1
|
Liu F, Wang M, Zhou Z, Chen J, Zhang X, Xia Z. Overexpression of ZmSKD1 improves cadmium tolerance through the vesicle trafficking pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136848. [PMID: 39700952 DOI: 10.1016/j.jhazmat.2024.136848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Cadmium (Cd) is a major soil pollutant that threatens plant growth and human health. The plant ATPase associated with various cellular activities (AAA) SKD1 utilizes ATP hydrolysis energy to mediate cellular responses to environmental stress. However, the role and regulatory mechanisms of SKD1 in plant responses to Cd stress are not well understood. This study has demonstrated that the maize SKD1 gene (ZmSKD1) enhanced tobacco's tolerance to Cd stress. Overexpression of ZmSKD1 in tobacco reduced Cd accumulation and improved Cd tolerance. Moreover, ZmSKD1 overexpression enhanced the antioxidant capacity of tobacco, maintaining reactive oxygen species homeostasis and mitigating oxidative damage under Cd stress. The transcription factor AGL8 directly activated ZmSKD1 transcription, which in turn boosted ATPase activity in tobacco. This activation enhanced vesicle trafficking in root cells and accelerated Cd excretion in transgenic tobacco plants. Concurrently, the AGL8-ZmSKD1 module inhibited the expression of several Cd transport-related genes, thereby reducing Cd uptake by tobacco roots. These findings identified the AGL8-ZmSKD1 module as a crucial player in managing Cd stress through the vesicle trafficking pathway, offering valuable insights into strategies for developing crops with reduced Cd accumulation to ensure global food security and human health.
Collapse
Affiliation(s)
- Fangfang Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou 450046, China
| | - Zijian Zhou
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiafa Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Tan C, Luan H, He Q, Zheng Y, Lin Z, Wang L. Mapping soil cadmium content using multi-spectral satellite images and multiple-residual-stacking model: Incorporating information from homologous pollution and spectrally active materials. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136755. [PMID: 39667148 DOI: 10.1016/j.jhazmat.2024.136755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Soil cadmium (Cd) contamination significantly threatens ecosystems and human health. Traditional geochemical investigation, although accurate, is impractical for wide-area and frequent monitoring applications. Multi-spectral satellite images combined with the homologous pollution information (HPI) and the spectral and content information of soil organic matter (SOMSCI) is an unconventional and promising approach for large-scale, dynamic soil heavy metal (SHM) monitoring. Based on a novel Multiple-Residual-Stacked (MRS) machine-learning framework, the study estimated the soil Cd content in Yueyang City, China, during the past decade (2014-2023) using Landsat 8 images. Within it, three feature construction methods and four models were employed. The experimental results indicate that the XGB-MRS model incorporating HPI and SOMSCI significantly improved the estimation performance (RPD exceeded 90 %, R2, RMSE, and MAE exceeded 40 %). Moreover, against 243 ground samples during 2016-2022, the average overall estimation accuracy exceeded 80 %, validating the model's robustness and practicality. Furthermore, the descending order of contribution in the modelling is environmental auxiliary variables (55 %), HPI and SOMSCI (26 %), and spectral information (19 %). The fertilizer usage has direct (up to 2 years) and delayed (3-5 years) effects on soil Cd accumulation. Overall, our study provides a scalable framework for monitoring global SHM pollution using open-source multi-spectral satellite data.
Collapse
Affiliation(s)
- Chao Tan
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China.
| | - Haijun Luan
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China; Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Provincial Center of Natural Resources Affairs, 410004 Changsha, China.
| | - Qiuhua He
- Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Provincial Center of Natural Resources Affairs, 410004 Changsha, China.
| | - Yaling Zheng
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China.
| | - Zhenhong Lin
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China.
| | - Lanhui Wang
- Department of Physical Geography and Ecosystem Science, Lund University, 22228 Lund, Sweden.
| |
Collapse
|
3
|
Yu S, Wang S, Tang M, Pan S, Wang M. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154419. [PMID: 39864245 DOI: 10.1016/j.jplph.2025.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. × vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. × vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. × vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
Collapse
Affiliation(s)
- Shiyin Yu
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shan Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Min Tang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shuzhen Pan
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Meixian Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
4
|
Wang Y, Li X, Zhuang K, Peng Y, Huang X, Lu Q, Qian M, Liu Y, Chen X, Peng K, Shen Z, Xia Y. Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) and potential mitigation strategy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109458. [PMID: 39862459 DOI: 10.1016/j.plaphy.2024.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.) cultivar Sulu (SL) and its three mutant lines (20#, 09#, and 06#) were used to compare the difference in Cd absorption, accumulation, and tolerance through pot and field experiments. 20#, 09#, and 06# are Cd-tolerant germplasms of mung bean but exist in different Cd tolerance mechanisms, 20# exhibited the lowest Cd absorption capacity, 09# possessed lower Cd translocation capacity, while 06# accumulated more Cd in protoplasts. Mung bean germplasms with higher Cd tolerance generally showed lower absorption capacity and intracellular accumulation of Cd. Besides, Cd accumulation in mung bean seeds is mainly depended on the absorption and translocation of Cd in roots and the Cd concentration in leaves, exogenous Mn supply inhibited the Cd2+ net influx of roots and Cd accumulation in seeds, this trend was more pronounced in mung bean germplasms with higher Cd accumulation and absorption. Moreover, we characterized a Cd transporter gene VrNramp5, which was differentially expressed in different mung bean lines, overexpression of VrNramp5 increased Cd accumulation and was accompanied by Cd-sensitive phenotype in transgenic mung bean seedlings, and the Cd concentration of mung bean was significantly positively correlated with the expression levels of VrNramp5. Taken together, our findings demonstrated that different Cd tolerance mechanisms exist in mung bean. 20# is the new Cd-tolerant germplasm with low Cd absorption capacity and Cd accumulation in seeds, and has great potential for the safe production of mung bean in Cd-contaminated soils and the breeding of low Cd accumulation crop cultivars.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xin Li
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kai Zhuang
- Jinpu Landscape Architecture Limited Company, Nanjing, 211100, PR China
| | - Yizhe Peng
- College of Civil Engineering, Hunan University, Changsha, 410006, PR China
| | - Xueying Huang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qian Lu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Meng Qian
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanli Liu
- Jinpu Landscape Architecture Limited Company, Nanjing, 211100, PR China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Kejian Peng
- Hunan Research Academy of Environmental Sciences, Changsha, 410128, PR China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Khan MN, Islam S, Siddiqui MH. Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109522. [PMID: 39854787 DOI: 10.1016/j.plaphy.2025.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H+-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.7%), pyruvate kinase (79.2%), phosphoenolpyruvate carboxylase (38.9%) pyruvate dehydrogenase (41.5%), malate dehydrogenase (49.2%), citrate synthase (37.7%), isocitrate dehydrogenase (33.1%), ATP synthase (63.6%), and ATPase (38.6%). Incubation of Cd-stressed seedlings with Mel also improved the activity of nitrate reductase by 89.4%, nitrite reductase by 78.2%, and glutamine synthetase by 35.3% that resulted in higher level of ammonium and their subsequent assimilation to amino acids and proteins. Activation of these enzymes was strongly associated with Mel-induced regulation of H+-ATPase activity that improved K+ retention and N assimilation capacity of the Cd-stressed seedlings of mung bean. The coordinated mechanism of action of tricarboxylic acid (TCA) cycle, N metabolism, and higher K+ levels were helpful in providing protection against detrimental effects of Cd toxicity through improving the defense system and energy level of the plants. However, inclusion of sodium orthovanadate (PM H+-ATPase inhibitor) to the incubation medium reversed the positive effect of Mel and suppressed the performance of plants under Cd-stress. The findings of the study indicate that under Cd stress, the regulatory mechanisms of anaplerotic enzymes and antioxidant defense are mediated by Mel, and this process is facilitated by the retention of K+ induced by H+-ATPase.
Collapse
Affiliation(s)
- M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shaistul Islam
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Wang X, Wang S, Gao L, Guo P, Du H, Ma M, Rennenberg H. Nitric oxide mitigates cadmium stress by promoting the biosynthesis of cell walls in Robinia pseudoacacia roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109544. [PMID: 39879830 DOI: 10.1016/j.plaphy.2025.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) pollution is a growing concern worldwide, because it threatens human health through the food chain. Woody plants, such as the pioneer species black locust (Robinia pseudoacacia L.), are widely used in phytoremediation of Cd-contaminated soils, but strongly differ in Cd tolerance. Nitric oxide (NO), a highly reactive gas of biogenic and anthropogenic origin, has been shown to protect plants to Cd exposure. We investigated the protective mechanism of NO against Cd toxicity in black locust using physiological, transcriptomic and metabolomic approaches. We studied the correlation between cell wall traits, genes, and metabolites. The findings indicated that NO improved the growth of black locust under Cd exposure and elevated the fraction of Cd in the cell wall. NO increased cell wall thickness by stimulating the biosynthesis of pectin, cellulose, hemicellulose, and lignin. Transcriptomic and metabolomic analyses demonstrated that NO upregulated genes related to root cell wall biosynthesis and increased the accumulation of related metabolites, thereby increasing the Cd resistance of black locust. Our results elucidated a molecular mechanism underlying NO-mediated Cd tolerance in black locust and provided novel insights for phytoremediation of Cd-polluted soils by woody plants.
Collapse
Affiliation(s)
- Xun Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
7
|
Li J, Zhu G, Liu H, Sheng Y, Hu Q, Lin T, Li T. Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109467. [PMID: 39755098 DOI: 10.1016/j.plaphy.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex. We found that plant sex notably influenced VOC emission and altered blend compositions, with male seedlings emitting higher amounts of monoterpenes, sesquiterpenes, homoterpenes and green leaf volatiles (GLVs) than females. Soil Cd exposure significantly increased emissions of monoterpenes, GLVs, and nitrogenous VOCs in males but not in females. Comparatively, larval feeding exerted the strongest effects on VOC emissions and their composition, albeit to varying extent between males and females, and among different VOC classes. Importantly, Cd exposure amplified herbivore-induced VOC emissions in males. For instance, under both Cd and herbivory conditions, male seedlings showed a 68.1-fold increase in nitrogenous VOC emissions, almost twice the combined effects of Cd (8.7-fold) and herbivory (26.3-fold). Taken together, these results suggest that soil metal pollution can boost herbivore-induced VOC emissions in a sex-specific manner, with potential implications for ecological interactions and atmospheric processes.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guoqing Zhu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Hongxia Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanlan Sheng
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Quanjun Hu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tiantian Lin
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China.
