1
|
Dzhemileva LU, D'yakonov VA, Egorova KS, Ananikov VP. Mechanisms of cytotoxicity in six classes of ionic liquids: Evaluating cell cycle impact and genotoxic and apoptotic effects. CHEMOSPHERE 2024; 364:142964. [PMID: 39074667 DOI: 10.1016/j.chemosphere.2024.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Ionic liquids (ILs), earlier praised for their eco-friendliness, have emerged as key chemicals in advancing green chemistry, catalysis, solvent development, and more. However, the discovery of their notable toxicity has led to a controversial reputation of ILs and has shifted the research landscape towards understanding their biological impacts. The present study examines the mechanism of cytotoxicity of 32 ILs across six classes, highlighting their effects on the cell cycle of the Jurkat cell line. Focusing on five ILs with pronounced cytotoxicity, we uncover their genotoxic effects and their role in inducing apoptosis. Our findings suggest intricate interplay between the extrinsic and intrinsic apoptotic pathways at different time points after exposure to ILs. Moreover, the ILs studied displayed marked genotoxicity, likely stemming from the accumulation of double-strand DNA breaks in the Jurkat cells. This investigation offers a comprehensive view on interactions of ILs with eukaryotic cells, thereby providing new guidelines for developing safer pharmaceutical and industrial applications of these chemicals. The results not only broaden and enhance the previous perceptions but also open new avenues in research, emphasizing the dual potential of ILs in innovation and safety, and marking a significant step towards integrating chemical innovations with biological safety.
Collapse
Affiliation(s)
- Lilya U Dzhemileva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A D'yakonov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Roy R, Chick P, York E, Rawling T. Cytotoxicity of acridinium-based ionic liquids: Structure-activity relationship and mechanistic studies. Chem Biol Interact 2024; 396:111042. [PMID: 38735455 DOI: 10.1016/j.cbi.2024.111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties suitable for a range of industrial applications such as chemical processing and battery design. Major challenges to the wide-scale adoption of ILs in industry include their eco- and cytotoxic effects, however, this opens up the possibility of the use of ILs use as novel anticancer agents. Understanding the structural features that promote IL cytotoxicity is therefore important. Key structural features that can impact IL cytotoxicity include size and lipophilicity of the cationic head group. In this study, the cytotoxic effects of acridinium-based ILs containing relatively large tri- and tetracyclic cations were evaluated. It was found that 9-phenylacridinium-based ILs are potent cytotoxic agents that reduce the viability of human MDA-MB-231 breast cancer cells with IC50 concentrations in the nanomolar range. In mechanistic studies, it was found that unlike the pyridinium-based analogue, [C16Py][I], acridinium-based ILs did not inhibit oxidative phosphorylation or induce reactive oxygen species formation, and may instead target other mitochondrial processes or components such as mitochondrial DNA.
Collapse
Affiliation(s)
- Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Phoenix Chick
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
3
|
Liu J, Wang Y, Gao B, Zhang K, Li H, Ren J, Huo F, Zhao B, Zhang L, Zhang S, He H. Ionic Liquid Gating Induces Anomalous Permeation through Membrane Channel Proteins. J Am Chem Soc 2024; 146:13588-13597. [PMID: 38695646 DOI: 10.1021/jacs.4c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.
