a reaction equilibrium. Meanwhile, only As(V) was released in the cell, which could cause more As(III) to be oxidized. As both Cr(III) and As(V) are less toxic than their corresponding counterparts Cr(VI) and As(III), different redox interactions between BCs and Cr/As and release profiles between BCs and Cr/As together lead to reduced combined cytotoxicity of BP-BC-Cr(VI) and BP-BC-As(III). It suggests that the valence state changes of metal ions due to redox effects is one of the parameters to be focused on when studying the combined toxicity of complexes of BCs with different heavy metal ions.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuting Wen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yucong Mo
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Sun C, Gao L, Xu L, Zheng Q, Sun S, Liu X, Zhang Z, Tian Z, Dai T, Sun J. Melatonin alleviates chromium toxicity by altering chromium subcellular distribution and enhancing antioxidant metabolism in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50743-50758. [PMID: 36797388 DOI: 10.1007/s11356-023-25903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
The endogenous stimulating molecule melatonin (N-acetyl-5-methoxytryptamine, MT) has an important function in mitigating the impact of multiple abiotic stressors. However, the ameliorating effect of MT on chromium (Cr) stress and its mechanisms remains unclear. Therefore, the present study aimed to clarify the mitigating effect of exogenous MT (0 μM and 100 μM) on wheat seedlings under Cr (0 μM and 50 μM) stress stemming from the growth and physiological characteristics, phytochelatin (PC) biosynthesis, Cr subcellular distribution, and antioxidant system of the plants in these treatments. The results showed that endogenous MT application significantly promoted plant growth and improved root morphology of wheat seedlings under Cr stress due to decreased Cr and reactive oxygen species (ROS) accumulation in both roots and leaves. Accumulation and transport of Cr from roots to leaves were reduced by MT, because enhanced vacuolar sequestration via upregulated PC accumulation, took place, derived from the fact that MT upregulated the expression of key genes for PC synthesis (TaPCS and Taγ-ECS). Furthermore, MT pre-treatment alleviated Cr-induced oxidative damage by diminishing lipid peroxidation and cell apoptosis, profiting from the enhanced scavenging ability of ROS as a result of the MT-induced increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the related encoding gene expression levels of TaSOD2, TaCAT, TaAPX, and TaGR. In conclusion, endogenous MT application improved the growth traits, antioxidant system, and decreased Cr accumulation especially at the leaf level in wheat seedlings under Cr stress mainly through enhancing antioxidant enzyme activities and altering Cr subcellular distribution via strengthening PC biosynthesis. The mechanisms of MT-induced plant tolerance to Cr stress could help develop new strategies for secure crop production in Cr-polluted soils.
Collapse
Affiliation(s)
- Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Lijun Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Libin Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shuzhen Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xiaoxue Liu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zigang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jianyun Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
9
|
Ahmad MA, Ali M, Saeed S, Nawaz F. Effect of selenium accumulation on foraging behavior of pollinators and seed yield in Trifolium alexandrinum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33438-33445. [PMID: 36478533 DOI: 10.1007/s11356-022-24483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Selenium (Se) is an essential nutrient for both plants and animals and is usually provided as a supplement to livestock. Se bioaccumulation promotes plant growth by enhancing the accumulation of organic solutes and the activation of antioxidant system. In animals, the Se supplements reduce the chances of mastitis and white muscle disease, and improve the immunity, health, and reproduction, particularly in lactating dairy cows. Therefore, the enrichment or biofortification of fodder crops with Se may improve the nutritional quality of forages and thereby reduce malnutrition in cattle. However, Se hyper-accumulation in plants or plant parts can cause direct toxic effects on insects especially bees. Berseem is a highly cross-pollinated fodder crop that attracts a large number of pollinators. However, little or no reports are available regarding the effects of Se biofortification on the foraging behavior of pollinators in berseem. Therefore, the current study was planned to evaluate the effect of exogenous application of Se on the foraging behavior of native pollinators visiting the berseem crop. Five different doses of Se were applied to evaluate its effect on abundance, foraging behavior (visit duration and visitation rate), and single-visit efficacy of native pollinators that may affect berseem seed yield. Our results showed maximum abundance of pollinators in plants supplemented with low Se level, i.e., 5 g ha-1 while the minimum abundance was observed at high Se doses (15 and 20 g ha-1). Also, the seed yield attributes, i.e., the number of seeds per head, seed weight per head, 1000 seed weight, were the highest in plants treated with a low dose of Se, whereas the seed yield of berseem decreased with an increase in Se concentrations. Hence, our study provides evidence that high doses of Se negatively affect the foraging behavior of pollinators (visitation rate and visit duration) in plants. We conclude that the application of moderate Se dose positively influences the pollination ecology of berseem, consequently improving seed yield. HIGHLIGHTS: Selenium (Se) is essential for animals and beneficial for plants and may become toxic at high level. Se is delivered to the environment due to agriculture. Se toxicity affected berseem growth and considerably reduced the seed yield. High dose of Se reduced the abundance of pollinators and negatively affected their foraging behavior.