| | - Tao Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Balali-Mood M, Eizadi-Mood N, Hassanian-Moghaddam H, Etemad L, Moshiri M, Vahabzadeh M, Sadeghi M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025; 11:e42696. [PMID: 40040983 PMCID: PMC11876891 DOI: 10.1016/j.heliyon.2025.e42696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Metals have been used for many centuries, but their nutritional and toxic effects have been investigated since the last century. The common toxic heavy metals (THM) include mercury, lead, chromium cadmium, and arsenic. As human exposure to THM increasingly causes systemic and organ complications, it seems required to review the recent advances of treatment of the toxic metals. Despite the current knowledge of the hazards of heavy metals, there is still high incidents of their poisonings particularly in developing countries. In this review, after an introduction, we briefly describe the routes of exposure, clinical features and prognosis of each metal poisoning. Then, review the different treatments for each metal with particular attention to recent advances in the treatment of both acute and chronic poisonings. The main antidotes for all THM are still chelating agents, but new agents were developed over the past decades and have been used successfully for the THM poisonings. Dimercaptosuccinic acid (DMSA) known as succimer has been prescribed as a safe oral chelator in lead poisoning. Similarly, dimercapto-propanesulfonic acid (DMPS) has also revealed fewer side effects than the old chelating agents. The two are currently gaining increased acceptance among clinical toxicologists. However, there is no specific antidote for mercury poisoning. Dimercaprol is almost no longer used as an antidote of choice in the treatment of chronic THM poisoning. Comparison of clinical management of intoxication by the five heavy metals reveals similar treatment strategies. On the other hand, some of them require specific interventions to reduce the toxicity. Because of drawbacks in the application of commonly known chelating agents, treatment with bioactive compounds which have antioxidant and anti-inflammatory properties has been the subject of much interest in recent research. However, despite the promising results observed in experimental animals, clinical trials on their clinical therapeutic benefits have not been yet successful and need further studies to determine their efficacy and safety in humans. Development of less toxic chelating agents are still under investigations. Moreover, the development of orally administrable chelating agents for home health care would likely be of great interest for future research.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nastaran Eizadi-Mood
- Department of Clinical Toxicology, School of Medicine, Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Royal Perth Bentley Group, Next Step Drug and Alcohol Services, Perth, Australia
| | - Leila Etemad
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Vahabzadeh
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Liang S, Lan Z, Wang J, Zou W, Hu Y, Ran H, Qin M, Xiao G, Zhang S, Ma X, Ye G, Luan W. Knockout of cadmium sensitive gene 1 confers enhanced cadmium tolerance in rice (Oryza sativa L.) by regulating the subcellular distribution of cadmium. Int J Biol Macromol 2025:141604. [PMID: 40024401 DOI: 10.1016/j.ijbiomac.2025.141604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Cadmium (Cd) is a heavy metal which is toxic to both plants and animal. The high content of Cd in the rice grain severely threatens human's health. Here, we identified a Cd sensitive gene, named Cadmium Sensitive Gene 1 (OsCSG1), playing an important role in improving Cd tolerance in rice at seedling stage. The expression of OsCSG1 was induced by CdCl2 and exhibited higher mRNA levels in leaf blade, leaf sheath and stele of roots. Knockout of OsCSG1 improved the Cd tolerance of rice seedlings, suggesting that OsCSG1 negatively regulated Cd tolerance in rice. The Cd concentration in roots of seedling of oscsg1 mutants increased significantly under Cd stress, but not in the shoot and grains compared with wild type (WT). Subcellular distribution of Cd in root cells suggested that Cd proportions in soluble fractions of cells in oscsg1 mutant increased significantly. And CAT activity in oscsg1 mutants increased significantly. Taken together, knocking out OsCSG1 could improve Cd tolerance in rice by regulating subcellular distribution of cadmium and increased CAT activity.
Collapse
Affiliation(s)
- Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Zhipeng Lan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Jiahan Wang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Wenli Zou
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Youchuan Hu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Hongyu Ran
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Mao Qin
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518055, China
| | - Gui Xiao
- Hunan Hybrid Rice Research Center, Mapoling Yuanda road No. 2, Furong district, Hunan province 410125, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Rice Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines.
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
10
|
Liao S, Ling Y, Gao Y, Ma G, Li X, Chen L, Hu L, Xie Y. Enhanced cadmium tolerance in perennial ryegrass via exogenous application of Enterobacter hormaechei strain X20. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117905. [PMID: 39986050 DOI: 10.1016/j.ecoenv.2025.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Cadmium (Cd) contamination in soils poses a critical environmental challenge, jeopardizing both agricultural productivity and food safety. The utilization of plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy for mitigating the adverse effects of heavy metal stress on plant health and development. This study investigates the effectiveness of Enterobacter hormaechei X20 in enhancing Cd tolerance in perennial ryegrass, a species renowned for its phytoremediation potential. Strain X20 demonstrated multiple PGPR traits, including phosphate solubilization, indole-3-acetic acid (IAA) production, and siderophore secretion. Under Cd stress, X20 significantly stimulated plant growth, elevated canopy height, and preserved leaf water content. Additionally, X20 inoculation enhanced Cd uptake and reestablished ion homeostasis by augmenting Fe2+, Cu2+, Zn2+, and Mn2+ levels. It also improved photosynthetic efficiency, particularly by optimizing PSII activity, and strengthened antioxidant defense, alleviating oxidative stress. Metabolomic analysis revealed significant modulations in amino acid and sugar metabolism, marked by increased in serine and glycine levels under Cd stress. Furthermore, fructose and glucose levels rose, while sucrose levels declined, reflecting metabolic reprogramming that facilitates stress adaptation. These findings suggest that Enterobacter hormaechei X20 holds great promise as a bioinoculant for enhancing phytoremediation efficiency and plant resilience in Cd-contaminated soils, providing a sustainable strategy for managing heavy metal pollution in agriculture.
Collapse
Affiliation(s)
- Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Ling
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China.
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
11
|
Zheng J, Wang X, Huang R, Xian P, Cui J, Amo A, Chen L, Han Y, Hou S, Yang Y. Integration of comparative cytology, ionome, transcriptome and metabolome provide a basic framework for the response of foxtail millet to Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137684. [PMID: 40007366 DOI: 10.1016/j.jhazmat.2025.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/28/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Apart from directly affecting the growth and development of crops, Cd in the soil can easily enter the human body through the food chain and pose a threat to human health. Therefore, understanding the toxicity of Cd to specific crops and the molecular mechanisms of their response to Cd is essential. In this study, hydroponic experiments were utilized to study the response of foxtail millet to Cd stress through phenotypic investigation, enzyme activity determination, ultrastructure, ionome, transcriptome and metabolome. With the increase in cadmium concentration, both the growth and photosynthetic capacity of foxtail millet seedlings are severely inhibited. The ultrastructure of cells is damaged, cells are deformed, chloroplasts swell and disappear, and cell walls thicken. Cd stress affects the absorption, transport, and redistribution of beneficial metal ions in the seedlings. Multi-omics analysis reveals the crucial roles of glycolysis, glutathione metabolism and phenylpropanoid and lignin biosynthesis pathways in Cd detoxification via energy metabolism, the antioxidant system and cell wall changes. Finally, a schematic diagram of foxtail millet in response to Cd stress was we preliminarily drew. This work provides a basic framework for further revealing the molecular mechanism of Cd tolerance in foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Xinyue Wang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Rong Huang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Peiyu Xian
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Jian Cui
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| |
Collapse
|
12
|
Luo Y, Huang X, Sha A, He J, Chen X, Xiao W, Peng L, Zou L, Liu B, Li Q. Analysis of growth physiological changes and metabolome of highland barley seedlings under cadmium (II) stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125664. [PMID: 39805469 DOI: 10.1016/j.envpol.2025.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
This study aims to investigate the physiological changes in growth and metabolic response mechanisms of highland barley under different concentrations of cadmium. To achieve this, cadmium stress was applied to green barley at levels of 20, 40, and 80 mg/L. The results revealed that, under Cd(II) stress, the chlorophyll content and photosynthesis in leaves of highland barley seedlings were inhibited to some extent. Additionally, the malondialdehyde (MDA) content and superoxide dismutase activity increased significantly, indicating that the seedlings were affected by oxidative stress. In addition, Cd(II) stress also significantly affected the accumulation of metabolites in highland barley seedlings, resulting in an increase in lipids and lipid molecules, organic heterocyclic compounds, and phenylpropanoids. Cd(II) stress also significantly interfered with phenylalanine metabolism, fructose and mannose metabolism, amino acid, sugar, and nucleotide sugar metabolism, and biosynthetic metabolic pathways of isoquinoline alkaloids. The increase in Cd(II) stress also resulted in elevated levels of soluble sugars, soluble proteins, and proline as defense mechanisms against the stress. Overall, barley has a very good ability to resist adversity, and the mechanism of barley's resistance to adversity has not been deeply investigated. Therefore, in this paper, we systematically investigated the stress resistance mechanism of barley to cadmium stress and found that the growth physiology and metabolism of barley seedlings were significantly affected by cadmium stress. Differential changes in metabolites and enrichment of metabolic pathways may be the main mechanisms for barley seedlings to cope with Cd(II) stress. This provides direction for selecting better varieties of barley.
Collapse
Affiliation(s)
- Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xian Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Gulzar U, Hussain A, Hamayun M, Iqbal A, Seleiman MF, Alotaibi M, Lee B. Gibberellins producing endophytic Aspergillus nidulans DSE-2 biosorbs Cd and down-regulates OsNRAMP5 and OsCd1 genes to improve rice growth in contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109650. [PMID: 39977967 DOI: 10.1016/j.plaphy.2025.109650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Cadmium tolerant endophytic fungi were isolated from Amaranthus spinosus L. roots. The isolates were screened for gibberellins (GAs) secretion and Cd stress alleviation in rice seedlings. Among the isolates, DSE-2 was selected for its ability to release GAs and alleviate Cd stress in the seedlings. The isolate was identified to be Aspergillus nidulans. When inoculated on rice seedlings, DSE-2 enhanced their relative growth rate and net assimilation rate by 115% and 56.4% compared to the control. Presence of Cd in the soil reduced RGR and NAR to 41 and 68.4 % of the control. However, DSE-2 associated rice seedlings were not affected by the stress, indicating that the inoculant was effective in alleviating Cd stress. When the DSE-2 inoculaed seedlings were treated with GAs inhibitor, uniconazole, efficiency of the inoculant was severely impaired. Expression of the genes involved in Cd uptake (OsNRAMP5 and OsCd1) was significantly reduced in DSE-2 inoculated seedlings compared to the control. However, uniconazole treated seedlings had higher expression of these genes, indicating the involvement of GAs in Cd stress alleviation by the endophyte. This was further supported by the lower accumulation of Cd in endophyte associated seedlings and higher accumulation of Cd in uniconazole treated endophyte associated seedlings. Accumulation of ROS followed an opposite trend, lower in endophyte associated seedlings than those receiving uniconazole. Our results indicate that fungal GAs are important in reducing Cd uptake by rice seedlings accompanied by lower level of ROS.
Collapse
Affiliation(s)
- Uroosa Gulzar
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhunkhwa, Pakistan.
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhunkhwa, Pakistan
| | - Amjad Iqbal
- Department of food Science and Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhunkhwa, Pakistan
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Majed Alotaibi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University Busan, South Korea
| |
Collapse
|
14
|
Gmur D, Siebielec G, Pecio M. Differences in Accumulation of Rare Earth Elements by Plants Cultivated in Soil and Substrates from Industrial Waste Materials. PLANTS (BASEL, SWITZERLAND) 2025; 14:589. [PMID: 40006848 PMCID: PMC11858996 DOI: 10.3390/plants14040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
The aim of this experiment was to investigate the differences in the uptake and accumulation of rare earth elements (REEs) between selected plant species and the substrates used (soil with increased REE content, ash, and smelter waste). Eight plant species were included in the study: common yarrow (Achillea millefolium), false mayweed (Triplerosperum maritimum), tall fescue (Festuca arundinacea), marigold (Tagetes sp.), maize (Zea mays), white mustard (Sinapis alba), red clover (Trifolium pratense L.), and autumn fern (Dryopteris erythrosora). The study focused on the following REE representatives: lanthanum (La), cerium (Ce), europium (Eu), and gadolinium (Gd). Plant samples, divided into roots and shoots, were analyzed by ICP-MS. The obtained REE concentrations in plant tissues ranged from 9 to 697 µg kg-1 (La), 10 to 1518 µg kg-1 (Ce), 9 to 69 µg kg-1 (Eu), and 9 to 189 µg kg-1 (Gd). To determine the ability of plants to phytoextract REE, two factors were calculated: the translocation factor (TF) and the bioconcentration factor (BCF). The highest TF value was obtained for D. erythrosora growing on a substrate consisting of soil with increased REE content (Gd, TF = 4.03). Additionally, TF > 1 was obtained for all REEs in T. pratense L. In the experiment, the BCF was lower than 1 for all the plants tested. The study provided insight into the varying ability of plants to accumulate REEs, depending on both the plant species and the chemical properties of the substrate.