Collapse
Affiliation(s)
- Ju Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Bo Gao
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Kun Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Baofeng Zhao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
5
|
Zhang W, Boateng ID, Xu J. How does ultrasound-assisted ionic liquid treatment affect protein? A comprehensive review of their potential mechanisms, safety evaluation, and physicochemical and functional properties. Compr Rev Food Sci Food Saf 2024; 23:e13261. [PMID: 38284575 DOI: 10.1111/1541-4337.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
Proteins are essential to human health with enormous food applications. Despite their advantages, plant and animal proteins often exhibit limited molecular flexibility and poor solubility due to hydrogen bonds, hydrophobic interactions, and ionic interactions within their molecular structures. Thus, there is an urgent need to modify the rigid structure of proteins to enhance their stability and functional properties. Ultrasound-assisted ionic liquid (UA-IL) treatment for developing compound modification and producing proteins with excellent functional properties has received interest. However, no review specifically addresses the interactions between UA-ILs and proteins. Hence, this review focused on recent research advancements concerning the effects and potential reaction mechanisms of UA-ILs on the physicochemical properties (including particle size; primary, secondary, and tertiary structure; and surface morphology) as well as the functionality (such as solubility, emulsifying properties, and foaming ability) of proteins. Moreover, the safety evaluation of modified proteins was also discussed from various perspectives, such as acute and chronic toxicity, genotoxicity, cytotoxicity, and environmental and microbial toxicity. This review demonstrated that UA-IL treatment-induced protein structural changes significantly impact the functional characteristics of proteins. This treatment approach efficiently promotes protein structure stretching and spatial rearrangement through cavitation, thermal effects, and ionic interactions. As a result, the functional properties of modified proteins exhibited an obvious enhancement, thereby bringing more opportunities to utilize modified protein products in the food industry. Potential future directions for protein modification using UA-ILs were also proposed.
Collapse
Affiliation(s)
- Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Roy R, York E, Pacchini E, Rawling T. Effects of cationic head group structure on cytotoxicity and mitochondrial actions of amphiphilic ionic liquids. Food Chem Toxicol 2024; 183:114202. [PMID: 38007213 DOI: 10.1016/j.fct.2023.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties that make them suitable for a range of industrial applications. Accumulating evidence suggests that certain ILs are cytotoxic and potential environmental pollutants, thus understanding the structural features that promote IL cytotoxicity is important. Amphiphilic ionic liquids (AmILs), a class of ILs with lipophilic N-alkyl chains, containing aromatic head groups are generally more cytotoxic than their aliphatic counterparts, however the impact of other head group properties are less clear. This study therefore sought to provide new structure activity relationship (SAR) insights regarding the role of the cationic head group on AmIL cytotoxicity. A series of AmILs bearing a range of structurally diverse aromatic cations varying in size, charge, and lipophilicity was synthesised and screened against human MDA-MB-231 breast cancer cells. It was found that larger and more lipophilic head groups increased cytotoxicity, although the magnitude of the changes were modest. The mitochondrial effects of representative ILs were assessed. The AmILs induced mitochondrial dysfunction in MDA-MB-231 cells at cytotoxic concentrations, suggesting that they target mitochondria. The new SAR information from this study may assist in the design of AmILs with controlled cytotoxicity.
Collapse
Affiliation(s)
- Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ethan Pacchini
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
7
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Chu L, Hou X, Song X, Zhao X, Hu S, Shen G. Toxicity of ionic liquids against earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162411. [PMID: 36870498 DOI: 10.1016/j.scitotenv.2023.162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Ionic liquids (ILs) are widely used in frontier fields because of their highly tunable properties. Although ILs may have adverse effects on organisms, few studies have focused on their effect on earthworm gene expression. Herein we investigated the toxicity mechanism of different ILs towards Eisenia fetida using transcriptomics. Earthworms were exposed to soil containing different concentrations and types of ILs, and behavior, weight, enzymatic activity and transcriptome were analyzed. Earthworms exhibited avoidance behavior towards ILs and growth was inhibited. ILs also affected antioxidant and detoxifying enzymatic activity. These effects were concentration and alkyl chain length-dependent. Analysis of intrasample expression levels and differences in transcriptome expression levels showed good parallelism within groups and large differences between groups. Based on functional classification analysis, we speculate that toxicity mainly occurs through translation and modification of proteins and intracellular transport functions, which affect protein-related binding functions and catalytic activity. KEGG pathway analysis revealed that ILs may damage the digestive system of earthworms, among other possible pathological effects. Transcriptome analysis reveals mechanisms that cannot be observed by conventional toxicity endpoints. This is useful to evaluate the potential environmental adverse effects of the industrial use of ILs.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shuangqing Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Genxiang Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
