1
|
Xu C, Yao X, Kong W, Mu B, Duan G, Wang J, Xu Y, Li X. Ecotoxicological risk of co-exposure to fosthiazate and microplastics on earthworms (Eisenia fetida): Integrating biochemical and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125053. [PMID: 39357558 DOI: 10.1016/j.envpol.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Fosthiazate (FOS) is a widely used organophosphorus insecticide effective against soil root-knot nematodes. However, its ecotoxicity to non-target soil organisms, particularly in combination with microplastics (MPs), is unclear. This study explores the toxic-effects and molecular mechanisms of co-exposure to FOS and MPs on earthworms (Eisenia fetida) using multilevel toxicity endpoints and transcriptomics. Results showed that both FOS and MPs elevated the intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) in earthworms' cells. The superoxide dismutase (SOD) and catalase (CAT) activities followed a similar trend in all treatments, with changes observed at 14 and 28 days, indicating that co-exposure to FOS and MPs increased DNA oxidative damage. Notably, the co-exposure more significantly inhibited Ca2+-ATPase activity and exacerbated neurotoxicity compared to individual treatments, closely associated with changes in intracellular ROS levels that mediate neuroinhibition and lead to neurotoxicity. KEGG enrichment analysis revealed that MPs and FOS disrupted pathways related to metabolism, immunity, and apoptosis, while co-exposure primarily impaired endocrine and receptor pathways, showing higher toxicity. Our study offers novel insights into the ecotoxicological effects and mechanisms of pesticides and microplastics on earthworms, providing valuable data for evaluating the soil environmental health risks associated with compound pollution.
Collapse
Affiliation(s)
- Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Weizheng Kong
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Baoyan Mu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Yuxin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
2
|
Zhang L, Liu Y, Xu Y, Pei M, Yao M, Chen X, Cui Y, Han F, Lu Y, Zhang C, Wang Y, Gao P, Zhu L, Wang J. Fluxapyroxad induced toxicity of earthworms: Insights from multi-level experiments and molecular simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135911. [PMID: 39305595 DOI: 10.1016/j.jhazmat.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
Fluxapyroxad, an emerging succinate dehydrogenase inhibitor fungicide, is widely used due to its excellent properties. Given its persistence in soil with a 50 % disappearance time of 183-1000 days, it is crucial to evaluate the long-term effects of low-dose fluxapyroxad on non-target soil organisms such as earthworms (Eisenia fetida). The present study investigated the impacts of fluxapyroxad (0.01, 0.1, and 1 mg kg-1) on Eisenia fetida over 56 days, focusing on oxidative stress, digestive and nervous system functions, and histopathological changes. We also explored the mechanisms of fluxapyroxad-enzyme interactions through molecular docking and dynamics simulations. Results demonstrated a significant dose-response relationship in the integrated biomarker response of 12 biochemical indices. Fluxapyroxad altered expression levels of functional genes and induced histopathological damage in earthworm epidermis and intestines. Molecular simulations revealed that fluxapyroxad is directly bound to active sites of critical enzymes, potentially disrupting their structure and function. Even at low doses, long-term fluxapyroxad exposure significantly impacted earthworm physiology, with effects becoming more pronounced over time. Our findings provide crucial insights into the chronic toxicity of fluxapyroxad and emphasize the importance of long-term, low-dose studies in pesticide risk assessment in soil. This research offers valuable guidance for the responsible management and application of fungicides.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yao Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yubo Lu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
3
|
Fu H, Zhu L, Chen L, Zhang L, Mao L, Wu C, Chang Y, Jiang J, Jiang H, Liu X. Metabolomics and microbiomics revealed the combined effects of different-sized polystyrene microplastics and imidacloprid on earthworm intestinal health and function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124799. [PMID: 39181306 DOI: 10.1016/j.envpol.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The coexistence of pesticides and plastic film residues in agricultural soils poses a significant threat to soil organisms due to their potential long-term contamination and combined toxic effects. Specifically, earthworms are at risk of simultaneously ingesting residual pesticides and microplastics, yet the impact of this combined exposure on their intestinal health and function remains poorly understood. In this study, earthworm (Eisenia fetida) were single and combined exposed to three particle sizes (10 μm, 500 μm, and 2 mm) of polyethylene microplastics (PE MPs) and imidacloprid (IMI) for 28 days, respectively. Our findings underscore that compared to single exposures, the combined exposure inflicted more profound injuries on intestinal tissues and elicited a heightened activation of intestinal digestive enzymes. Furthermore, the combined exposure significantly perturbed the relative abundance of several pivotal metabolic-associated gut microbiota, fostering an enrichment of pathogenic species. Metabolomics analysis showed combined exposure increased differential metabolites, disrupting amino acid, fatty acid, and carbohydrate metabolism in earthworm intestines, potentially hindering nutrient absorption and causing toxic metabolite accumulation. An integrated omics analysis implies that combined exposures have the potential to disrupt the relative abundance of crucial gut microbiota in earthworms, thereby altering their intestinal metabolism and subsequently impacting intestinal health and functionality. Overall, the results reveal that combined exposure of IMI and PE MPs exacerbate the negative effects on earthworm gut health, and this study holds significant implications for the holistic understanding of the combined toxic effects of microplastics and pesticide on soil ecosystems.