Collapse
Affiliation(s)
- Dominika Gmur
- Department of Soil Science and Environmental Analyses, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 21-100 Pulawy, Poland; (G.S.); (M.P.)
| | | | | |
Collapse
|
15
|
Du H, Tan L, Wei C, Li S, Xu Z, Wang Q, Yu Q, Ryan PR, Li H, Wang A. Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress. Sci Rep 2025; 15:5100. [PMID: 39934262 DOI: 10.1038/s41598-025-89462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Shengchun Li
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Zhou Xu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qinghai Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Peter R Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - An'hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| |
Collapse
|
16
|
Chen R, Chen X, Xu Y, Ali I, Zhu W, Liu J, Wang Q, Huang W, Dai X. Enhancing remediation efficiency of cadmium-contaminated soil: integrating forage-microorganism systems with agronomic strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:67. [PMID: 39912984 DOI: 10.1007/s10653-025-02383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Soil contamination due to heavy metals, especially cadmium (Cd), poses a growing concern. This study seeks to develop an economical and non-polluting sustainable remediation program for Cd-contaminated soil to address this issue. This study pioneered the exploration of Cd accumulation patterns in three forage species: Lolium multiflorum Lamk (LMJS), Sorghum bicolor × sudanense (SSBJ), and Sorghum sudanense (Piper) Stapf (SUJS) to identify their optimal harvest periods in Cd-contaminated soils. Additionally, a consortium of beneficial microorganisms (combinations of C, F, and H; C: 10% Bacillus subtilis; F: 20% Bacillus subtilis + 10% Bacillus cereus + 20% Citrobacter; H: 20% Deinococcus radiodurans + 10% Bacillus cereus) was implemented, with a focus on developing an efficient forage-microbial co-remediation system. Subsequently, agronomic strategies (mowing or chelating agents) were employed to improve the Cd enrichment capacity of the combined forage-microbe remediation system, offering sustainable field remediation strategies. The results indicate that the SSBJ + F combined remediation system was mowed on the 60th day (stubble left at 35 cm, light mowing) and harvested on the 120th day as the optimal choice. The bioaccumulation quantity (BCQ) unit accumulation in Cd-contaminated soil at a concentration of 10 mg/kg reached 0.397 mg/kg, and the annual Cd removal rate was 9.23%, representing a 29.63% increase compared to the control group. The results of this study provide valuable insights into the development of practical, field-applicable remedial measures for cadmium-contaminated soils while minimizing environmental impacts.
Collapse
Affiliation(s)
- Rou Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
| | - Xiaoming Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China.
| | - Yuxuan Xu
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
| | - Imran Ali
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Wenkun Zhu
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
| | - Jikai Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
| | - Qing Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
| | - Wenyi Huang
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
| | - Xueqi Dai
- College of Life Science and Engineering, Southwest University of Science and Technology, 59# Qinglong Road, Mianyang, 621010, Sichuan, People's Republic of China
| |
Collapse
|
17
|
Rojas-Rojas FU, Gómez-Vázquez IM, Estrada-de Los Santos P, Shimada-Beltrán H, Vega-Arreguín JC. The potential of Paraburkholderia species to enhance crop growth. World J Microbiol Biotechnol 2025; 41:62. [PMID: 39904926 PMCID: PMC11794353 DOI: 10.1007/s11274-025-04256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Agrochemicals are the primary alternative for maintaining the high yields necessary to produce sufficient plant-based foods to supply the world population. In recent decades, one of the most extensively explored alternatives to replace agrochemicals and reduce their environmental impact has been the use of microorganism-based products to boost crop yields with less environmental impact. This review focuses on the results of studies that have demonstrated the potential of the genus Paraburkholderia to increase crop yields and be utilized in biofertilizers and biocontrol products. A literature search was performed electronically considering articles and books published until August 19, 2024. We identified 24 species of Paraburkholderia with the ability to improve crop yields after their inoculation by different methods on seeds, seedlings, plantlets, adult crops, or fruits. The effects of these bacteria have been tested under laboratory, greenhouse, or field conditions. These Paraburkholderia species mediate their positive impact on crop growth by direct and indirect plant growth-promoting mechanisms, which include improving nutrient uptake, stimulating growth by phytohormone production, regulation and stimulation of metabolic pathways, induction of abiotic stress tolerance, and disease control by direct pathogen inhibition or induction of systemic resistance in plants. The literature reviewed here supports the use of Paraburkholderia in bio-inputs under the actual panorama of climate change and the necessity to increase sustainable agriculture worldwide.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Ingrid Melissa Gómez-Vázquez
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Paulina Estrada-de Los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc., 11340, Miguel Hidalgo, Ciudad de México, México
| | - Harumi Shimada-Beltrán
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.
| |
Collapse
|
18
|
Malik MS, Rehman A, Shah IH, Arif S, Nan K, Yan Y, Song S, Hameed MK, Azam M, Zhang Y. Green synthesized silicon dioxide nanoparticles (SiO 2NPs) ameliorated the cadmium toxicity in melon by regulating antioxidant enzymes activity and stress-related genes expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125459. [PMID: 39644955 DOI: 10.1016/j.envpol.2024.125459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Green synthesized nanoparticles (NPs) are an eco-friendly and cost-effective approach to reduce heavy metal stress in plants. Among heavy metals, cadmium (Cd) possesses higher toxicity to the crops and ultimately reduces their growth and yield. The current study aims to evaluate the effectiveness of green synthesized SiO2NPs to reduce toxic effects of Cd in melon (Cucumis melo) by regulating physiological parameters, enhancing antioxidant enzyme activity, and modulating stress-related gene expression. The SiO2NPs were synthesized using Artemisia annua plant extract having spherical shape and size within the range of 40-70 nm and characterized using advanced spectroscopic and analytical techniques. The application of SiO2NPs (75 mg/L) significantly improved physiological parameters such as shoot length (SL), root length (RL), leaf fresh weight (LFW), root fresh weight (RFW), leaf dry weight (LDW) and root dry weight (RDW) by 14%, 20%, 15%, 16%, 14%, and 28%, respectively, compared to Cd-stressed plants. Photosynthetic pigments (chlorophyll and carotenoids) showed a notable increase of 15% and 40%, respectively. Furthermore, the activities of antioxidant enzymes such as SOD, POD, CAT, and APX were enhanced by 28.67%, 35.45%, 32.07%, and 42.75%, respectively. In addition, applying SiO2NPs increased the concentration of macronutrients N, P, and K by 33%, 40%, and 37%, respectively, compared to Cd-stressed plants. Moreover, SiO2NPs upregulated the expression of several stress-related genes and reduced Cd accumulation in shoots and roots. This study reveals that green synthesized SiO2NPs effectively reduced the Cd toxicity in melon by improving morphological and physiological parameters, enhancing antioxidant enzyme activity, and regulating the expression of stress-related genes. These findings suggest that green synthesized SiO2NPs could play a crucial role in sustainable agriculture by protecting crops from heavy metal stress.
Collapse
Affiliation(s)
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Nan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Ilyas T, Shahid M, Shafi Z, Aijaz SA, Wasiullah. Molecular mechanisms of methyl jasmonate (MeJAs)-mediated detoxification of heavy metals (HMs) in agricultural crops: An interactive review. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:139-159. [DOI: 10.1016/j.sajb.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Kuang Y, Bao D, Sheng X, Gao C, Pang G, Guo L, Chen B, Ma Z. Gradient experiment reveals physiological stress from heavy metal zinc on the economically valuable seaweed Sargassum fusiforme. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106958. [PMID: 39799852 DOI: 10.1016/j.marenvres.2025.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Zn is a common heavy metal pollutant in water bodies and accounts for the largest proportion of heavy metal pollutants in many rivers entering the sea. This study investigated the growth and physiological response characteristics of Sargassum fusiforme under different divalent Zn ion concentration gradients. We observed that low concentration Zn2+ treatment (<2 mg L-1) exerted no significant effect on the growth rate, photosynthesis, and nitrogen metabolism-related indicators of S. fusiforme. Treatment with medium to high Zn2+ concentrations (2-25 mg L-1) significantly affected the growth rate, photosynthetic activity, nitrogen absorption rate, antioxidant enzyme activity, membrane lipids, and DNA peroxidation damage-related indicators of S. fusiforme. Under medium-to-high concentration treatments, the SOD activity of S. fusiforme decreased with increasing concentration, and the CAT activity increased with increasing treatment concentration. The MDA and H2O2 contents increased with increasing Zn2+ concentrations. At a Zn2+ concentration of 5 mg L-1, the relative conductivity of S. fusiforme significantly increased. Treatment with higher Zn2+ concentrations significantly increased the 8-hydroxydeoxyguanosine (8-OHdG) content, poly ADP-ribose polymerase (PARP) activity, and Histone H2AX content of S. fusiforme, thus indicating that Zn2+ stress causes DNA damage. All Zn2+ concentrations induced mannitol accumulation, and soluble protein content decreased with increasing Zn2+ concentration. In summary, we observed that a Zn2+ concentration of 2-5 mg L-1 may be the critical value for the response of S. fusiforme to Zn2+ stress. Higher concentrations of Zn in the environment can exert toxic effects on the growth, development, and biomass accumulation of S. fusiforme. This study provides a reference for the risk assessment and aquaculture management of seaweeds.
Collapse
Affiliation(s)
- Yiqi Kuang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Donya Bao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Xingda Sheng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Congquan Gao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Guanfeng Pang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Lina Guo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Binbin Chen
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035, Wenzhou, China.
| | - Zenglin Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035, Wenzhou, China.
| |
Collapse
|
21
|
Zhang T, Wang Y, Wang J, Huang X, Yang D, Zhao H, He J. Accumulation, physiological and proteomic analyses of Suaeda salsa under cadmium exposure. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106935. [PMID: 39827711 DOI: 10.1016/j.marenvres.2024.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Suaeda salsa, the dominant herbaceous plant in the high salinity areas of Asia, can even grow in the heavy metal polluted region. In order to illustrate the mechanisms of Cd (cadmium) tolerance in S. salsa, the accumulation, physiological and proteomic characters under two different concentrations of Cd exposure were investigated in this study. The results showed a significant decrease in root and seedling growth rate, as well as an increase in Cd ion content in all tissues of S. salsa, in response to the increased Cd concentration. Furthermore, it was found that Cd was mainly accumulated in the root compared with the stem and leaf. Further proteomic analysis revealed that in the root of S. salsa under 7-d Cd exposure, 260 and 237 proteins were significantly upregulated in 1 μg/L and 20 μg/L Cd treatment groups, respectively. In addition, Gene Ontology (GO) enrichment analysis showed that cellulose synthase with the function of cell wall organization was upregulated under Cd stress. Moreover, the proteins functioning as the transporters of iron (ATP-binding cassettes protein, metal tolerance proteins, yellow-stripe-like proteins) and organic compounds (oligopeptide transporters, phosphate transporters) were also highly expressed, which indicated that the accumulation of Cd in the root of S. salsa may be mainly regulated through Cd immobilization by the cell wall or transportation into vacuoles. These findings enhance our understanding of the impacts of Cd pollution in S. salsa and may form a basis for future phytoremediation and biomarker studies.