9
|
Swebocki T, Barras A, Abderrahmani A, Haddadi K, Boukherroub R. Deep Eutectic Solvents Comprising Organic Acids and Their Application in (Bio)Medicine. Int J Mol Sci 2023; 24:ijms24108492. [PMID: 37239842 DOI: 10.3390/ijms24108492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Over the last years, we observed a significant increase in the number of published studies that focus on the synthesis and characterization of deep eutectic solvents (DESs). These materials are of particular interest mainly due to their physical and chemical stability, low vapor pressure, ease of synthesis, and the possibility of tailoring their properties through dilution or change of the ratio of parent substances (PS). DESs, considered as one of the greenest families of solvents, are used in many fields, such as organic synthesis, (bio)catalysis, electrochemistry, and (bio)medicine. DESs applications have already been reported in various review articles. However, these reports mainly described these components' basics and general properties without focusing on the particular, PS-wise, group of DESs. Many DESs investigated for potential (bio)medical applications comprise organic acids. However, due to the different aims of the reported studies, many of these substances have not yet been investigated thoroughly, which makes it challenging for the field to move forward. Herein, we propose distinguishing DESs comprising organic acids (OA-DESs) as a specific group derived from natural deep eutectic solvents (NADESs). This review aims to highlight and compare the applications of OA-DESs as antimicrobial agents and drug delivery enhancers-two essential fields in (bio)medical studies where DESs have already been implemented and proven their potential. From the survey of the literature data, it is evident that OA-DESs represent an excellent type of DESs for specific biomedical applications, owing to their negligible cytotoxicity, fulfilling the rules of green chemistry and being generally effective as drug delivery enhancers and antimicrobial agents. The main focus is on the most intriguing examples and (where possible) application-based comparison of particular groups of OA-DESs. This should highlight the importance of OA-DESs and give valuable clues on the direction the field can take.
Collapse
Affiliation(s)
- Tomasz Swebocki
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Kamel Haddadi
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| |
Collapse
|
10
|
Joarder S, Bansal D, Meena H, Kaushik N, Tomar J, Kumari K, Bahadur I, Ha Choi E, Kaushik NK, Singh P. Bioinspired green deep eutectic solvents: preparation, catalytic activity, and biocompatibility. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Wu YL, Xiong Q, Wang B, Liu YS, Zhou PL, Hu LX, Liu F, Ying GG. Screening of structural and functional alterations in duckweed (Lemna minor) induced by per- and polyfluoroalkyl substances (PFASs) with FTIR spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120671. [PMID: 36436661 DOI: 10.1016/j.envpol.2022.120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
As a class of common emerging pollutants, per- and polyfluoroalkyl substances (PFASs) and their alternatives have been widely detected in various environmental matrices, exhibiting a great threat to the ecological environment and human health. Nevertheless, changes in biomolecular structure and function of duckweed caused by PFASs and their alternatives remain unknown thus far. Herein, the effects of four PFASs, including two common legacy PFASs (perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)) and two PFASs alternatives (perfluorobutane sulfonic acid (PFBS) and 1H,1H,2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)) on duckweed (Lemna minor) at biochemical level were investigated with Fourier transform infrared spectroscopy (FTIR). Although no obvious inhibitions were observed in the growth of L. minor with PFASs exposure at three levels of 1 μg L-1, 100 μg L-1, and 10 mg L-1, significant structural and functional alterations were induced at the biochemical level. In response to PFASs exposure, lipid peroxidation, proteins aggregation and α-helix to β-sheet transformation of the protein conformation, as well as changes of DNA conformations were detected. Moreover, alterations in lipid, protein, and DNA were proved to be concentration-related and compound-specific. Compared to the two legacy PFASs (PFOS and PFOA), alternative ones exhibited greater effects on the biological macromolecules of L. minor. The findings of this study firstly reveal structural and functional alterations in L. minor induced by PFASs exposure, providing further understanding of their toxicity effects.