Collapse
Affiliation(s)
- Huimin Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Lang Chen
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yiming Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Wang M, Hao Q, Lessing DJ, Chu W. Pseudomonas putida HE alleviates glyphosate-induced toxicity in earthworm: Insights from the neurological, reproductive and immunological status. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124554. [PMID: 39013514 DOI: 10.1016/j.envpol.2024.124554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
The proceeding study aimed to isolate glyphosate-degrading bacteria from soil and determine optimal degradation conditions through single-factor experiments and response surface methodology. The detoxifying efficacy of the isolate on glyphosate was assessed using earthworm model. The results indicate that Pseudomonas putida HE exhibited the highest glyphosate degradation rate. Optimal conditions for glyphosate degradation were observed at an inoculation percentage of approximately 5%, a pH of 7, and a temperature of 30 °C. Glyphosate induced notable neurotoxicity and reproductive toxicity in earthworms, evidenced by reduced activity of the neurotoxicity-associated enzyme AChE. Additionally, an increase in the activities of catalase, superoxide dismutase, and lactate dehydrogenase was observed. H&E staining revealed structural disruptions in the earthworm clitellum, with notable atrophy in the structure of spermathecae. Furthermore, glyphosate activation of earthworm immune systems led to increased expression of immune-related genes, specifically coelomic cytolytic factor and lysozyme. Notably, the introduction of strain HE mitigated the glyphosate toxicity to the earthworms mentioned above. P. putida HE was able to increase soil enzyme activities that were reduced due to glyphosate. The isolate P. putida HE, emerged as an effective and cost-efficient remedy for glyphosate degradation and toxicity reduction in natural settings, showcasing potential applications in real ecological settings.
Collapse
Affiliation(s)
- Minyu Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, PR China
| | - Qingyi Hao
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, PR China
| | - Duncan James Lessing
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, PR China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Martin WJ, Sibley PK, Prosser RS. Effect of Insecticide Exposure Across Multiple Generations of the Earthworm Eisenia andrei. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2058-2070. [PMID: 38980316 DOI: 10.1002/etc.5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
The toxicity of neonicotinoids and many of their replacement insecticides to nontarget soil invertebrates such as earthworms has previously been established. However, the long-term effects of these substances on these organisms are largely unknown. In the field of soil ecotoxicology, lumbricid earthworms such as Eisenia andrei are used extensively due to the availability of standardized test methods and their adaptability to laboratory culture and testing. Multigenerational studies have gained popularity and attention in recent years, with a shift toward the use of long-term assays and lower concentrations of test chemicals. The use of exposure concentrations that include those measured in a monitoring program carried out by the Government of Ontario presents a realistic exposure scenario that may not show significant effects in contemporary, shorter term studies. We used current standardized test methods as a basis for the development of multigenerational studies on E. andrei. The effects of exposure to a single application of the insecticides thiamethoxam and cyantraniliprole on the survival and reproduction of E. andrei were observed over three (thiamethoxam) or two (cyantraniliprole) generations using consecutive reproduction tests. No significant impacts on adult survival were reported in any generation for either insecticide, whereas reproduction decreased between the first and second generations in the thiamethoxam test, with median effective concentration (EC50) values of 0.022 mg/kg dry weight reported for the first generation compared with 0.002 mg/kg dry weight in the second generation. For cyantraniliprole, an EC50 of 0.064 was determined for the first generation compared with 0.016 mg/kg dry weight in the second generation. A third generation was completed for the thiamethoxam test, and a significant decrease in reproduction was observed in all treatments and controls compared with previous generations. No significant difference between thiamethoxam treatments and the control treatment was reported for the third generation. Collectively, these data indicate that exposure of oligochaetes to these two insecticides at concentrations representative of field conditions may result in long-term stresses. Environ Toxicol Chem 2024;43:2058-2070. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- William J Martin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Zhang Y, Huang C, Zhao J, Hu L, Yang L, Zhang Y, Sang W. Insights into tolerance mechanisms of earthworms (Eisenia fetida) in copper-contaminated soils by integrating multi-omics analyses. ENVIRONMENTAL RESEARCH 2024; 252:118910. [PMID: 38604487 DOI: 10.1016/j.envres.2024.