Collapse
Affiliation(s)
- Tianqian Zhang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Yuting Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Junli Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Xin Huang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Dazuo Yang
- Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, PR China
| | - Huan Zhao
- Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, PR China.
| | - Jie He
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China.
| |
Collapse
|
22
|
Wang F, Jia X, Zhao Y, Yang X, Feng X. Two strains of cadmium (Cd)-resistant bacteria isolated from soils and their ability to promote oilseed rape (Brassica juncea L.) to grow and absorb Cd in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125549. [PMID: 39694310 DOI: 10.1016/j.envpol.2024.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
As a highly toxic, mobile, and persistent heavy metal, cadmium (Cd) in soils is becoming a crucial environmental problem. Most of classical physical and chemical remediation measures for Cd-contaminated soils possibly cause some dangers to soil structure and characteristics and potential secondary pollution, however, Cd-resistant microbial which can sequestrate Cd by releasing extracellular polymeric substances (EPS) capable of ion exchange, coordination, and adsorption and improve plant growth should be favorable for remediation of Cd-contaminated soils due to being environmentally friendly and cost-effective. Therefore, the plant-microbe combination is becoming a priority option in the remediation of Cd-contaminated soils. Here, we isolated two strains of Cd-resistant bacteria from soils and investigated the ability of the two strains to promote growth of oilseed rape (Brassica juncea L.) and Cd uptake by the plants. Citrobacter farmeri and Cupriavidus gilardii were isolated from soils via culture media containing 30 and 50 mg/L Cd, respectively, which could release EPS including proteins, polysaccharide, and DNA. The EPS from C. gilardii was significantly higher than that from C. farmeri, and the proportion of protein in EPS was the highest for two strains. Additionally, two strains secreted indole-3-acetic acid (IAA) and could solubilize phosphorus, and the ability of C. gilardii to secret IAA was significantly higher than that of C. farmeri. The pot experiment indicated that C. farmeri and C. gilardii significantly enhanced oilseed rape biomass (by 81.99% and 76.57%, respectively), C and N contents, Cd accumulation in plants by 229.03% and 264.63%, respectively, and remediation efficiency at 40 days after emergence (flowering stage). However, the difference in promoting plant growth and Cd uptake and phytoremediation efficiency of Cd-contaminated soils between the two strains was not significant. Overall, C. farmeri and C. gilardii isolated from soils might be promising strains in enhancing phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Fang Wang
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang'an University, Xi'an, 710054, PR China
| | - Xia Jia
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang'an University, Xi'an, 710054, PR China
| | - Xuelian Yang
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| | - Xiaojuan Feng
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| |
Collapse
|
23
|
Shabbir A, Shah AA, Usman S, Ahmed S, Kaleem M, Shafique S, Gatasheh MK. Efficacy of malic and tartaric acid in mitigation of cadmium stress in Spinacia oleracea L. via modulations in physiological and biochemical attributes. Sci Rep 2025; 15:3366. [PMID: 39870677 PMCID: PMC11772872 DOI: 10.1038/s41598-025-85896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants. In this study, randomized design pot experiment was conducted to evaluate potential role of malic acid (MA) and tartaric acid (TA) foliar spray to mitigate Cd stress in Spinacia oleracea L plants. For Cd stress, S. oleracea plants were treated with CdCl2 solution (100 µM). For control, plants were given distilled water. One week after Cd stress, MA and TA foliar spray was employed at concentration of 100 and 150 µM for both. The results of this study revealed that Cd stress (100 µM) significantly reduced growth attributes, photosynthetic pigments and related parameters and gas exchange attributes. Cadmium stress also stimulated antioxidant defense mechanism in S. oleracea. Cd stressed plants had elevated levels of Cd metal ions in root and consumable parts (i.e. leaves) and caused severe oxidative damages in the form of increased lipid peroxidation and electrolytic leakage. MA and TA supplements at both low and high levels (100 and 150 µM) effectively reversed the devastating effects of Cd stress and improved growth, photosynthesis and defense related attributes of S. oleracea plants. These supplements also prevented excessive accumulation of Cd metal ions as indicated by lowered Cd metal contents in MA and TA treated plants. These findings demonstrated that MA and TA treatments can potentially reduce Cdl induced phytotoxicity in plants by reducing its uptake and enhancing photosynthesis and defense related parameters.
Collapse
Affiliation(s)
- Ansa Shabbir
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Muhammad Kaleem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Shiffa Shafique
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
24
|
Espinola EC, Cabreros MMN, Redillas MCFR. Morpho-Physiological Adaptations of Rice Cultivars Under Heavy Metal Stress: A Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:189. [PMID: 40003598 PMCID: PMC11856324 DOI: 10.3390/life15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Soil contamination, including in rice fields, arises from a variety of natural processes and anthropogenic activities, leading to an accumulation of heavy metals. While extensive research has addressed the bioaccumulation of heavy metals in rice, only limited systematic reviews have examined their specific impact on the morpho-physiological traits of rice plants. This review aims to provide a comprehensive synthesis of current studies detailing the rice cultivars, types of heavy metals investigated, study designs, sampling locations, and experimental sites while systematically analyzing the morphological and physiological responses of rice cultivars to heavy metal stress. Studies show that morphological traits generally exhibit a decline under heavy metal exposure. Physiologically, rice cultivars tend to show decreased total chlorophyll and carotenoid levels, along with increased levels of malondialdehyde (MDA), hydrogen peroxide (H₂O₂), and antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and proline. These findings suggest that plant genotype, type of heavy metal, and intensity of stress significantly modulate the morphological and physiological responses of rice, highlighting critical areas for further research in heavy metal stress tolerance in rice cultivars.
Collapse
Affiliation(s)
- Esmeth C. Espinola
- Science Education Department, Br. Andrew Gonzales FSC College of Education, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines;
| | - Monica Maricris N. Cabreros
- Department of Biology, College of Science, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines;
| | | |
Collapse
|
25
|
Lin L, Li J, Zveushe OK, Han Y, Zhang H, Qin Y, de Dios VR, Zhou L, Xi X, Zhang W, Zhao Y, Omer AM, Dong F. Newly isolated bacterium and arbuscular mycorrhizal fungus effectively reduce the root cadmium concentration and increase the root biomass of Ophiopogon japonicus. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137361. [PMID: 39874763 DOI: 10.1016/j.jhazmat.2025.137361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots. This research identifies Pseudomonas tianjinensis S2 (PL), a newly isolated bacterium, and Corymbiglomus tortuosum (Ct), an arbuscular mycorrhizal fungus (AMF), as effective agents for reducing Cd concentration in the roots of O. japonicus. Compared to the control (CK) treatment, the root Cd levels decreased by 62.27 % and 46.13 %, respectively, significantly enhancing root biomass. We also noticed the involvement of -OH, -CH, and CC functional groups in Cd chelation in both treatments, and the formation of precipitates, including C2H2CdO4, C4H6CdO4, Cd(OH)2, and Cd3(PO4)2, in both PL and Ct treatments. Moreover, the proportion of residual Cd in soil increased by 21.21 % and 10.61 % for the PL and Ct treatments, respectively, compared to the CK. The findings suggest that P. tianjinensis S2 is more effective than C. tortuosum for high Cd-contaminated fields, while the fungal inoculant is suitable for lower contamination levels, offering valuable strategies for bioremediation. Therefore, we suggest further research to focus on elucidating the effect of a P. tianjinensis S2 and C. tortuosum combination on O. japonicus root growth and Cd accumulation.
Collapse
Affiliation(s)
- Lin Lin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Obey Kudakwashe Zveushe
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Ying Han
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Hengxing Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yu Qin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Victor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain; Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, Lleida, Spain
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiangyu Xi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Wei Zhang
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yulian Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Amal Mohamed Omer
- Desert Research Center, Department of Soil Microbiology, Cairo, Egypt
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
26
|
Liu Q, Lai J, Zhang Y, Wang X. Cyperus esculentus var. sativus Adapts to Multiple Heavy Metal Stresses Through the Assembly of Endophytic Microbial Communities. BIOLOGY 2025; 14:83. [PMID: 39857313 PMCID: PMC11761921 DOI: 10.3390/biology14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Interactions between plants and their endophytes alter their metabolic functions and ability to cope with abiotic stresses. In this study, high-throughput sequencing was used to analyze the species diversity and functions of endophytes in Cyperus esculentus var. sativus (CES) tubers under different heavy metal stress conditions. The results indicated that the number of observed endophytic species in the tubers increased under heavy metal stress (p < 0.05), leading to changes in species diversity and composition. The response of tuber endophytes to different metal concentrations varied, with certain endophytic bacteria and fungi, such as Pseudomonas, Novosphingobium, and Fusarium, showing increased abundance and becoming the dominant species in the tubers. Additionally, new endophytic genera, Actinophytocola and Monosporascus, emerged at specific metal concentrations (p < 0.05). Fatty acid salvage was enriched in the endophytes of CES, which may play an important role in assisting CES in responding to multiple heavy metal stresses. These findings showed that CES tuber endophytes undergo adaptive changes to support the ability of plants to cope with heavy metal stress.
Collapse
Affiliation(s)
- Qiaofeng Liu
- Correspondence: (Q.L.); (X.W.); Tel.: +86-15680552061 (Q.L.)
| | | | | | - Xin Wang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610083, China; (J.L.); (Y.Z.)
| |
Collapse
|
27
|
Abdelmonem BH, Kamal LT, Elbaz RM, Khalifa MR, Abdelnaser A. From contamination to detection: The growing threat of heavy metals. Heliyon 2025; 11:e41713. [PMID: 39866496 PMCID: PMC11760309 DOI: 10.1016/j.heliyon.2025.e41713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Heavy metals like lead, mercury, cadmium, and arsenic are environmental pollutants that accumulate in ecosystems and pose significant health risks to humans and wildlife, primarily through food chain contamination where plants absorb heavy metals, affecting their growth and threatening consumer health. Cognitive and cardiovascular functions are particularly affected by exposure to heavy metals even at low concentrations through the induction of oxidative stress. Various analytical techniques are used in measuring heavy metals in different environmental and biological samples. The atomic absorption spectroscopy (AAS) offers low cost, simplicity, and portability but lacks sensitivity for certain metals. Although more sensitive, the high cost of inductively coupled plasma mass spectrometry (ICP-MS) may limit laboratory accessibility. The inductively coupled plasma with atomic emission spectrometry (ICP-AES) is known for its broad dynamic linear range and ability to identify minute variations in concentration. Atomic fluorescence spectrometry (AFS) is considered a powerful tool for quantifying heavy metals due to its high sensitivity, low detection limits, and wide linear range. The current article reviews heavy metal pollution's impact on health and spectrometric techniques for the detection of these contaminants. This may help efforts of international, and regional policies towards preventing this health hazard problem.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), PO 12566, 6th of October City, Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| | - Rana M. Elbaz
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| | - Mohamed R. Khalifa
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt
| |
Collapse
|
28
|
Song Y, Cheng Q, Zhao B. Exogenous organic acids promoted phytoremediation by Hydrangea macrophylla in cadmium‑contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117551. [PMID: 39693853 DOI: 10.1016/j.ecoenv.2024.117551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Cadmium (Cd) contaminants with high toxicity and mobility seriously threatens the ecological environment and human safety. Hydrangea macrophylla is a potential plant for Cd-contaminated soil remediation. Exogenous organic acids have been proven to effectively enhance the phytoremediation of soil contaminated with Cd. However, research on the effects of organic acids on Cd tolerance and accumulation of H. macrophylla remains scarce. In this study, a potted experiment was performed with H. macrophylla as the research object. The effects of acetic acid (AA), citric acid (CA), and malic acid (MA) with different concentrations (2.5, 5, and 10 mmol·kg-1) on the growth physiology, Cd absorption and accumulation of H. macrophylla and soil microecological environment under Cd stress were systematically studied. Results indicated that organic acids increased chlorophyll content and promoted the growth of H. macrophylla, the biomass of shoots and roots increased by 165.44 % , 161.50 % under 5 mmol·kg-1 citric acid treatment. Furthermore, organic acids reduced the level of membrane lipid peroxidation in leaves, increased plant biomass and promoted root growth of H. macrophylla. By boosting superoxide dismutase (SOD), peroxidase (POD), and catalase activities (CAT), elevating levels of proline (Pro), non-protein thiol (NPT), glutathione (GSH) and phytochelatins (PCs), exogenous organic acids promoted the Cd tolerance of H. macrophylla. In particular, 5 mmol·kg-1 CA had the best effect on improving the Cd tolerance of H. macrophylla. The roots of H. macrophylla accumulated a large amount of Cd, ranging from 365.04 to1111.67 μg·plant-1. Appropriate concentration of organic acids increased the total Cd accumulation by 1.12-2.07 times of H. macrophylla. The translocation factor (TF) increased by 97.91 %, 107.95 % under 5 mmol·kg-1 CA and 10 mmol·kg-1 MA treatments. Nevertheless, TF values were all less than 1. We posit that using H. macrophylla and organic acids could reduce the Cd bioavailability in the soil mainly through rhizosphere immobilization and plant absorption. Additionally, organic acids increased the soil pH, accompanied by changes in soil enzyme activities. 10 mmol·kg-1AA and MA reduced the available Cd concentration by 20.42 % and 31.65 %, respectively. Overall, exogenous organic acids can assist H. macrophylla in phytoremediation. 5 mmol·kg-1 CA treatment was considered the best choice for the remediation of heavy Cd-contaminated soil by H. macrophylla.