Collapse
Affiliation(s)
- Muhammad Awais Ahmad
- Institute of Plant Protection, MNS University of Agriculture Multan, Multan, Pakistan.
| | - Mudssar Ali
- Institute of Plant Protection, MNS University of Agriculture Multan, Multan, Pakistan
| | - Shafqat Saeed
- Institute of Plant Protection, MNS University of Agriculture Multan, Multan, Pakistan
| | - Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture Multan, Multan, Pakistan
| |
Collapse
|
10
|
Wang X, Zhao Y, Yao G, Lin Z, Xu L, Jiang Y, Jin Z, Shan S, Ping L. Responses of aquatic vegetables to biochar amended soil and water environments: a critical review. RSC Adv 2023; 13:4407-4421. [PMID: 36760305 PMCID: PMC9891097 DOI: 10.1039/d2ra04847g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation.
Collapse
Affiliation(s)
- Xiangjun Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Yaming Zhao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Guangwei Yao
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Zhizhong Lin
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Laiyuan Xu
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Yunli Jiang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Zewen Jin
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| |
Collapse
|
11
|
Lai X, Yang X, Rao S, Zhu Z, Cong X, Ye J, Zhang W, Liao Y, Cheng S, Xu F. Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:913-919. [PMID: 35583793 DOI: 10.1111/plb.13435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) is a metalloid mineral nutrient for human and animal health. Plants are the main foodstuff source of the Se intake of humans. For plants, the addition of an appropriate amount of Se could promotes growth and development, and improves the tolerance to environmental stress, especially stress from some of heavy metals (HM) stress, such as cadmium (Cd) and mercury (Hg). This paper mainly reviews and summarizes the physiological mechanism of Se in enhancing HM stress tolerance in plants. The antagonistic effect of Se on HM is a comprehensive effect that includes many physiological mechanisms. Se can promote the removal of excessive reactive oxygen species and reduce the oxidative damage of plant cells under HM elements stress. Se participates in the regulation of the transportation and distribution of HM ions in plants, and alleviates the damage caused by of HM stress. Moreover, Se combine with HM elements to form Se-HM complexes and promote the production of phytochelatins (PCs), thereby reducing the accumulation of HM ions in plants. Overall, Se plays an important role in plant response to HM stress, but current studies mainly focus on physiological mechanism, and further in-depth study on the molecular mechanism is essential to confirm the participation of Se in plant response to environmental stress. This review helps to comprehensively understand the physiological mechanism of Se in plant tolerance against to HM stress of plants, and provides important theoretical support for the practical application of Se in environmental remediation and agricultural development.
Collapse
Affiliation(s)
- X Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - X Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Z Zhu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - X Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, China
| | - J Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - W Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Y Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - F Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Xiang J, Rao S, Chen Q, Zhang W, Cheng S, Cong X, Zhang Y, Yang X, Xu F. Research Progress on the Effects of Selenium on the Growth and Quality of Tea Plants. PLANTS 2022; 11:plants11192491. [PMID: 36235356 PMCID: PMC9573726 DOI: 10.3390/plants11192491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Selenium (Se) is an essential trace element for humans and animals, and it plays an important role in immune regulation and disease prevention. Tea is one of the top three beverages in the world, and it contains active ingredients such as polyphenols, theanine, flavonoids, and volatile substances, which have important health benefits. The tea tree has suitable Se aggregation ability, which can absorb inorganic Se and transform it into safe and effective organic Se through absorption by the human body, thereby improving human immunity and preventing the occurrence of many diseases. Recent studies have proven that 50~100.0 mg/L exogenous Se can promote photosynthesis and absorption of mineral elements in tea trees and increase their biomass. The content of total Se and organic selenides in tea leaves significantly increases and promotes the accumulation of polyphenols, theanine, flavonoids, and volatile secondary metabolites, thereby improving the nutritional quality of tea leaves. This paper summarizes previous research on the effects of exogenous Se treatment on the growth and quality of tea trees to provide a theoretical basis and technical support for the germplasm selection and exploitation of Se-rich tea.