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Earthworms can resist high levels of soil copper (Cu) contamination and play an essential role in absorbing them effectively. However, the molecular mechanisms underlying Cu tolerance in earthworms are poorly understood. To address this research gap, we studied alterations of Eisenia fetida in antioxidant enzymes, gut microbiota, metabolites, and genes under varying levels of Cu exposure soils (0, 67.58, 168.96, 337.92 mg/kg). Our results revealed a reduction in antioxidant enzyme activities across all treatment groups, indicating an adaptive response to alleviate Cu-induced oxidative stress. Analysis of gut microbiota revealed a significant increase in the abundance of bacteria associated with nutrient uptake and Cu2+ excretion under Cu stress. Furthermore, metabolomic analysis discovered an increase in certain metabolites associated with energy metabolism, such as pyruvic acid, L-malic acid, and fumaric acid, as Cu concentration escalated. These results suggested that enhanced energy supply contributes to the elevated tolerance of E. fetida towards Cu. Additionally, transcriptome analysis not only identified crucial detoxification genes (Hsp70, CTSL, GST, CHAC, and GCLC), but also confirmed the critical role of glutathione metabolism as a key pathway in E. fetida Cu detoxification processes. These findings provide a new perspective on the molecular mechanisms of Cu tolerance in earthworms.
Collapse
Affiliation(s)
- Yanliang Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chenyu Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinqi Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Luyi Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lan Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuanyuan Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China; Beijing Biodiversity Conservation Research Center, Beijing, 100076, China.
| | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
7
|
Zhao Y, Li X, Xu G, Nan J. Multilevel investigation of the ecotoxicological effects of sewage sludge biochar on the earthworm Eisenia fetida. CHEMOSPHERE 2024; 360:142455. [PMID: 38810797 DOI: 10.1016/j.chemosphere.2024.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The ecological risks of sewage sludge biochar (SSB) after land use is still not truly reflected. Herein, the ecological risks of SSB prepared at different temperature were investigated using the earthworm E. fetida as a model organism from the perspectives of organismal, tissue, cellular, and molecular level. The findings revealed that the ecological risk associated with low-temperature SSB (SSB300) was more pronounced compared to medium- and high-temperature SSB (SSB500 and SSB700), and the ecological risk intensified with increasing SSB addition rates, as revealed by an increase in the integrated biomarker response v2 (IBRv2) value by 2.59-25.41 compared to those of SSB500 and SSB700. Among them, 10% SSB300 application caused significant oxidative stress and neurotoxicity in earthworms compared to CK (p < 0.001). The weight growth rate and cocoon production rate of earthworms were observed to decrease by 25.06% and 69.29%, respectively, while the mortality rate exhibited a significant increase of 33.34% following a 10% SSB300 application, as compared to the CK. Moreover, 10% SSB300 application also resulted in extensive stratum corneum injury and significant longitudinal muscle damage in earthworms, while also inducing severe collapse of intestinal epithelial cells and disruption of intestinal integrity. In addition, 10% SSB300 caused abnormal expression of earthworm detoxification and cocoon production genes (p < 0.001). These results may improve our understanding of the ecotoxicity of biochar, especially in the long term application, and contribute to providing the guidelines for applying biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
8
|
Yin T, Zhang J, Liu C, Xue Y, Liu Z, Liu S, Guo L, Wang J, Xia X. Environmental-related doses of afidopyropen induced toxicity effects in earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116223. [PMID: 38493704 DOI: 10.1016/j.ecoenv.2024.116223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Afidopyropen has high activity against pests. However, it poses potential risks to the soil ecology after entering the environment. The toxicity of afidopyropen to earthworms (Eisenia fetida) was studied for the first time in this study. The results showed that afidopyropen had low level of acute toxicity to E. fetida. Under the stimulation of chronic toxicity, the increase of reactive oxygen species (ROS) level activated the antioxidant and detoxification system, which led to the increase of superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Lipid peroxidation and DNA damage were characterized by the increase of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents. Meanwhile, the functional genes SOD, CAT, GST, heat shock protein 70 (HSP70), transcriptionally controlled tumor protein (TCTP), and annetocin (ANN) played a synergistic role in antioxidant defense. However, the comprehensive toxicity of high concentration still increased on the 28th day. In addition, strong histopathological damage in the body wall and intestine was observed, accompanied by weight loss, which indicated that afidopyropen inhibited the growth of E. fetida. The molecular docking revealed that afidopyrene combined with the surface structure of SOD and GST proteins, which made SOD and GST become sensitive biomarkers reflecting the toxicity of afidopyropen to E. fetida. Summing up, afidopyropen destroys the homeostasis of E. fetida through chronic toxic. These results provide theoretical data for evaluating the environmental risk of afidopyropen to soil ecosystem.