Collapse
Affiliation(s)
- Yunjing Song
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Qian Cheng
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Bing Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
29
|
Xie K, Chen Y, Wang X, Zhou X, Cheng Y, Yu X, Wang J, Sun M, Li Y, He C. Physiological and multi-omics analysis revealed the mechanism of arbuscular mycorrhizal fungi to cadmium toxicity in green onion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117754. [PMID: 39826408 DOI: 10.1016/j.ecoenv.2025.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Cadmium (Cd) is a highly toxic agricultural pollutant that inhibits the growth and development of plants. Arbuscular mycorrhizal fungi (AMF) can enhance plant tolerance to Cd, but the regulatory mechanisms in Allium fistulosum (green onion) are unclear. This study used a Cd treatment concentration of 1.5 mg·kg-1, which corresponds to the risk control threshold for soil pollution in Chinese agricultural land, to examine the effects and molecular mechanisms of AMF inoculation on the growth and physiology of green onion under Cd stress. AMF formed an effective symbiotic relationship with green onion roots under Cd stress, increased plant biomass, improved root structure and enhanced root vitality. AMF-colonized green onion had reduced Cd content in roots and leaves by 63.00 % and 46.50 %, respectively, with Cd content being higher in the roots than in the leaves. The ameliorative effect of AMF on Cd toxicity was mainly due to a reduction in malondialdehyde content in leaves (30.12 %) and an enhancement of antioxidant enzyme activities (peroxidase, catalase, superoxide dismutase, glutathione reductase and reduced glutathione) that mitigated damage from excessive reactive oxygen species. In addition, AMF induced secretion of easily extractable glomalin soil protein and total glomalin-related soil protein and inhibited the translocation of Cd to the shoots. Transcriptomic and metabolomic correlation analyses revealed that differentially expressed genes and metabolites in AMF-inoculated green onion under Cd stress were predominantly enriched in the "phenylpropanoid biosynthesis" and "phenylalanine metabolism" pathways, upregulated the expression of the HCT, PRDX6, HPD, MIF, and HMA3 genes, and accumulation of the phenylalanine, L-tyrosine, and 1-O-sinapoyl-β-glucose metabolites. Thus, AMF enhance Cd tolerance in green onions by sequestering Cd in roots, restricting its translocation, modulating antioxidant defenses and inducing the expression of genes involved in the phenylpropanoid biosynthesis and phenylalanine metabolism pathways. Collectedly, we for the first time revealed the mechanism of AMF alleviating the toxicity of Cd to green onion, providing a theoretical foundation for the safe production and sustainable cultivation of green onion in Cd-contaminated soils.
Collapse
Affiliation(s)
- Kunhao Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yixuan Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqin Wang
- College of Biology and Geographical Sciences, Yili Normal University, Yining 835000, China
| | - Xiaoya Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yizhe Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
Yang JB, Wang HY, Huang J, Shan CJ, Yan J, Zhong CW, Hu D, Zhang Q, Shen RF, Zhu XF, Zeng DL. Jasmonic acid improves cadmium tolerance in rice (Oryza sativa) by reducing the production of nitric oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117722. [PMID: 39827612 DOI: 10.1016/j.ecoenv.2025.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The involvement of jasmonic acid (JA) in the rice's response to cadmium (Cd) stress is well recognized, though the underlying mechanisms remain unclear. In this study, exposure to Cd stress rapidly elevated endogenous JA concentrations in rice roots, meanwhile, a mutant coleoptile photomorphogenesis 2 (cpm2) which produces less JA, was more sensitive to Cd stress than its wild type (WT). JA mitigated Cd toxicity by decreasing Cd absorption in root cell wall and shoot, which was achieved by up-regulating the expression of the Cd-chelation and efflux-related genes such as OsHMA3, OsABCG36 and OsCAL1; down-regulating the transcript level of the Cd uptake and translocation-related genes, including OsHMA2, OsCCX2, OsNRAMP1/5, and OsZIP5/7. Additionally, a reduction in hemicellulose content was observed in the root cell wall. Further analysis indicated that the mitigation effect of JA on Cd accumulation was dependent on the inhibition of nitric oxide (NO) synthesis, as the NO donor SNP could diminish this effect. In summary, JA effectively reduced Cd content in rice by modulating the cell wall's capacity for Cd uptake, potentially through reducing the production of NO.
Collapse
Affiliation(s)
- Ji Bo Yang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Hao Yu Wang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Chuan Jin Shan
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Wei Zhong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Die Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Qiang Zhang
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China; State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Da Li Zeng
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China.
| |
Collapse
|
31
|
Jing H, Xue X, Zhang X, Xu X, Tang Y, Wang H, Zheng J, Yang H, Han Y. Metabolomics and microbiome analysis elucidate the detoxification mechanisms of Hemarthria compressa, a low cadmium accumulating plant, in response to cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137226. [PMID: 39827800 DOI: 10.1016/j.jhazmat.2025.137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Cadmium (Cd) is recognized as one of the most toxic heavy metal in the environment that causes pronounced phytotoxicity. This study investigated the physiological and biochemical responses and detoxification mechanisms of Hemarthria compressa under various concentrations of Cd stress (0, 30, 60, 90, and 270 mg·kg-1). Our research findings indicate that the growth and photosynthetic capacity of H. compressa reach their peak at a Cd concentration of 60 mg·kg-1. At this concentration, the Cd concentration in the shoots of H. compressa is 0.67 mg·kg-1, the total Cd accumulation is 0.25 μg, and the MDA content is 6.25 nmol·g-1, which represents the lowest values among all treatments.Metabolomics analysis reveals that sugar is related to Cd stress resistance, and the levels of organic acids involved in metabolic processes show only minor changes. H. compressa alters the composition of its root exudates by secreting substantial quantities of organic acids (such as citric acid, fumaric acid, and malic acid), sugars (such as trehalose, maltose, and glucose), and fatty acids (such as citraconic acid). These organic acids modulate the pH of the rhizosphere soil and recruit beneficial microorganisms, including Gp6, Sphingoaurantiacus, Devosia, and Neobacillus species, thereby enhancing plant growth and mitigating Cd accumulation.
Collapse
Affiliation(s)
- Hao Jing
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| | - Xiaoliang Xue
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xin Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xianji Xu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhou Tang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Hongji Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| | - Jiaqi Zheng
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hongyuan Yang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China.
| |
Collapse
|
32
|
Abd El Mageed SA, Sayed AAS, Shaaban A, Hemida KA, Abdelkhalik A, Semida WM, Mohamed IAA, Gyushi MAH, Elmohsen YHA, Abd El Mageed TA. Integrative application of licorice root extract and melatonin improves faba bean growth and production in Cd-contaminated saline soil. BMC PLANT BIOLOGY 2025; 25:26. [PMID: 39773343 PMCID: PMC11708068 DOI: 10.1186/s12870-024-05954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.0 and 3%) as an organic biostimulant applied sequentially as a foliar spray on faba bean (Vicia faba L.) grown in cadmium (Cd)-contaminated saline soil conditions [Cd = 4.71 (mg kg- 1 soil) and ECe = 7.84 (dS m- 1)]. Plants not receive any treatment and sprayed with H2O were considered controls. The experimental treatments were laid out in strip plot in a randomized complete block design replicated thrice, where the LRE and Mt were considered as vertical and horizontal strips, respectively. Growth characteristics, photosynthetic pigments, nutrient uptake, physiology and metabolic responses, anatomical features, and yield were assessed. RESULTS Cadmium (Cd) and salinity-induced stress significantly altered leaf integrity, photosynthetic efficiency, total soluble sugars (TSS), free proline (FPro), total phenolic, DPPH, and total soluble proteins (TSP), non-enzymatic and enzymatic antioxidants, growth characteristics and yield-related traits. However, the application of LRE + Mt considerably improved these negative effects, with higher improvements were observed due to application of LRE + Mt100. Application of LRE + Mt significantly reduced hydrogen peroxide (H2O2) accumulation, lipid peroxidation and Cd content in leaves and seeds, all of which had increased due to Cd stress. Application of LRE + Mt significantly mitigated the Cd-induced oxidative damage by increasing the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, in parallel with enhanced ascorbate and reducing glutathione content. Exogenous application of LRE + Mt significantly increased osmolyte content, including FPro, TSS, and total phenols and mitigated Cd-induced reduction to considerable levels. CONCLUSIONS Our findings showed that LRE + Mt increased V. faba plants' morphological, physiological, and biochemical properties, reducing Cd stress toxicity, and promoting sustainable agricultural practices. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaulood A Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | | | - Wael M Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ibrahim A A Mohamed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Mohammed A H Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Yasmine H Abd Elmohsen
- Vegetable Research Department, Agricultural and Biological Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | - Taia A Abd El Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
33
|
Bemfert LH, Burkhart J, Sedykh AE, Richter S, Mitura EL, Maxeiner M, Sextl G, Müller‐Buschbaum K. Combinatorial Separation of Cd and Te from CdTe via Chemical Vapour Transport with Sulfur and Air/Methane Treatment for the Recovery of Critical Resources from Thin Film Solar Cells. CHEMSUSCHEM 2025; 18:e202400785. [PMID: 39051452 PMCID: PMC11696211 DOI: 10.1002/cssc.202400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Elemental Te and Cd are successfully recovered from CdTe via a combinatorial process involving chemical vapor transport (CVT) using sulfur as transport agent giving elemental Te being deposited. Separation is successfully enabled by the first process for CVT of Te starting with CdTe. Cd is subsequently recovered by an oxidation of the formed CdS to CdO followed by reduction to Cd metal with natural gas, in which Cd can also be separated via the gas phase. Hereby, the process addresses the main critical elements of the active material in thin film CdTe solar cells regarding both, scarcity and toxicity. Both, closed and open systems were investigated displaying more or less thermodynamic control of the system. Transport rates were determined for the closed system as well as for an open system working with sulfur vapour at moderate temperatures below and close to the boiling point of sulfur. Excellent purity of tellurium was achieved already by the initial transport, leading to low Cd2+ concentrations in the obtained Te being below the quantification limit of microwave plasma-atomic emission spectroscopy (MP-AES) (≪0.05 wt %).