Collapse
Affiliation(s)
- Juan Xiang
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
| | - Shen Rao
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Xiaoyan Yang
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China
- Correspondence: (X.Y.); (F.X.)
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
- Correspondence: (X.Y.); (F.X.)
| |
Collapse
|
13
|
Dai L, Chen Y, Liu L, Sun P, Liu J, Wang B, Yang S. Effect of biochar on the uptake, translocation and phytotoxicity of chromium in a soil-barley pot system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153905. [PMID: 35189220 DOI: 10.1016/j.scitotenv.2022.153905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Remediation of Cr-contaminated soils with biochar is an effective method, but its effect on plant detoxification has not been clarified, and the translocation pathways of different chemical forms of Cr in the soil-plant system have not been quantitatively evaluated. This study investigated the effects of magnetically modified Enteromorpha prolifera biochar (FBC) on Cr uptake, translocation and phytotoxicity in the soil and barley (Hordeum vulgare L.). When the FBC dosage increased to 30 g·kg-1, the content of bioavailable Cr in the soil decreased by 56.82%. Additionally, the contents of Cr in H. vulgare decreased by 53.22%, and growth recovered to the normal level. Partial least squares path modelling (PLS-PM) was applied to establish two influence paths to explain how FBC impacted the whole system of soil and plants upon Cr exposure. The phytotoxic effect path of Cr suggested that FBC decreased the contents of Cr in soil and H. vulgare and then recovered growth by alleviating oxidative stress (β = -0.45) and promoting chlorophyll synthesis (β = 0.53) in shoots. The translocation and conversion path of Cr further indicated that Cr in the shoots was converted into low-migration forms and mainly trapped in cell walls and vacuoles rather than in organelles, consequently decreasing the phytotoxicity of Cr (β = -0.73). These two soil-plant paths offer new insights into the application of biochar and plants in Cr-contaminated soils.
Collapse
Affiliation(s)
- Liqian Dai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Baoying Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiying Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
14
|
Gong H, Zhao L, Rui X, Hu J, Zhu N. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128668. [PMID: 35325861 DOI: 10.1016/j.jhazmat.2022.128668] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 05/28/2023]
Abstract
In recent years, the application of biochar in the remediation of heavy metals (HMs) contaminated soil has received tremendous attention globally. We reviewed the latest research on the immobilization of soil HMs by biochar almost in the last 5 years (until 2021). The methods, effects and mechanisms of biochar and modified biochar on the immobilization of typical HMs in soil have been systematically summarized. In general, the HMs contaminating the soil can be categorized into two groups, the oxy-anionic HMs (As and Cr) and the cationic HMs (Pb, Cd, etc.). Reduction and precipitation of oxy-anionic HMs by biochar/modified biochar are the dominant mechanism for reducing HMs toxicity. Pristine biochar can effectively immobilize cationic HMs. The commonly applied modification method is to add substances that can precipitate HMs to the biochar. In addition, we assessed the risks of biochar applications. For instance, biochar may cause the leaching of certain HMs; biochar aging; co-transportation of biochar nanoparticles with HMs. Future work should focus on the artificial/intelligent design of biochar to make it suitable for remediation of multiple HMs contaminated soil.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Zhang L, He F, Guan Y. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128382. [PMID: 35739652 DOI: 10.1016/j.jhazmat.2022.128382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination by hexavalent chromium (Cr(VI)) poses great risks to human health and ecosystem safety. We introduced a new cheap and efficient layered double hydroxide intercalated with diethyldithiocarbamate (DDTC-LDH) for in-situ remediation of Cr(VI)-contaminated soil. The content of Cr(VI) in contaminated soil (134.26 mg kg-1) was rapidly reduced to 1.39 mg kg-1 within 10 days by 0.5% of DDTC-LDH. This result attains to or even exceeds the effectiveness of most of reported soil amendments for Cr(VI) removal in soils. The production cost of DDTC-LDH ($4.02 kg-1) was relatively low than some common materials, such as nano zero-valent iron ($22.80-140.84 kg-1). The growth of water spinach became better with the increase of DDTC-LDH dose from 0% to 0.5%, suggesting the recovery of soil function. DDTC-LDH significantly altered the structure and function of soil microbial communities. The species that have Cr(VI)-resistant or Cr(VI)-reductive ability were enriched in DDTC-LDH remediated soils. Network analysis revealed a significant functional niche differentiation of soil microbial communities. In addition to the enhancement of Cr(VI) reduction, the stimulation of plant growth promoting traits, including siderophore biosynthesis, oxidation resistance to reactive oxygen species, and phosphorus availability by DDTC-LDH was another essential mechanism for the immediate remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Fangxin He
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
16
|
Shahrajabian MH, Sun W, Cheng Q. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00210-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The most important advantages of foliar fertilization are to improve plant growth and crop quality, appropriately manage the nutritional status of plants, enhance disease resistance and regulate nutrient deficiencies.