Collapse
Affiliation(s)
- Ying-Lin Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Ben Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Pei-Liang Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Fang Liu
- School of Geography, South China Normal University, Guangzhou, 510623, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Wang N, Zhang H, Ma X, Zhang J, Sun J, Wang X, Zhou J, Wang J, Ge C. Joint action of binary mixtures based on parameter k·EC x from concentration-response curves in long-term toxicity assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103917. [PMID: 35779704 DOI: 10.1016/j.etap.2022.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A previous acute toxicity study of binary mixtures showed that the combined toxicity can be predicted with the parameter k∙ECx. To systematically investigate the ability of k∙ECx to predict the chronic combined toxicity of binary mixtures, the toxicity of six contaminants and five binary mixtures was determined by long-term microplate toxicity analysis (L-MTA) using Aliivibrio fischeri as the test organism. The independent action model (IA) and the relative model deviation ratio (rMDR) were employed to determine the relationship between the Δ(k∙ECx)% and rMDRx. The results showed that these two factors conformed to the exponential function in long-term toxicity. Owing to the time-dependence of toxicity, the mixture type of chronic toxicity changes to the relative type of acute toxicity. If the acute toxicity of binary mixtures changes their mode of joint action throughout the concentration range, the chronic toxicity will also change their mode of joint action, and vice versa. This study clarified the change rules of the joint action of binary mixtures in acute and chronic toxicity which can promote research on chronic toxicity of binary mixtures.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Huanle Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environment Engineering, Shaanxi, Province, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Jingkun Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environment Engineering, Shaanxi, Province, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of arts and sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
13
|
Wang TT, Wang S, Shao S, Wang XD, Wang DY, Liu YS, Ge CJ, Ying GG, Chen ZB. Perfluorooctanoic acid (PFOA)-induced alterations of biomolecules in the wetland plant Alismaorientale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153302. [PMID: 35066035 DOI: 10.1016/j.scitotenv.2022.153302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been widely studied by researchers due to their environmental persistence, chemical stability and potential toxicity. Some researchers have reported the physiological and biochemical toxicity of PFASs on plants through traditional and innovative methods; however, the changes in biological macromolecules caused by PFASs are rarely studied. Here, Fourier transform infrared spectroscopy (FTIR) was used to study how exposure to perfluorooctanoic acid (PFOA) alters the structure and function of biomolecules of the wetland plant Alisma orientale. Biomass results showed that PFOA had negative effects on plant growth. FTIR results showed that PFOA could result in changes in the structures, compositions, and functions of lipids, proteins and DNA in plant cells. In the treatment groups, the ratios of CH3 to lipids and carbonyl esters to lipids increased compared with the control, while the ratios of CH2 to lipids and olefinicCH to lipids decreased, which indicated lipid peroxidation caused by PFOA exposure. Changes in the compositions and secondary structures of proteins were also found, which were indicated by the decreased ratio of amide I to amide II and the increased ratio of β-sheet to α-helix in the treatment groups compared to the control. Moreover, PFOA affected the composition of DNA by promoting the B- to A-DNA transition. These results showed that the mechanism of PFOA toxicity toward plants at the biochemical level could be illustrated by FTIR.
Collapse
Affiliation(s)
- Tuan-Tuan Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Sai Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Shuai Shao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Xiao-Di Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ding-Ying Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Cheng-Jun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhong-Bing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague 6, Czech Republic.
| |
Collapse
|
14
|
Zhang J, Cheng C, Lu C, Li W, Li B, Wang J, Wang J, Du Z, Zhu L. Comparison of the toxic effects of non-task-specific and task-specific ionic liquids on zebrafish. CHEMOSPHERE 2022; 294:133643. [PMID: 35051520 DOI: 10.1016/j.chemosphere.2022.133643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are composed of only anions and cations and are liquid solvents at room temperature. Different functional groups were introduced into the ILs, conferring them with specific functions or purposes and thus forming special ILs, namely task-specific ILs (TSILs). Imidazolium-based ILs are the most widely used ILs in industrial production. To date, there have been some studies on the toxic effects of ILs on different organisms. However, the effect of functionalized groups on the toxicity of ILs is still unclear. In the present study, zebrafish were used as model organisms to study the toxic effects of 1-ethyl-3-methylimidazolium nitrate ([C2mim]NO3) and 1-hydroxyethyl-3-methylimidazolium nitrate ([HOC2mim]NO3). The results showed that both promoted an increase in reactive oxygen species (ROS) contents, leading to lipid peroxidation and DNA damage. Furthermore, integrated biological response analysis showed that [HOC2mim]NO3 was less toxic to zebrafish than [C2mim]NO3, which indicated that adding functional groups decreased the toxicity of ILs to organisms. The influence of chemical structure on IL toxicity was also reported. These results could provide a scientific basis for better synthesis and utilization of ILs in the future.