Collapse
Affiliation(s)
- Lucas H. Bemfert
- Institute of Inorganic and Analytical ChemistryJustus-Liebig-University GiessenHeinrich-Buff-Ring 1735392GießenGermany
| | - Julian Burkhart
- Institute of Inorganic and Analytical ChemistryJustus-Liebig-University GiessenHeinrich-Buff-Ring 1735392GießenGermany
| | - Alexander E. Sedykh
- Institute of Inorganic and Analytical ChemistryJustus-Liebig-University GiessenHeinrich-Buff-Ring 1735392GießenGermany
| | - Sophie Richter
- Institute of Inorganic and Analytical ChemistryJustus-Liebig-University GiessenHeinrich-Buff-Ring 1735392GießenGermany
| | - Eliane L. Mitura
- Institute of Inorganic and Analytical ChemistryJustus-Liebig-University GiessenHeinrich-Buff-Ring 1735392GießenGermany
| | - Moritz Maxeiner
- Institute of Inorganic and Analytical ChemistryJustus-Liebig-University GiessenHeinrich-Buff-Ring 1735392GießenGermany
| | - Gerhard Sextl
- Fraunhofer-Institut für Silicatforschung ISCNeunerplatz 297082WürzburgGermany
| | - Klaus Müller‐Buschbaum
- Institute of Inorganic and Analytical ChemistryJustus-Liebig-University GiessenHeinrich-Buff-Ring 1735392GießenGermany
- Center for Materials Research (LAMA)Justus-Liebig-University GiessenHeinrich-Buff-Ring 1635392GießenGermany
| |
Collapse
|
34
|
Ashraf H, Ghouri F, Ali S, Bukhari SAH, Haider FU, Zhong M, Xia W, Fu X, Shahid MQ. The protective roles of Oryza glumaepatula and phytohormone in enhancing rice tolerance to cadmium stress by regulating gene expression, morphological, physiological, and antioxidant defense system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125311. [PMID: 39547555 DOI: 10.1016/j.envpol.2024.125311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The heavy metal cadmium (Cd) is highly poisonous and has received significant attention from environmental scientists due to its harmful impacts on plants. Oryza glumaepatula is a wild rice that contains useful genes against biotic and abiotic stresses. Therefore, the current study used SG007, a single-segment substitution line (SSSL), generated by crossing O. glumaepatula with an elite rice cultivar (HJX74), to evaluate the resistance potential against Cd. Moreover, we assessed the efficacy of strigolactone GR24 (1 μM) against Cd toxicity (100 μM) by investigating physiological, biochemical, and molecular mechanisms in both cultivars (i.e., SG007 and HJX74). The findings of this study revealed that Cd toxicity declined the chlorophyll a, chlorophyll b, and carotenoids by 50%, 20%, and 44% in SG007, and 58%, 39%, and 59% in HJX74 by enhancing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) by 113%, 184%, and 119% in SG007 and 248%, 273% and 195% in HJX74, respectively. GR24 improved growth under Cd stress in both cultivars, and SG007 exhibited better plant growth parameters, antioxidant enzymatic activities, nitric oxide synthase (NOS), and nitric oxide (NO) levels than HJX74 under Cd toxicity. GR24 with SG007 regulated expressions of Cd transporters and reduced the cytological disruptions in cell organelles. The combined utilization of SG007 and GR24 reduced Cd accumulation and oxidative stress and improved plant growth parameters and enzymatic activities. In conclusion, our study highlights the potential of utilizing SG007 in conjunction with GR24 as a practical strategy to mitigate Cd pollution in rice. The results not only underscore the beneficial effects of strigolactone GR24 in alleviating Cd-induced stress but also emphasize the valuable genetic traits of O. glumaepatula in developing rice lines with enhanced tolerance to heavy metals, offering broader implications for sustainable agriculture and crop improvement in contaminated environments.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | | | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
35
|
Hantsi JM, Melato FA, Tembu VJ. Extraction potential of Trifolium repens and Medicago sativa for metals in landfill soil: Their metabolomic responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123867. [PMID: 39740444 DOI: 10.1016/j.jenvman.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Landfilling is common in developing countries since it is the easiest and cheapest way of waste disposal, however, it leads to serious environmental problems such as soil, water, and air pollution. A landfill has a life span of fifteen years after which it is closed leaving the site unusable, as a result, effective methods are needed for restoring and reclaiming the closed landfill site for future use. Phytoremediation has emerged as a viable and environmentally friendly method, which uses green plants to remove pollutants from soil, air, and water. In this study, Medicago sativa (alfalfa) and Trifolium repens (white clover) were planted in a pot trial as monocropped and intercropped in polluted soil collected from a landfill site to investigate stress tolerance and the extent of bioaccumulation of Cr, Mn, Ni, and Zn. All the plants remained healthy throughout the trial, with no signs of phytotoxicity except for monocropped white clover plants that showed stunted growth and eventually died. Intercropping resulted in the reduction of metals and their toxic effects in the soil which in turn limited the uptake of metals by both plants as a defence strategy against metal stress which resulted in lower amounts of metals in the intercropped plants compared to monocropped plants. The roots absorbed a significant amount of Zinc (Zn), Nickel (Ni), and Manganese (Mn) in the roots than the leaves. The concentration of Chromium (Cr) was significantly higher than the other metals in all the plants and there was no significant difference in the concentration of Cr in the roots and leaves. The Scanning Electron Microscopy (SEM) chromatographs, revealed greater damage in the tissues of monocropped plants than the intercropped plants, demonstrating that intercropping enhances plant growth and development by reducing the toxic effects of biotic stress such as metals in the soil than monocropping. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) revealed flavonoids as the main secondary metabolites that promoted resilience to biotic and abiotic stressors in Trifolium repens while saponins were found to play a similar major role in Medicago sativa.
Collapse
Affiliation(s)
- Jeanette Moipone Hantsi
- Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa
| | - Funzani Asnath Melato
- Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa.
| | - Vuyelwa Jacqueline Tembu
- Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
36
|
Muhammad S, Ulhassan Z, Munir R, Yasin MU, Islam F, Zhang K, Chen W, Jan M, Afzal M, Muhammad A, Hannan F, Zhou W. Nanosilica and salicylic acid synergistically regulate cadmium toxicity in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125331. [PMID: 39551376 DOI: 10.1016/j.envpol.2024.125331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Cadmium (Cd) toxicity negatively impacts plant health and productivity. Nanosilica (SiO2NPs) and salicylic acid (SA) enhance plant performance and alleviate heavy metals stress. Yet, their combined effects against Cd-toxicity in rice remained less-explored. Thus, a hydroponic study investigated the individual and combined effects of SiO2NPs and SA on Cd-stress mitigation in rice at physio-biochemical, cellular, and molecular levels. Results indicated that Cd-alone treatment caused a significant reduction in rice growth and biomass and photosynthetic efficiency, which was associated with oxidative damage caused by enhanced Cd-accumulation in plant tissues. Cd-induction also potentiated its phytotoxicity by triggering enzymatic antioxidants against the extra production of reactive oxygen species (ROS). The addition of SiO2NPs and/or SA markedly minimized the Cd-induced toxicity by reducing Cd-bioaccumulation (42-56%), protecting photosynthetic efficiency, which were directly correlated with seedling biomass and restored cellular structures (leaf ultrastructure and surface morphology). The combined application of SiO2NPs and SA was more effective in activating antioxidant enzymes, phytohormones biosynthesis, and reducing oxidative damages caused by Cd than sole application. This was evident in the decreased production of ROS, malondialdehyde contents (29-37%), and recovered membrane stability. Moreover, SiO2NPs and/or SA relieved Cd-bioaccumulation (41-56%) by downregulating the Cd-related transporter genes (OsNramp1, OsNramp5, OsHMA2, and OsHMA3). Altogether, the cellular Cd-accumulation, photosynthesis, antioxidant defense, and phytohormones against oxidative stress can be ideal markers for cultivating rice in Cd-contaminated soils.
Collapse
Affiliation(s)
- Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zaid Ulhassan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Kangni Zhang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ali Muhammad
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Fakhir Hannan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Ansari WA, Shahid M, Shafi Z, Farah MA, Ilyas T, Al-Anazi KM, Niyazi S. NO and melatonin interplay augment Cd-tolerance mechanism in eggplants: ROS detoxification and regulation of gene expression. PHYSIOLOGIA PLANTARUM 2025; 177:e70130. [PMID: 39956837 DOI: 10.1111/ppl.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Global crop productivity is consistently threatened by cadmium (Cd) soil contamination. Crosstalk between nitric oxide (NO) and melatonin (MT) in enhancing crop resilience to heavy metal stress has gained significant attention. Here, we evaluated the joint effect of sodium nitroprusside (SNP; 200 μM as NO donor) and MT (100 μM) on Cd-stressed eggplant (Solanum melongena L.). Cd stress significantly reduced plant growth, biomass yield, leaf pigments, and biochemical properties. Conversely, SNP, MT, and particularly their combined (SNP + MT) application reduced Cd toxicity and enhanced growth and physio-biochemical traits of eggplants. For instance, at 50 mg Cd kg-1 soil, SNP, MT, and SNP + MT increased root biomass (41.6, 30, and 47%), total chlorophyll (30.7, 26.3, and 46%), soluble protein (20.5, 17.6 and 37%) and RLWC (23, 17.5, and 29%) over their respective control. Furthermore, SNP + MT significantly (p ≤ 0.05) reduced levels of EL, H2O2, proline, and MDA by 54.5, 66, 61 and 70%, respectively, in Cd-stressed eggplants. SNP + MT interplay enhanced antioxidant defense responses in leaf tissues under Cd stress. Besides, SNP and MT upregulated transcript levels of POD, SOD, CAT, and GPX genes in eggplants under Cd stress. SNP and MT applications improved essential nutrient cation homeostasis in Cd-stressed shoot tissues of eggplants. Moreover, SNP + MT lessens metal-induced toxicity by decreasing Cd uptake, translocation (TF) and bioconcentration (BCF) factors. Conclusively, these findings validated the beneficial defensive interaction between SNP and MT in regulating Cd tolerance in eggplants. However, further research is needed to uncover the underlying defensive mechanisms of these synergistic effects.
Collapse
Affiliation(s)
- Waquar Akhter Ansari
- Marwadi University Research Center, Dept. of Agriculture, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U, Aligarh, Uttar Pradesh, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Talat Ilyas
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Shareen Niyazi
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
38
|
Yu Y, Fotopoulos V, Zhou K, Fernie AR. The role of gasotransmitter hydrogen sulfide in plant cadmium stress responses. TRENDS IN PLANT SCIENCE 2025; 30:35-53. [PMID: 39358104 DOI: 10.1016/j.tplants.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses a significant risk to both plant growth and human health. To mitigate or lessen Cd toxicity, plants have evolved a wide range of sensing and defense strategies. The gasotransmitter hydrogen sulfide (H2S) is involved in plant responses to Cd stress and exhibits a crucial role in modulating Cd tolerance through a well-orchestrated interaction with several signaling pathways. Here, we review potential experimental approaches to manipulate H2S signals, concluding that research on another gasotransmitter, namely nitric oxide (NO), serves as a good model for research on H2S. Additionally, we discuss potential strategies to leverage H2S-reguated Cd tolerance to improve plant performance under Cd stress.