Collapse
Affiliation(s)
- Tao Yin
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jingru Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Yannan Xue
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Zhenlong Liu
- Weifang Vocational College, Weifang 262737, PR China.
| | - Shuang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Longzhi Guo
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, PR China.
| |
Collapse
|
9
|
Zhao Y, Li X, Bao H, Nan J. Effects of biochar-derived dissolved organic matter on the gut microbiomes and metabolomics in earthworm Eisenia fetida. ENVIRONMENTAL RESEARCH 2024; 245:117932. [PMID: 38104913 DOI: 10.1016/j.envres.2023.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The ecological risks of biochar-derived dissolved organic matter (DOM) to soil invertebrates at different organismal levels remains limited. This study comprehensively explored the ecological risks of biochar-derived DOM on earthworm gut through assessments of enzyme activity response, histopathology, gut microbiomes, and metabolomics. Results demonstrated that DOM disturbed the digestive enzymes in earthworm, especially for 10% DOM300 groups. The integrated biomarker response v2 (IBRv2) indicated that the perturbation of earthworm digestive enzymes induced by DOM was both time-dependent and dose-dependent. Pathological observations revealed that 10% DOM300 damaged intestinal epithelium and digestive lumen of earthworms. The significant damage and injury to earthworms caused by DOM300 due to its higher concentrations of heavy metal ions and organic substrates (e.g., toluene, hexane, butanamide, and hexanamide) compared to DOM500 and DOM700. Analysis of 16S rRNA from the gut microbiota showed a significant decrease in genera (Verminephrobacter, Bacillus, and Microbacteriaceae) associated with inflammation, disease, and detoxification processes. Furthermore, 10% DOM300 caused the abnormality of metabolites, such as glutamate, fumaric acid, pyruvate, and citric acid, which were involved in energy metabolism, These findings contributed to improve our understanding of the toxic mechanism of biochar DOM from multiple perspectives.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Huanyu Bao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
10
|
Yang X, Xu J, Chen X, Yao M, Pei M, Yang Y, Gao P, Zhang C, Wang Z. Co-exposure of butyl benzyl phthalate and TiO 2 nanomaterials (anatase) in Metaphire guillelmi: Gut health implications by transcriptomics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120429. [PMID: 38387344 DOI: 10.1016/j.jenvman.2024.120429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/22/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
During the COVID-19 pandemic, an abundance of plastic face masks has been consumed and disposed of in the environment. In addition, substantial amounts of plastic mulch film have been used in intensive agriculture with low recovery. Butyl benzyl phthalate (BBP) and TiO2 nanomaterials (nTiO2) are widely applied in plastic products, leading to the inevitable release of BBP and nTiO2 into the soil system. However, the impact of co-exposure of BBP and nTiO2 at low concentrations on earthworms remains understudied. In the present study, transcriptomics was applied to reveal the effects of individual BBP and nTiO2 exposures at a concentration of 1 mg kg-1, along with the combined exposure of BBP and nTiO2 (1 mg kg-1 BBP + 1 mg kg-1 nTiO2 (anatase)) on Metaphire guillelmi. The result showed that BBP and nTiO2 exposures have the potential to induce neurodegeneration through glutamate accumulation, tau protein, and oxidative stress in the endoplasmic reticulum and mitochondria, as well as metabolism dysfunction. The present study contributes to our understanding of the toxic mechanisms of emerging contaminants at environmentally relevant levels and prompts consideration of the management of BBP and nTiO2 within the soil ecosystems.