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chao Cheng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenxiu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
15
|
Xia BT, He Y, Guo Y, Huang JL, Tang XJ, Wang JR, Tan Y, Duan P. Multi- and transgenerational biochemical effects of low-dose exposure to bisphenol A and 4-nonylphenol on testicular interstitial (Leydig) cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1032-1046. [PMID: 35005817 DOI: 10.1002/tox.23462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) and 4-nonylphenol (NP) are well-known endocrine-disrupting chemicals (EDCs) that have been proven to affect Leydig cell (LC) functions and testosterone production, but whether BPA and NP have multi- and transgenerational biochemical effects on Leydig cells (LCs) is unknown. Fourier transform infrared (FTIR) spectroscopy is a powerful analytical technique that enables label-free and non-destructive analysis of the tissue specimen. Herein we employed FTIR coupled with chemometrics analysis to identify biomolecular changes in testicular interstitial (Leydig) cells of rats after chronic exposure to low doses of BPA and NP. Cluster segregations between exposed and control groups were observed based on the fingerprint region of 1800-900 cm-1 in all generations. The main biochemical alterations for segregation were amide I, amide II and nucleic acids. BPA and NP single and co-exposure induced significant differences in the ratio of amide I to amide II compared to the corresponding control group in all generations. BPA exposure resulted in remarkable changes of cellular gene transcription and DNA oxidative damage across all generations. Direct exposure to BPA, NP, and BPA&NP of F0 and F1 generations could significantly decrease lipid accumulation in LCs in the F2 and F3 generations. The overall findings revealed that single or co-exposure to BPA and NP at environmental concentrations affects the biochemical structures and properties of LCs.
Collapse
Affiliation(s)
- Bin-Tong Xia
- Postgraduate Training Basement of Jinzhou Medicinal University, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Jinzhou Medical University Union Training Base, Xiangyang, China
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yang Guo
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-Long Huang
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao-Juan Tang
- College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Jian-Ru Wang
- Public Health and Management College, Hubei University of Medicine, Shiyan, China
| | - Yan Tan
- Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
| | - Peng Duan
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
16
|
Chu L, Kang X, Li D, Song X, Zhao X. Physiological responses of Pichia stipitis to imidazolium chloride ionic liquids with different carbon chain length. CHEMOSPHERE 2022; 286:131578. [PMID: 34303052 DOI: 10.1016/j.chemosphere.2021.131578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Ionic liquids (ILs) are used as detoxication agents for fermentation of lignin into ethanol because of their good applicability. However, the residual ILs may be toxic to the yeast. In order to improve the use of ILs for fermentation and protected environment, the toxicity of ILs with different carbon chain length to Pichia stipitis was studied in this paper. Four kinds of common imidazolium chloride ILs ([C4mim]Cl, [C6mim]Cl, [C8mim]Cl and [C10mim]Cl) were selected. ILs can inhibit the proliferation of Pichia stipitis and increase their mortality. Oxidative stress reaction occurred in the cells, and the activities of antioxidant enzymes are affected. Comparing with the integrated biomarker response (IBR) index, it was found that the toxicity increases with increasing chain length. ILs may enter cells by damaging cell membranes and reduce ethanol production by damaging organelles such as mitochondria. ILs caused wrinkles and dents on the surface of cells up to cell deformation and even rupture. The toxicity sequence was as follows: [C10mim]Cl> [C8mim]Cl>[C6mim]Cl>[C4mim]Cl. Due to this toxicity to Pichia stipitis, these compounds should be used carefully in the fermentation process and also to avoid toxic effects on other organisms in the environment.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Kang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Dongpeng Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
17
|