Collapse
Affiliation(s)
- Yan Yu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Kejin Zhou
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
39
|
Liu M, Wu S, Song Y, Shi M, Yi L. Physiological and transcriptome analysis of sex-specific responses to cadmium stress in poplars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117675. [PMID: 39788028 DOI: 10.1016/j.ecoenv.2025.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Soil cadmium (Cd) pollution is a serious ecological problem worldwide. Understanding Cd-detoxification mechanisms in woody plants will help to evaluate their tolerance ability and phytoremediation potential to Cd-polluted soils. This study investigated the growth, physiochemistry, Cd distribution, and transcriptome sequencing of male and female poplars under three Cd levels (0, 50, and 100 mg·kg-1). The results showed that Cd stress significantly inhibited the growth of aboveground parts. Over 70 % of the Cd was distributed in the cell wall fraction of roots, stems, and leaves, with the majority accumulating in the roots. Poplars can conjugate Cd with phytochelatins to reduce Cd damage, which is more evident in males than females. The antioxidant defense system of females is more effective than that of males at reducing the damage from Cd. Females demonstrated a stronger Cd-regulation ability than males under the 100 mg·kg-1 Cd treatment. Sex-specific responses to Cd were associated with differential gene expression. Under Cd stress, the genes related to oxidation-reduction processes, antioxidant enzyme activity and defense mechanisms, cell wall synthesis, and glutathione metabolism were mainly enriched and upregulated in females, whereas in males, genes related to photosynthesis and photosynthetic pigment biosynthesis were mainly enriched and downregulated, indicating greater damage to the photosynthetic system than in females. Our study provides novel insights into the mechanisms responding to Cd tolerance in poplars. Further studies should be carried out to assess the impact of soil Cd pollution on the wood quality of poplars.
Collapse
Affiliation(s)
- Meihua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Sumei Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yigang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Mengjiao Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Lita Yi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
40
|
Yan Q, Lin S, Wei F, Deng T, Yang Y, Zhang Z, Wang D. Effects of different eco-stoichiometric ratios of calcium and cadmium on the detoxification mechanisms of Capsicum annuum L. under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 487:137059. [PMID: 39787927 DOI: 10.1016/j.jhazmat.2024.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
The eco-stoichiometry of Ca/Cd in soil significantly affects Cd uptake and accumulation by plants in carbonate regions. In this study, the physiological responses and detoxification mechanisms of Capsicum annuum L. (capsicum) were investigated based on the eco-stoichiometric relationship of Ca/Cd in production substrates under varying pH levels (5, 6, and 7). The results revealed that increased Ca/Cd ratio enhanced the Cd accumulation in roots at pH values of 5 and 6. The enrichment of Cd in stems and leaves gradually decreased with varying Ca/Cd ratios at different pH levels. In addition, root vigor, relative chlorophyll content, biomass, and catalase and peroxidase activities increased across various pH levels, while the concentration of protein carbonyl and malondialdehyde decreased. The ability of pectin and cellulose in the cell wall and that of soluble components within the cell to adsorb and partition Cd improved as the Ca/Cd ratio increased at different pH values. Notably, the effects of varying Ca/Cd ratios were most significant at pH 6. Overall, Ca enhanced the tolerance of capsicum to Cd stress, thereby promoting the fixation of Cd in root cells, reducing its transfer to aboveground tissues, and improving both the growth and antioxidant stress response. The effect was attributed to different Ca/Cd stoichiometric ratios, pH levels, and their interactions. These findings enhance the understanding of the mechanism of the interaction between Ca and Cd on crops in the karst agroecosystem.
Collapse
Affiliation(s)
- Qiuxiao Yan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Shaoxia Lin
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Fuxiao Wei
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Tingfei Deng
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Yin Yang
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China.
| | - Daoping Wang
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China.
| |
Collapse
|
41
|
Ashraf H, Ghouri F, Sun L, Xia W, Ashraf S, Ashraf MZ, Fu X, Ali S, Shahid MQ. Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 488:137009. [PMID: 39862775 DOI: 10.1016/j.jhazmat.2024.137009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74). Both genotypes were also treated with calcium oxide nanoparticles (np-CaO). Results showed that Cd exposure disrupts reactive oxygen species (ROS) metabolism in both lines, such as malondialdehyde (MDA) increases by 57 % in HJX74 compared to SG004. Moreover, SG004 exhibited a 26 % reduction in shoot length compared to 41 % in HJX74 and a 42 % decline in chlorophyll ab content versus 53 % in HJX74. Antioxidant activity such as glutathione (GSH) decreased 25 % more in HJX74 than SG004 under Cd toxicity. Additionally, SG004 had lower Cd accumulation in roots (70 %) and shoots (85 %) than HJX74, indicating its enhanced tolerance to Cd toxicity. The root cell cytology reveals several deformations in different organelles of HJX74 but less in SG004. RNAseq analysis identifies key pathways, including energy metabolism, antioxidant defense, metal transport, and ion homeostasis, which may be critical for SG004 enhanced tolerance. Notably, two distinct metallothionein-like genes (BGIOSGA019338, BGIOSGA035982), a peroxidase (BGIOSGA019133), ammonium (BGIOSGA008640, BGIOSGA008641, and potassium transporters (BGIOSGA030867), NRAMP1 (BGIOSGA025476), and an aluminum-activated malate transporter (BGIOSGA014531), showed differential expressions in SG004 under Cd stress. Genes within the substituted fragment, including those for peroxidase 25 (BGIOSGA002866), metallothionein (BGIOSGA002389), and reductase (BGIOSGA002387), are also upregulated in SG004, reinforcing the role of antioxidant and ion homeostasis pathways. The utilization of np-CaO alleviates Cd-induced stress in both genotypes, hence reinforcing the application of wild rice and nanoparticles to improve Cd tolerance.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Sawaira Ashraf
- Graduate school of Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Muhammad Zahid Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xuelin Fu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Xia W, Ghouri F, Zhong M, Bukhari SAH, Ali S, Shahid MQ. Rice and heavy metals: A review of cadmium impact and potential remediation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177403. [PMID: 39510291 DOI: 10.1016/j.scitotenv.2024.177403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
In recent decades, the menace of heavy metals to food security and human health has become a serious concern. Given its status as the primary provider of food globally, significant research has been done to ensure the safe cultivation of rice, particularly concerning the mitigation of heavy metal contamination. Therefore, this article focuses on the effects and poisoning mechanism of heavy metals, primarily cadmium, on rice. Here, we have discussed the absorption, translocation, and toxicity mechanism of cadmium in rice and the external factors, such as soil pH, organic matter, microorganisms, and climate change, associated with this pollution. It also discusses in detail the sources of heavy metal pollution and the countermeasures against their effects on rice, such as the use of nanoparticles, biochar, plant growth regulators, nutrient management, molecular approaches, tolerant genotypes, and associated genes/proteins. Lastly, a number of significant research prospects concerning heavy metals in rice fields were suggested for future investigation. This review serves as a crucial reference for addressing the issue of heavy metal contamination in paddy fields, ensuring the safe cultivation of rice, promoting environmentally friendly fish farming practices, and safeguarding future food security and human health.
Collapse
Affiliation(s)
- Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
43
|
Yang Y, Li Y, Li X, Yan J, Wu L, Tang Z, He Y, Zhan F. Mycorrhizal extraradical mycelium can reduce cadmium uptake by maize and cadmium leaching from contaminated soil: based on an in-growth core experiment. Front Microbiol 2024; 15:1507798. [PMID: 39736994 PMCID: PMC11683564 DOI: 10.3389/fmicb.2024.1507798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are commonly found in heavy metal-contaminated environments and form extraradical mycelium (ERM), but knowledge of their ecological functions is limited. In the present study, a soil column was filled with sterilized cadmium (Cd)-contaminated soil and contained an in-growth core for AMF-inoculated maize seedling growth. The in-growth core was static to maintain or rotated to disrupt ERM growth. Compared with the static treatment, the rotation treatment caused significant decreases in the content of glomalin-related soil protein (GRSP), the photosynthetic physiology of leaves, and maize growth, while increasing the Cd content in shoots and roots by 64 and 82%, respectively; additionally, the rotation treatment resulted in increases in the Cd concentration of the soil solution inside and outside the growth core by 30-38 and 17-52%, respectively, and Cd leaching loss by 29-39%. Moreover, the rotation treatment significantly altered the Cd forms in the soil solution and leachate, increasing the proportion of free Cd2+ by 0.8-2.1% and decreasing the proportions of CdSO4(aq) and CdOH+ by 6.1-56.1% and 26.1-48.7%, respectively. The structural equation model indicated that AMF directly and indirectly reduced maize Cd uptake and Cd leaching loss by decreasing Cd availability in the soil and soil solution through the GRSP secreted by ERM. Thus, AMF plays a crucial role in inhibiting Cd migration in soil through mycelial exudates.
Collapse
Affiliation(s)
- Yijie Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yang Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xiaoyi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jie Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Longhua Wu
- Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhenwu Tang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
44
|
Li M, Chen L, Yang Y, Wu S, Zhang Q, Deng X, Luo S, Zeng Q. Analysis of the phytoremediation potential, rice safety, and economic benefits of light to moderate Cd-contaminated farmland in oilseed rape-rice rotation with straw removal: A three-year field trial. ENVIRONMENTAL RESEARCH 2024; 263:120280. [PMID: 39489276 DOI: 10.1016/j.envres.2024.120280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Under the dual pressures of food security and soil cadmium (Cd) pollution in China, the use of an oilseed rape-rice rotation system and phytoremediation has been proposed as an effective measure to extract heavy metals from soil, achieve safe rice production, and alleviate soil heavy metal stress. A three-year field rotation experiment by straw removal was conducted in light to moderate Cd-contaminated soil in Hunan, China. The experiment involved rotating two oilseed rape varieties, LSYH and ZYZ, with two rice varieties, the low-accumulation variety XWX and the high-accumulation variety TYHZ. The structural equation model (SEM) indicated that the correlation coefficients of total nitrogen (N) and available phosphorus (P) with CaCl2-Cd in the soil under oilseed rape-rice rotation were higher than those in rice monoculture, indicating that changes in soil nutrients have a significant impact on CaCl2-Cd during rotation. During continuous rice monoculture, the Cd content in brown rice exceeded safety standards in all three years. Crop rotation effectively reduced the Cd content in the aboveground parts of rice, particularly inhibiting its transfer to brown rice. By the second year of rotation, the minimum Cd content in brown rice from XWX and TYHZ was only 0.10 and 0.11 mg kg⁻1, respectively. Cd levels in rice met the safety standard (<0.2 mg kg⁻1). Although the Cd content in the third-year rice was higher than in the second year, it remained significantly lower than in the first year. The TPE in the aerial portion for the ZYZ-XWX rotation was 4.88%, while for the rotation of ZYZ-TYHZ rotation, it was 6.37%. Economic benefits were enhanced by this rotation mode, with profit-to-cost ratios exceeded 1. Overall, oilseed rape-rice rotation is an economical and environmentally friendly method for remediating soil Cd contamination, but it requires selecting the appropriate varieties.