Main body
The aim of this manuscript is to outline and emphasize the importance of foliar application of nutrients in order to increase both quality and yield of medicinal and aromatic plants. The searches focused on publications from 1980 to July 2021 using PubMed, Google Scholar, Science Direct and Scopus databases. The current manuscript presented many examples of potential of foliar application for medicinal and aromatic plants production systems. Foliar application of Fe and Zn on Anise; Se on Atractylodes; Zn sulfate on Basil, Costmary, Mint and Fenugreek; Se and Fe on Stevia; S and P on castor bean; Zn and Fe on Chamomile; Cu, Mg and ZnSO4 on Damask rose; N and P on Fennel; Se on water spinach and tea; K+ and Ca2+ on Thyme; Zn and K on Spearmint; Zn on Saffron, Ni on Pot marigold; Fe on peppermint, N and P on Mustard had positive and significant impacts.
Conclusion
Observed impacts of foliar fertilization consisted of significant increase of yield, enhanced resistance to insects, pests and diseases, improved drought tolerance and escalated crop quality.
Collapse
|
17
|
Haider FU, Wang X, Farooq M, Hussain S, Cheema SA, Ain NU, Virk AL, Ejaz M, Janyshova U, Liqun C. Biochar application for the remediation of trace metals in contaminated soils: Implications for stress tolerance and crop production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113165. [PMID: 34998263 DOI: 10.1016/j.ecoenv.2022.113165] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/24/2021] [Accepted: 01/02/2022] [Indexed: 05/10/2023]
Abstract
In modern agriculture and globalization, the release of trace metals from manufacturing effluents hinders crop productivity by polluting the atmosphere and degrading food quality. Sustaining food safety in polluted soils is critical to ensure global food demands. This review describes the negative effects of trace metals stress on plant growth, physiology, and yield. Furthermore, also explains the potential of biochar in the remediation of trace metal's contaminations in plants by adoption of various mechanisms such as reduction, ion exchange, electrostatic forces of attraction, precipitation, and complexation. Biochar application enhances the overall productivity, accumulation of biomass, and photosynthetic activity of plants through the regulation of various biochemical and physiological mechanisms of plants cultivated under trace metals contaminated soil. Moreover, biochar scavenges the formation of reactive oxygen species, by activating antioxidant enzyme production i.e., ascorbate peroxidase, catalase, superoxide dismutase, peroxidase, etc. The application of biochar also improves the synthesis of stressed proteins and proline contents in plants thus maintaining the osmoprotectant and osmotic potential of the plant under contaminates stress. Integrated application of biochar with other amendments i.e., microorganisms and plant nutrients to improve trace metal remediation potential of biochar and improving crop production was also highlighted in this review. Moreover, future research needs regarding the application of biochar have also been addressed.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sardar Alam Cheema
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Noor Ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, China
| | - Ahmad Latif Virk
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Uulzhan Janyshova
- College of Pharmaceutical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
18
|
Li D, Li G, Zhang D. Field-scale studies on the change of soil microbial community structure and functions after stabilization at a chromium-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125727. [PMID: 34088197 DOI: 10.1016/j.jhazmat.2021.125727] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/20/2023]
Abstract
Various remediation strategies have been developed to eliminate soil chromium (Cr) contamination which challenges the ecosystem and human health, and chemical stabilization is the most popular one. Limited work focuses on the change of soil microbial community and functions after chemical stabilization. The present study examined the diversity and structure of bacterial, fungal and archaeal communities in 20 soils from a Cr-contaminated site in China after chemical stabilization and ageing. Cr contamination significantly reduced microbial diversity and shaped microbial community structure. After chemical stabilization, bacterial and fungal communities had higher richness and evenness, whereas archaea behaved oppositely. Microbial community structure after stabilization were more similar to uncontaminated soils. Among all environmental variables, pH and Al explained 25.2% and 9.4% of the total variance of bacterial diversity, whereas the major variable affecting fungal community was pH (29.3%). Cr, organic matters, extractable-Al and moisture explained 25.8%, 22.4%, 9.9% and 9.9% of the total variance in archaeal community, respectively. This work for the first time unraveled the change of the whole soil microbial community structures and functions at Cr-contaminated sites after chemical stabilization on field scale and proved chemical stabilization as an effective approach to detoxicate Cr(VI) and recover microbial communities in soils.