Wei P, Pan X, Chen CY, Li HY, Yan X, Li C, Chu YH, Yan B. Emerging impacts of ionic liquids on eco-environmental safety and human health. Chem Soc Rev 2021; 50:13609-13627. [PMID: 34812453 DOI: 10.1039/d1cs00946j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Owing to their unique physicochemical properties, ionic liquids (ILs) have been rapidly applied in diverse areas, such as organic synthesis, electrochemistry, analytical chemistry, functional materials, pharmaceutics, and biomedicine. The increase in the production and application of ILs has resulted in their release into aquatic and terrestrial environments. Because of their low vapor pressure, ILs cause very little pollution in the atmosphere compared to organic solvents. However, ILs are highly persistent in aquatic and terrestrial environments due to their stability, and therefore, potentially threaten the safety of eco-environments and human health. Specifically, the environmental translocation and retention of ILs, or their accumulation in organisms, are all related to their physiochemical properties, such as hydrophobicity. Based on results of ecotoxicity, cytotoxicity, and toxicity in mammalian models, the mechanisms involved in IL-induced toxicity include damage of cell membranes and induction of oxidative stress. Recently, artificial intelligence and machine learning techniques have been used in mining and modeling toxicity data to make meaningful predictions. Major future challenges are also discussed. This review will accelerate our understanding of the safety issues of ILs and serve as a guideline for the design of the next generation of ILs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chien-Yuan Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Hsin-Yi Li
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. .,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
18
|
Liu J, Wang Y, Wang C, Gao J, Cui W, Zhao B, Zhang L, He H, Zhang S. Thermodynamical Origin of Nonmonotonic Inserting Behavior of Imidazole Ionic Liquids into the Lipid Bilayer. J Phys Chem Lett 2021; 12:9926-9932. [PMID: 34613726 DOI: 10.1021/acs.jpclett.1c02566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The GPU-accelerated molecular dynamics simulations are performed to explore the dynamical inserting process of ionic liquids (ILs) into the lipid bilayer. We found that the free ions and clusters coexist in the system, but only the cation can insert into the lipid bilayer. In specific, after a microsecond-scale simulation (up to 1.16 μs), the inserting rate increases first and then decreases nonmonotonic as side chain of cation (nchain) elongates, peaking at nchain = 10. However, the inserting free energy decreases with nchain, indicating the inserting process is easier for the larger nchain. Such contrary originates from the formation of cluster, where the cluster dissociating energy shows that only cluster for nchain ≤ 10 can dissociate spontaneously. Hence, the inserting rate is determined by the balance between nchain and cluster stability. These quantitative competition mechanisms shed light to the rational design of the biocompatible ILs toward their applications in the biochemical-related fields.
Collapse
Affiliation(s)
- Ju Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinai Gao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofeng Zhao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Guo T, Wang X, Shu Y, Wang J. Effects of alkyl side-chain length on binding with bovine serum albumin, cytotoxicity, and antibacterial properties of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Zhang W, Huang L, Chen W, Wang J, Wang S. Influence of ultrasound-assisted ionic liquid pretreatments on the functional properties of soy protein hydrolysates. ULTRASONICS SONOCHEMISTRY 2021; 73:105546. [PMID: 33845246 PMCID: PMC8063908 DOI: 10.1016/j.ultsonch.2021.105546] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 05/02/2023]
Abstract
In this work, the effect of dual-frequency ultrasound-assisted ionic liquids (ILs) pretreatment on the functional properties of soy protein isolate (SPI) hydrolysates was investigated. The degree of hydrolysis (DH) of SPI pretreated by ultrasound and [BMIM][PF6] increased by 12.53% as compared to control (P < 0.05). More peptides with low molecular weight were obtained, providing support for the changes in DH. The trichloroacetic acid-nitrogen soluble index presented an increase, suggesting a better protein hydrolysate property. The increase in the calcium-binding activity showed the ultrasound-assisted ILs pretreatment could potentially improve bone health. The foaming capacity and stability of SPI hydrolysates pretreated by ultrasound-assisted [BMIM][PF6] always increased remarkably as compared to ultrasound-assisted [BDMIM][Cl] pretreatment. However, the synergistic effect of ultrasound-assisted [BMIM][PF6] on the emulsifying activity and antioxidant activities (DPPH and hydroxyl radical scavenging activity) was not as ideal as ultrasound-assisted [BDMIM][Cl] pretreatment, which may be affected by the structure of peptide. In conclusion, these results indicated the combination of dual-frequency ultrasound and ionic liquids would be a promising method to improve the functional properties of SPI hydrolysates and broaden the application scope of compound modification in proteolysis industry.
Collapse
Affiliation(s)
- Wenxue Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Wenwen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiale Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Shiheng Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|