Collapse
Affiliation(s)
- Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yujian Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Peng Gao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| |
Collapse
|
11
|
He F, Wan J, Huo C, Li X, Cui Z, Li Y, Liu R, Zong W. New strategies for evaluating imidacloprid-induced biological consequences targeted to Eisenia fetida species and the corresponding mechanisms of its toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119456. [PMID: 37897899 DOI: 10.1016/j.jenvman.2023.119456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Imidacloprid (IMI), a neonicotinoid insecticide, has a wide variety of applications in both agriculture and horticulture. As a result of it massive and repeated use, its traces remained in soil pose severe damage to soil invertebrates, particularly earthworms. Limited information is available regarding the underlying mechanisms of IMI toxicity toward earthworms at the molecular, transcriptional, and cellular levels. Here, Eisenia fetida coelomocytes and key defensive proteins were selected as targeted receptors to explore the toxic mechanisms of oxidative stress-mediated cytotoxicity, genotoxicity, and antioxidant responses induced by IMI stress and the molecular mechanisms underlying the binding of IMI and superoxide dismutase (SOD)/catalase (CAT). Results showed that IMI exposure destroyed the cell membrane integrity of earthworm cells, causing cell damage and cytotoxicity. The intracellular levels of ROS, including ·O2- and H2O2 were induced by IMI exposure, thereby triggering oxidative stress and damage. Moreover, IMI exposure attenuated the antioxidative stress responses (reduced antioxidant capacity and CAT/SOD activities) and caused deleterious effects (enhanced DNA damage, lipid peroxidation (LPO), and protein carbonylation (PCO)) through ROS-mediated oxidative stress pathway. Aberrant gene expression associated with oxidative stress and defense regulation, including CAT, CRT, MT, SOD, GST, and Hsp70 were induced after IMI exposure. Concentration-dependent conformational and structural alterations of CAT/SOD were observed when IMI binding. Also, direct binding of IMI resulted in significant inhibition of CAT/SOD activities in vitro. Molecular simulation showed that IMI preferred to bind to CAT active center through its direct binding with the key residue Tyr 357, while IMI bound more easily to the connecting cavity of two subunits away from SOD active center. In addition, hydrogen bonds and hydrophobic force are the main driving force of IMI binding with CAT/SOD. These findings have implications for comprehensive evaluation of IMI toxicity to soil eco-safety and offer novel strategies to elucidate the toxic mechanisms and pathways of IMI stress.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong, 250014, PR China
| |
Collapse
|
12
|
Wang C, Yao X, Li X, Wang Q, Jiang N, Hu X, Lv H, Mu B, Wang J. Fosthiazate, a soil-applied nematicide, induces oxidative stress, neurotoxicity and transcriptome aberrations in earthworm (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132865. [PMID: 39491983 DOI: 10.1016/j.jhazmat.2023.132865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Fosthiazate is a widely used organophosphorus nematicide that resides in the soil and controls soil root-knot nematodes. However, whether it has toxic effects on non-target soil organisms such as earthworms is unclear. Therefore, in this study, a 28-day experiment of fosthiazate exposure was conducted using the Eisenia fetida as the model organism. The results showed that fosthiazate stress caused excessive production of reactive oxygen species (ROS), increased the levels of malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG), and decreased the activities of superoxide dismutase (SOD) and catalase (CAT), suggesting that fosthiazate induced oxidative stress and DNA damage in E. fetida. Acetylcholinesterase (AChE) activity was significantly reduced, and the expression of its related functional genes was also altered, demonstrating that fosthiazate damaged the nervous system of E. fetida, which was further confirmed by AlphaFold2 modeling and molecular docking simulations. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that fosthiazate exposure may induce apoptosis, inflammation, and viral infection in E. fetida, which adversely affect the organism. This study provides reference data for the ecotoxicity of fosthiazate.
Collapse
Affiliation(s)
- Can Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xue Hu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Baoyan Mu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
13
|
Yao M, Qian J, Chen X, Liu J, Yang X, Gao P, Zhang C. Butyl benzyl phthalate exposure impact on the gut health of Metaphire guillelmi. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:443-451. [PMID: 37801871 DOI: 10.1016/j.wasman.2023.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Agricultural films are extensively utilized in high-intensity agriculture, with China's annual usage reaching 1.5 million tons. Unfortunately, the recovery rate is less than 60%, leading to an inevitable accumulation of plastic mulch in agricultural soils. This accumulation primarily introduces butyl benzyl phthalate (BBP) into soil ecosystems, whose specific effects remain largely unclear, thereby posing potential risks. The present study focuses on the exposure impact of BBP on earthworms, Metaphire guillelmi, a commonly found endogenic earthworm within real farmland, as it provides insight into the direct interaction between biota gut health and contaminants. Specifically, we studied the biomarkers related to oxidative stress, the digestive system, and neurotoxicity within the gut of Metaphire guillelmi, and the integrated biological response (IBR) index was utilized to track these markers at different timeframes after BBP exposures. Our findings indicate that BBP exposures lead to oxidative damage, digestive system inhibition, and neurotoxicity, with IBR indexes of 14.6 and 17.3 on the 14th and 28th days, respectively. Further, the underlying mechanisms at a molecular level through molecular docking were investigated. The results showed that the most unstable interaction was with the Na+K+-ATPase (binding energy: -2.25 kcal-1), while BBP displayed stable bonds with superoxide dismutase and 8-hydroxydeoxyguanosine via hydrogen bonds and hydrophobic interaction. These interactions resulted in changes in protein conformation and their normal physiological functions, offering new insights into the molecular mechanism underlying enzymatic activity changes. This study has significant implications for the prediction of toxicity, environmental risk assessment, and the establishment of regulations related to BBP.