Collapse
Affiliation(s)
- Danni Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
19
|
Zhang QC, Wang CC, Cheng JH, Zhang CL, Yao JJ. Removal of Cr (VI) by Biochar Derived from Six Kinds of Garden Wastes: Isotherms and Kinetics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3243. [PMID: 34208407 PMCID: PMC8231199 DOI: 10.3390/ma14123243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Garden waste is one of the main components of urban solid waste which affects the urban environment. In this study, garden waste of Morus alba L. (SS), Ulmus pumila L. (BY), Salix matsudana Koidz (LS), Populus tomentosa (YS), Sophora japonica Linn (GH) and Platycladus orientalis (L.) Franco (CB) was pyrolyzed at 300 °C, 500 °C, 700 °C to obtain different types of biochar, coded as SSB300, SSB500, SSB700, BYB300, etc., which were tested for their Cr (VI) adsorption capacity. The results demonstrated that the removal efficiency of Cr by biochar pyrolyzed from multiple raw materials at different temperatures was variable, and the pH had a great influence on the adsorption capacity and removal efficiency. GHB700 had the best removal efficiency (89.44%) at a pH of 2 of the solution containing Cr (VI). The pseudo second-order kinetics model showed that Cr (VI) adsorption by biochar was chemisorption. The Langmuir model showed that the adsorption capacity of SSB300 was the largest (51.39 mg·g-1), BYB500 was 40.91 mg·g-1, GHB700, CBB700, LSB700, YSB700 were 36.85 mg·g-1, 36.54 mg·g-1, 34.53 mg·g-1 and 32.66 mg·g-1, respectively. This research, for the first time, used a variety of garden wastes to prepare biochar, and explored the corresponding raw material and pyrolysis temperature for the treatment of Cr (VI). It is hoped to provide a theoretical basis for the research and utilization of garden wastes and the production and application of biochar.
Collapse
Affiliation(s)
- Qiao-Chu Zhang
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; (Q.-C.Z.); (J.-H.C.)
| | - Cheng-Chen Wang
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650225, China;
| | - Jin-Hua Cheng
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; (Q.-C.Z.); (J.-H.C.)
| | - Cheng-Liang Zhang
- Environmental Protection Research Institute of Light Industry, Beijing 100089, China;
| | - Jing-Jing Yao
- Environmental Protection Research Institute of Light Industry, Beijing 100089, China;
| |
Collapse
|
20
|
Farhangi-Abriz S, Ghassemi-Golezani K. Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111904. [PMID: 33453639 DOI: 10.1016/j.ecoenv.2021.111904] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This original research was performed to assess the possible effects of solid biochar (25 g biochar kg-1 soil) and biochar-based nanocomposites (BNCs) of magnesium oxide (25 g BNC-MgO kg-1 soil), manganese oxide (25 g BNC-MnO biochar kg-1 soil) and combined use of these nanocomposites (12.5 g BNC-MgO + 12.5 g BNC-MnO kg-1 soil) on soil properties and salinity (non-saline, 6 and 12 dSm-1) tolerance of safflower plants (Carthamus tinctorius L.). Application of biochar, particularly BNCs increased the pH and cation exchange capacity of soil, and the contents of water, potassium, calcium, magnesium, manganese, chlorophyll (a & b), nutrients uptake, water use efficiency and plant growth. Sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP) of soil, sodium absorption rate of plants and osmolyte production (soluble carbohydrates and proteins, proline and glycine betaine) under 6 and 12 dSm-1 salinities were decreased by biochar and BNCs treatments. Sodium sorption capacity of BNCs was much higher than the solid biochar, which reflected the superiority of BNCs in decreasing sodium uptake by plants. The combined application of BNC-MgO + BNC-MnO proved to be the preferable treatment for decreasing salt toxicity in safflower. Biochar and BNCs improved root and shoot growth by lowering SAR, ESP, sodium absorption rate of plants and osmotic stress under saline conditions. These results conclude that BNCs can enrich the plant cells with nutrients, increase the nutrients absorption rate and maintain the plant tissue water content at an optimum level to improve plant growth under salt stress.
Collapse
Affiliation(s)
- Salar Farhangi-Abriz
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|