Collapse
Affiliation(s)
- Mingming Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Lin Chen
- Hunan Center of Ecological Environment Affairs, Ecology and Environment Department of Hunan, Changsha, Hunan, 410128, PR China.
| | - Yang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| | - Shuangjun Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Qiuguo Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xiao Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| |
Collapse
|
45
|
Wang X, Zheng WL, Wu CL, Han JJ, Xiang YP, Yang ML, He P, Yu FH, Li MH. Interactive effects of rhizospheric soil microbes and litter on the growth of the invasive hyperaccumulator Bidens pilosa in cadmium-contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1507089. [PMID: 39726418 PMCID: PMC11670255 DOI: 10.3389/fpls.2024.1507089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, Bidens pilosa, in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from B. pilosa in soil with low (5 mg kg-1) or high (10 mg kg-1) concentrations of Cd. The total, shoot, and root biomass of B. pilosa increased significantly with litter addition, by an average of 27%, 28%, and 20%, respectively. The biomass of B. pilosa was significantly lower in unsterilized rhizosphere soil than in sterilized rhizosphere soil, decreasing by 19% for total, 18% for shoot, and 24% for root, respectively. Furthermore, the effects of different litter amounts (0.2% vs. 1%) on biomass did not vary in sterilized rhizosphere soils but significantly varied in unsterilized rhizosphere soils, showing that the biomass was significantly lower with 1% litter addition than with 0.2% litter addition in unsterilized rhizosphere soils, decreasing by 28% for total, 29% for shoot, and 21% for root, respectively. Tissue Cd concentrations were significantly higher in highly Cd-contaminated soils (+75% for shoot and +51% for root) than in low Cd-contaminated soils; however, higher tissue Cd concentrations did not cause a significant decrease in the biomass of B. pilosa. Soil fungal communities, particularly the dominant phyla, Ascomycota and Basidiomycota, play crucial roles in modulating the effects of rhizosphere soil microbes and litter on the growth of B. pilosa. Our results suggest that rhizosphere soil microbes and litter interact and affect the growth of B. pilosa: litter addition promoted growth by increasing the abundance of saprotrophs (especially Basidiomycota) and decreasing Cd accumulation in plant tissues, and rhizosphere soil inhibition was associated with a decreased abundance of Basidiomycota. Our findings highlight the importance of the interactive effects of rhizospheric soil microbes and litter on plant growth in Cd-contaminated soils.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Wei-Long Zheng
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Chun-Lan Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Jing-Jing Han
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Peng Xiang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Ming-Lang Yang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
46
|
Flores-Calla SS, Villanueva-Salas JA, Diaz-Rodriguez K, Gonzales-Condori EG. Removal of Lead, Cadmium, and Mercury in Monometallic and Trimetallic Aqueous Systems Using Chenopodium album L. SCIENTIFICA 2024; 2024:6842159. [PMID: 39697621 PMCID: PMC11655145 DOI: 10.1155/sci5/6842159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/10/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
The presence of heavy metals in water represents a risk to the life of all species on the planet. Phytoremediation is an effective alternative to remove heavy metals from contaminated aqueous environments. In the present research, Chenopodium album L. was examined for the remediation of waters contaminated with Cd, Pb, and Hg. Studies were carried out in waters containing each metal separately (monometallic aqueous systems) and in mixtures (trimetallic aqueous systems). First, the adaptation of Chenopodium album to different concentrations of Hoagland's nutrient solution (HNS) was evaluated, then, a phytotoxicity study was carried out to determine the appropriate concentrations of each metal to test the tolerance of the plant during the accumulation study, and finally, the bioaccumulation capacity of Chenopodium album for Cd, Pb, and Hg was evaluated. Chenopodium album showed tolerance to levels of 5 mg/L Hg and 10 mg/L Cd and Pb in 25% HNS. The bioaccumulation tests showed that Chenopodium album can remediate Cd, Pb, and Hg contaminated waters in both monometallic and trimetallic aqueous systems. These findings suggest important future applications in the food industry for the production of Chenopodium album as we demonstrate that this species adapts and grows in hydroponic media. In particular, the ability of Chenopodium album to adapt to extreme conditions could be exploited for further studies on phytoremediation of heavy metals in river water, irrigation water, wastewater, effluents, and mine tailings.
Collapse
Affiliation(s)
- Susan S. Flores-Calla
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - José A. Villanueva-Salas
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Karla Diaz-Rodriguez
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Elvis G. Gonzales-Condori
- Grupo de Investigación en Biotecnología y Ciencia de Los Alimentos, Universidad Tecnológica del Perú, Av. Tacna y Arica 160, Arequipa, Peru
| |
Collapse
|
47
|
Di DW, Li TT, Yu ZL, Cheng J, Wang M, Liu CF, Wang Y, Kronzucker HJ, Yu M, Shi W. Ammonium mitigates cadmium toxicity by activating the bZIP20-APX2/CATA transcriptional module in rice seedlings in an ABA-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135874. [PMID: 39316915 DOI: 10.1016/j.jhazmat.2024.135874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The amelioration of cadmium (Cd2+) toxicity in plants by ammonium (NH4+) has been widely investigated. However, the molecular mechanisms underpinning this amelioration have remained ambiguous. Here, we found that NH4+ significantly reduces Cd2+ accumulation and enhances antioxidant capacity by increasing ABA accumulation, which, in turn, improves Cd2+ tolerance in rice seedlings. A combination of qPCR, yeast-one-hybrid and dual-luciferase assays, and CUT&RUN-qPCR methods demonstrates that OsbZIP20 directly binds to the promoters of OsAPX2 and OsCATA, activating their transcription, and we show that the process requires phosphorylation modification of OsbZIP20 by OsSAPK9. Under Cd2+ stress, Osbzip20 and Ossapk9 mutants show reduced peroxidase and catalase activities, higher H2O2 accumulation, and reduced Cd2+ tolerance. In sum, our results elucidate a novel mechanism by which NH4+ enhances Cd2+ resistance, through ABA-SAPK9-bZIP20-APX2/CATA, offering a new strategy for improving Cd2+ resistance in rice.
Collapse
Affiliation(s)
- Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Zheng-Lun Yu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Jie Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chuan-Fa Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Min Yu
- School of Food Science and Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Food Science and Engineering, Foshan University, Foshan 528000, Guangdong, China.
| |
Collapse
|
48
|
Kanwal F, Riaz A, Khan A, Ali S, Zhang G. Manganese enhances cadmium tolerance in barley through mediating chloroplast integrity, antioxidant system, and HvNRAMP expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135777. [PMID: 39276745 DOI: 10.1016/j.jhazmat.2024.135777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses risks to crop production and food safety worldwide. This study evaluated whether manganese (Mn) addition could mitigate Cd toxicity and reduce Cd accumulation in barley seedlings. Hydroponically grown seedlings of Cd-tolerant (WSBZ) and Cd-sensitive (Dong17) barley cultivars were treated with 0.1 μM and 1 μM Cd as well as 0.2 mM Mn alone and in a combination with 0.1 or 1.0 μM Cd for 21 days. Cd exposure caused the dramatic alteration of growth and physiological parameters by disrupting chloroplast, and increased Cd accumulation in both genotypes. However, Mn addition markedly alleviated the negative impacts of all examined parameters caused by Cd stress. Cd addition enhanced expression of anti-oxidative enzyme related genes, including HvSOD, HvCAT, HvAPX, HvPOD in the two barley genotypes exposed to Cd stress. The expression analysis showed nearly all HvNRAMPs genes are dramatically up regulated by both Mn and Cd, with WSBZ having higher expression than Dong 17. Notably, HvNRAMP1 showed the highest expression due to Mn addition, highlighting its crucial role in Mn uptake and transportation in barley. Moreover, Cd stress and Mn addition increased and suppressed the expression of HvYSL5, HvHMA2 and HvHMA3, respectively. Conversely, the expression of HvYSL2, HvIRT1 and HvMTP8 was upregulated by both Mn and Cd treatments, with a further increase observed in the combined Cd and Mn treatments. It may be concluded that sufficient Mn supply is quite important for reducing Cd uptake and accumulation in plants.
Collapse
Affiliation(s)
- Farah Kanwal
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China.
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Brisbane 4072, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Saint Lucia, Brisbane 4072, Australia
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China; Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China.
| |
Collapse
|
49
|
Lu Z, Yu M, Han X, Qiao G, Xu J, Wu L, Qiu W, Zhuo R. SpbZIP60 confers cadmium tolerance by strengthening the root cell wall compartmentalization in Sedum plumbizincicola. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135936. [PMID: 39321478 DOI: 10.1016/j.jhazmat.2024.135936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Cadmium (Cd) is a prominent heavy metal pollutant that inhibits plant growth and poses risks to human health. Sedum plumbizincicola, as a Cd/Zn/Pb hyperaccumulator species, exhibits robust resistance to heavy metals and effective enrichment capacities. In our previous study, overexpressing SpbZIP60 in Arabidopsis enhanced Cd tolerance; however, the underlying the molecular mechanism remains to be elucidated. Here, we identified SpbZIP60 as a representative Cd stress response factor with nuclear localization and transcriptional activation activity. SpbZIP60 underwent conservative splicing in response to endoplasmic reticulum (ER) stress, while its response to Cd stress is independent of the ER stress-mediated unfolded protein response pathway. Overexpression of SpbZIP60 in S. alfredii increased the Cd tolerance and antioxidant activity. Furthermore, SpbZIP60 increased the content of cell wall components and thickened cell wall under Cd stress. Transcriptome analysis indicated a significant enrichment of differentially expressed genes within the phenylpropanoid metabolism pathway. Besides, the binding of SpbZIP60 to the promoter region of SpBglu resulted in the activation of gene expression, thereby enhancing the process of lignin deposition. Collectively, our results elucidated a molecular regulatory model in which SpbZIP60 increased the thickness of the root cell wall to impede Cd entry into the cell, consequently improving Cd tolerance.
Collapse
Affiliation(s)
- Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China; Fujian Academy of Forestry Sciences, Fuzhou, Fujian 350012, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
50
|
Xing G, Chen Q, Sun Y, Wang J, Zhou J, Sun L, Shu Q, Zhang J, Yan M. Synergistic promotion mechanism and structure-function relationship of nonmetallic atoms doped carbon nanodots driving Tagetes patula L. to remediate cadmium-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136479. [PMID: 39549400 DOI: 10.1016/j.jhazmat.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Phytoremediation is an economical and effective strategy to remove cadmium (Cd) from polluted environments. To improve its efficiency, nanotechnology has been proposed to collaborate with hyperaccumulators in the remediation of Cd-polluted soils. However, the intricate structure-function relationship and the underlying regulatory mechanisms by which nanomaterials regulate Cd migration and conversion within the soil-plant system remained unrevealed. In this study, functional carbon nanodots (FCNs) were modified by doping with nitrogen and (or) sulfur elements. The synthesized nonmetallic atoms-doped FCNs were utilized to investigate their structure-function relationship and the regulatory mechanisms underlying their role in the phytoremediation of Cd-polluted soils by Tagetes patula L. FCNs-based nanomaterials can regulate the migration and bioaccumulation of Cd in the soil-plant system, which exhibits an obvious structural dependency. Specifically, the synergistic application of sulfur doped FCNs and Tagetes patula L. had the highest Cd removal efficiency of 53.2 %, which was 20.1 % higher than Tagetes patula L. alone. The uptake and migration of Cd in the soil-plant system are regulated by FCNs-based nanomaterials through both direct and indirect mechanisms, involving interfacial reactions, plant physiology regulation and environmental influence. This study not only sheds light on the fate of FCNs-based nanomaterials and Cd in the soil-plant system, but also provides innovative nanotools for reinforcing phytoremediation efficiency in contaminated soils.
Collapse
Affiliation(s)
- Guling Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Yiwen Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jianquan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Junbo Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lanxuan Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Quyu Shu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Collaborative Innovation Center of Yellow River Basin Pharmaceutical Green Manufacturing and Engineering Equipment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|