Collapse
Affiliation(s)
- Mengyao Yao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingran Qian
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jilong Liu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Yang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Cheng Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Wu R, Liu H, Lu C, Hou K, Wang X, Wang J, Du Z, Li B, Zhu L, Wang J. The effect of TiO 2NPs on cloransulam-methyl toxicity to earthworm (Eisenia fetida). CHEMOSPHERE 2023; 322:138242. [PMID: 36841449 DOI: 10.1016/j.chemosphere.2023.138242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Cloransulam-methyl is a new herbicide and has broad application prospect. However, the effect of cloransulam-methyl on earthworm have yet to be clarified. As more and more titanium dioxide nanoparticles (TiO2NPs) enter the soil, cloransulam-methyl and TiO2NPs have a risk of co-exposure, but the effect of TiO2NPs on cloransulam-methyl toxicity is unknown. In the study, the ecotoxicity of cloransulam-methyl (0.1, 1 mg kg-1) on earthworm and the effect of TiO2NPs (10 mg kg-1) on cloransulam-methyl toxicity was investigated after exposure for 28 and 56 d. Exposure tests showed cloransulam-methyl and cloransulam-methyl + TiO2NPs promoted the accumulation of reactive oxygen species, malondialdehyde and 8-hydroxydeoxyguanosine, increased the activities of superoxide dismutase and catalase, resulted in lipid peroxidation and DNA damage. Besides, the results at the genetic level showed cloransulam-methyl and cloransulam-methyl + TiO2NPs altered the expression of physiologically-related genes, which demonstrated that cloransulam-methyl and cloransulam-methyl + TiO2NPs induced oxidative stress and cell apoptosis, and disturbed the normal reproduction in earthworm. The results of comprehensive toxicity comparison indicated cloransulam-methyl and TiO2NPs co-exposure has higher toxicity compared to cloransulam single exposure. Our results suggest that TiO2NPs can enhance the toxicity of cloransulam-methyl on Eisenia fetida in terms of oxidative stress, cell apoptosis and reproduction aspects. Based on above studies, it is of great importance for evaluating the risk of cloransulam-methyl co-exposure with TiO2NPs in soil.
Collapse
Affiliation(s)
- Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Hunan Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
15
|
Zhang C, Liu P, Sun L, Cao C. Integration of miRNA and mRNA expression profiles in Asian spongy moth Lymantria dispar in response to cyantraniliprole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105364. [PMID: 36963953 DOI: 10.1016/j.pestbp.2023.105364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The Asian spongy moth, Lymantria dispar, is a worldwide forest pest that damages >500 plant species. Nowadays, chemical control is the most widely used method because of its rapidity and effectiveness, but the insecticide resistance is a growing concern for spongy moth. As important post-transcriptional regulators of gene expression, whether microRNAs (miRNAs) are involved in insecticide tolerance is little known in spongy moth. Therefore, an integrated analysis of miRNA and mRNA was performed on L. dispar larvae treated with cyantraniliprole. Compared to the control group, a total of 432 differentially expressed genes (DEGs) and 23 differentially expressed miRNAs (DEMs) were identified in L. dispar larvae under cyantraniliprole exposure. Among them, twelve DEGs encoding detoxification enzymes/proteins were further analyzed. Twenty-one genes related to insecticide tolerance were predicted by 11 DEMs, of which 25 miRNA-mRNA interactions were identified. In the miRNA-mRNA network, novel-miR-4 and mmu-miR-3475-3p were involved in the response of L. dispar to cyantraniliprole stress by regulating five genes associated with detoxification, respectively. The P450 gene CYP4C1 (c34384.graph_c0) was the only DEG related to detoxification in the network, which was regulated by novel-miR-4. The expression levels of ten DEMs were confirmed by quantitative reverse transcription PCR (RT-qPCR) and the trends were consistent with miRNA-seq. This study identified some candidate miRNAs and mRNAs related to cyantraniliprole tolerance in L. dispar, which provides valuable transcriptomic information for revealing the molecular mechanisms of insect tolerance and developing novel insecticides.
Collapse
Affiliation(s)
- Chenshu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Peng Liu
- Jinan State-Owned Liubu Forest Farms, Jinan 250100, PR China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
16
|
Qiao Z, Li P, Tan J, Peng C, Zhang F, Zhang W, Jiang X. Oxidative stress and detoxification mechanisms of earthworms (Eisenia fetida) after exposure to flupyradifurone in a soil-earthworm system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:115989. [PMID: 36055090 DOI: 10.1016/j.jenvman.2022.115989] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Flupyradifurone (FLU) has great application potential in agricultural production as a new generation of neonicotinoid insecticide after imidacloprid. Nevertheless, the toxic effects of FLU on non-target soil organisms remain unclear, resulting in considerable environmental risks. We evaluated the acute and subchronic toxicities of FLU to earthworms. The results of acute toxicity show that the median lethal concentration (LC50) values (14 d) of FLU were 186.9773 mg kg-1 for adult earthworms and 157.6502 mg kg-1 for juveniles, respectively. The subchronic toxicity of FLU that focused on the activities of antioxidant and detoxication enzymes showed the superoxide dismutase (SOD), catalase (CAT), and glutathione-S transferase (GST) activities in earthworms increased while the peroxidase (POD) and acetylcholinesterase (AChE) activities decreased after exposure to FLU. Oxidative damage analyses revealed that the reactive oxygen species (ROS) level and malonaldehyde (MDA) content in earthworms were increased by FLU, resulting in DNA damage. Transcriptomics and RT-qPCR confirmed that FLU influenced the expression of genes related to antioxidant response and detoxification of earthworms. Ultimately detoxification metabolism, environmental information processing, cell processes, and immune system pathways are significantly enriched to respond jointly to FLU. Our study fills the gaps in the toxicity of FLU to earthworms, providing a basis for its risk assessment of soil ecosystems and non-target biological toxicity.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Peiyao Li
- College of Agriculture, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, Shandong, 266101, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
17
|
Li X, Sun Z, Yan T, Li Y, Zhang X, Liu M, Lin Y, Zhang Z, Xu H. Residue and distribution of drip irrigation and spray application of two diamide pesticides in corn and dietary risk assessment for different consumer groups. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6676-6686. [PMID: 35608937 DOI: 10.1002/jsfa.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As the use of diamide insecticides on corn continues to increase, there is growing concern about their residue levels on corn and dietary risks to populations. In this study, the distribution, dispersion and transfer efficiency of two diamide insecticides (tetrachlorantraniliprole (TCAP) and cyantraniliprole (CNAP)) in different parts of corn and soil were investigated in a 1-year field trial in Guangzhou and Lanzhou using two different application methods - spray and drip irrigation, respectively - and the dietary risk of the insecticides to different consumer populations was assessed under the two application methods. RESULTS The results showed that drip irrigation had a longer persistence period than spraying, and there was a hysteresis in the absorption distribution of the agent in different parts of corn, which was gradually transferred to the leaves after absorption from the roots. The average TE1 (transfer efficiency) and TE2 were 0.230-0.261 and 1.749-1.851 for TCAP and 0.168-0.187 and 2.363-2.815 for CNAP, respectively. At corn harvest, both TCAP and CNAP were below detectable levels in soil and corn. For different consumer populations, hazard quotients ranged from 0.001 to 0.066 for TCAP and from 0.003 to 0.568 for CNAP - both well below 100%. CONCLUSION This study indicates that TCAP and CNAP applied by spray or drip irrigation are safe for long-term risk of human intake and also provides guidance for the use of both insecticides in agricultural production to control corn pests, especially in arid and semi-arid areas. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianjia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zheng Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tiantian Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Miaojiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yigang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Zhao W, Teng M, Zhang J, Wang K, Zhang J, Xu Y, Wang C. Insights into the mechanisms of organic pollutant toxicity to earthworms: Advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119120. [PMID: 35283202 DOI: 10.1016/j.envpol.2022.119120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Earthworms play positive ecological roles in soil formation, structure, and fertility, environmental protection, and terrestrial food chains. For this review, we searched the Web of Science database for articles published from 2011 to 2021 using the keywords "toxic" and "earthworm" and retrieved 632 publications. From the perspective of bibliometric analysis, we conducted a co-occurrence network analysis using the keywords "toxic" and "earthworm" to identify the most and least reported topics. "Eisenia fetida," "bioaccumulation," "heavy metals," "oxidative stress," and "pesticides" were the most common terms, and "microbial community," "bacteria," "PFOS," "bioaugmentation," "potentially toxic elements," "celomic fluid," "neurotoxicity," "joint toxicity," "apoptosis," and "nanoparticles" were uncommon terms. Additionally, in this review we highlight the main routes of organic pollutant entry into soil, and discuss the adverse effects on the soil ecosystem. We then systematically review the mechanisms underlying organic pollutant toxicity to earthworms, including oxidative stress, energy and lipid metabolism disturbances, neurological toxicity, intestinal inflammation and injury, gut microbiota dysbiosis, and reproductive toxicity. We conclude by discussing future research perspectives, focusing on environmentally relevant concentrations and conditions, novel data processing approaches, technologies, and detoxification and mitigation methods. This review has implications for soil management in the context of environmental pollution.
Collapse
Affiliation(s)
- Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Kai Wang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, People's Republic Of China
| | - Jialu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
He F, Yu H, Shi H, Li X, Chu S, Huo C, Liu R. Behavioral, histopathological, genetic, and organism-wide responses to phenanthrene-induced oxidative stress in Eisenia fetida earthworms in natural soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40012-40028. [PMID: 35113383 DOI: 10.1007/s11356-022-18990-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) contamination not only changes the quality of soil environment but also threatens to the soil organisms. There is lack of focus on the eco-toxicity potential of this contaminant in real soil in the current investigation. Here, we assessed the toxic effects of PHE on earthworms (Eisenia fetida) in natural soil matrix. PHE exhibited a relatively high toxicity to E. fetida in natural soil, with the LC50 determined to be 56.68 mg kg-1 after a 14-day exposure. Excessive ROS induced by PHE, leading to oxidative damage to biomacromolecules in E. fetida, including lipid peroxidation, protein carbonylation, and DNA damage. The antioxidant defense system (total antioxidant capacity, glutathione S-transferase, peroxidase, catalase, carboxylesterase, and superoxide dismutase) in E. fetida responded quickly to scavenge excess ROS and free radicals. Exposure to PHE resulted in earthworm avoidance responses (2.5 mg kg-1) and habitat function loss (10 mg kg-1). Histological observations indicated that the intestine, body wall, and seminal vesicle in E. fetida were severely damaged after exposure to high-dose PHE. Moreover, earthworm growth (weight change) and reproduction (cocoon production and the number of juvenile) were also inhibited after exposure to this pollutant. Furthermore, the integrated toxicity of PHE toward E. fetida at different doses and exposure times was assessed by the integrated biomarker response (IBR), which confirmed that PHE is more toxic to earthworms in the high-dose and long-term exposure groups. Our results showed that PHE exposure induced oxidative stress, disturbed antioxidant defense system, and caused oxidative damage in E. fetida. These effects can trigger behavior changes and damage histological structure, finally cause growth inhibition, genotoxicity, and reproductive toxicity in earthworms. The strength of this study is the comprehensive toxicity evaluation of PHE to earthworms and highlights the need to investigate the eco-toxicity potential of exogenous environmental pollutants in a real soil environment.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Hanmei Yu
- Yanzhou District Branch of Jining Ecological Environment Bureau, No. 159, Wenhua East Road , Yanzhou District, Jining City, Shandong Province, 272100, People's Republic of China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
20
|
He F, Wan J, Li X, Chu S, Sun N, Liu R. Toxic effects of benzovindiflupyr, a new SDHI-type fungicide on earthworms (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62782-62795. [PMID: 34215985 DOI: 10.1007/s11356-021-15207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Benzovindiflupyr has received increasing attention as a new novel succinate dehydrogenase inhibitor (SDHI)-type fungicide. Nonetheless, its traces remaining in soil potentially trigger an ecotoxicological threat to soil organisms including earthworms. This paper evaluates the eco-toxicity of different benzovindiflupyr doses (0.1, 1, 5, and 10 mg kg-1) on earthworms (Eisenia fetida) after long-term exposure. Consequently, benzovindiflupyr at higher doses significantly inhibited the activities of respiratory chain complex II and succinate dehydrogenase (SDH) in E. fetida. Besides, the reactive oxygen species (ROS) and lipid peroxidation (LPO) were significantly induced in earthworms when treated with this fungicide. After benzovindiflupyr exposure, activities of antioxidant enzymes including catalase, peroxidase, and superoxide dismutase were activated. However, glutathione S-transferase activity in E. fetida was initially induced then inhibited in earthworms after treatment. Furthermore, benzovindiflupyr exposure induced the protein carbonylation (PCO) level in cells indicating oxidative damage to the cellular protein. Due to the destruction of the normal function in the coelomocytes, the phagocytic activity was initially activated, then inhibited when earthworms were treated at 5 and 10 mg kg-1 concentrations. Additionally, DNA damage was induced (larger olive tail moment (OTM) values) with the increase of benzovindiflupyr doses and exposure time. The weight was significantly decreased after benzovindiflupyr exposure on days 21 and 28. Benzovindiflupyr at higher doses significantly decreased the reproduction (number of cocoons and juveniles) of E. fetida. These findings reveal that benzovindiflupyr potentially induces a potential toxicological risk to earthworms when applied in the mentioned above dosages.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| | - Jingqiang Wan
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Ning Sun
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| |
Collapse
|